Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 6,083 papers

3D models of lamprey progesterone receptor complexed with progesterone, 7α-hydroxy-progesterone and 15α-hydroxy-progesterone.

  • Michael E Baker‎ et al.
  • Steroids‎
  • 2011‎

Sea lamprey, a basal vertebrate, contains a progesterone receptor [PR]. An unusual property of lamprey is that gonadotropin-releasing hormone induces synthesis of 15α-hydroxy-progesterone [15α-OH-P] instead of progesterone. There also is indirect evidence for 7α-OH-P in lamprey serum. To determine if there is a structural basis for the binding of 7α-OH-P and 15α-OH-P to lamprey PR, we constructed 3D models of the lamprey PR complexed with progesterone, 7α-OH-P and 15α-OH-P. These 3D models reveal that Met-277 in lamprey PR has a specific interaction with the 15α-hydroxyl on 15α-OH-P and with Met-192, which also contacts the 15α-hydroxyl group. We also find that 7α-OH-P has favorable contacts with side-chains in lamprey PR. BLAST searches reveal that Met-277 on lamprey PR is unique among vertebrate PRs. This unique site on lamprey PR could be a target for compounds to control reproduction in sea lamprey, an environmental pest in Lake Michigan.


Progesterone through Progesterone Receptor B Isoform Promotes Rodent Embryonic Oligodendrogenesis.

  • Juan Carlos González-Orozco‎ et al.
  • Cells‎
  • 2020‎

Oligodendrocytes are the myelinating cells of the central nervous system (CNS). These cells arise during the embryonic development by the specification of the neural stem cells to oligodendroglial progenitor cells (OPC); newly formed OPC proliferate, migrate, differentiate, and mature to myelinating oligodendrocytes in the perinatal period. It is known that progesterone promotes the proliferation and differentiation of OPC in early postnatal life through the activation of the intracellular progesterone receptor (PR). Progesterone supports nerve myelination after spinal cord injury in adults. However, the role of progesterone in embryonic OPC differentiation as well as the specific PR isoform involved in progesterone actions in these cells is unknown. By using primary cultures obtained from the embryonic mouse spinal cord, we showed that embryonic OPC expresses both PR-A and PR-B isoforms. We found that progesterone increases the proliferation, differentiation, and myelination potential of embryonic OPC through its PR by upregulating the expression of oligodendroglial genes such as neuron/glia antigen 2 (NG2), sex determining region Y-box9 (SOX9), myelin basic protein (MBP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP1), and NK6 homeobox 1 (NKX 6.1). These effects are likely mediated by PR-B, as they are blocked by the silencing of this isoform. The results suggest that progesterone contributes to the process of oligodendrogenesis during prenatal life through specific activation of PR-B.


Dietary Progesterone Contributes to Intratissue Levels of Progesterone in Male Mice.

  • Hannah Colldén‎ et al.
  • Endocrinology‎
  • 2023‎

Progesterone serum levels have been identified as a potential predictor for treatment effect in men with advanced prostate cancer, which is an androgen-driven disease. Although progesterone is the most abundant sex steroid in orchiectomized (ORX) male mice, the origins of progesterone in males are unclear. To determine the origins of progesterone and androgens, we first determined the effect of ORX, adrenalectomy (ADX), or both (ORX + ADX) on progesterone levels in multiple male mouse tissues. As expected, intratissue androgen levels were mainly testicular derived. Interestingly, progesterone levels remained high after ORX and ORX + ADX with the highest levels in white adipose tissue and in the gastrointestinal tract. High progesterone levels were observed in mouse chow and exceptionally high progesterone levels were observed in food items such as dairy, eggs, and beef, all derived from female animals of reproductive age. To determine if orally ingested progesterone contributes to tissue levels of progesterone in males, we treated ORX + ADX and sham mice with isotope-labeled progesterone or vehicle by oral gavage. We observed a significant uptake of labeled progesterone in white adipose tissue and prostate, suggesting that dietary progesterone may contribute to tissue levels of progesterone. In conclusion, although adrenal-derived progesterone contributes to intratissue progesterone levels in males, nonadrenal progesterone sources also contribute. We propose that dietary progesterone is absorbed and contributes to intratissue progesterone levels in male mice. We speculate that food with high progesterone content could be a significant source of progesterone in males, possibly with consequences for men undergoing androgen deprivation therapy for prostate cancer.


Immunomodulatory effects of progesterone and selective ligands of membrane progesterone receptors.

  • A V Polikarpova‎ et al.
  • Steroids‎
  • 2019‎

Progesterone (P4) and its analogues regulate various reproductive processes, such as ovulation, implantation, pregnancy maintenance and delivery. In these processes, an important role is played by the immune cells recruited to the female reproductive organs and tissues, where they are exposed to the action of P4. Progestins regulate cellular processes, acting through nuclear steroid receptors (nSRs), membrane P4 receptors (mPRs), and through the sensors. It remains unclear, what type of receptors is used by P4 and its derivatives to exert their effect on the immune cells and how similar their effects are in different types of these cells. We have previously synthesized new progesterone derivatives, among which two selective mPRs ligands, not interacting with nSRs were identified. The objective of this study was to examine the effects of P4 and new selective mPRs ligands on the expression of pro- and anti-inflammatory cytokines in activated human peripheral blood mononuclear cells (PBMCs), THP-1 monocyte cells, and Jurkat T cells. It was demonstrated that the action of P4 and selective ligands was unidirectional, but in different types of the immune cells, their effects were different, and sometimes even opposite. In PBMCs, exposure to these steroids resulted in the increase of mRNA and secreted protein levels of IL-1β, TNFα, and IL-6 cytokines, as well as in the increase of INFγ mRNA level, decrease of IL-2 mRNA level, increase of TGFβ mRNA level, and decrease of IL-4 mRNA and IL-10 secreted protein levels. In monocytes, similarly to PBMCs, expression of IL-1β and TNFα mRNA was increased, but expression of IL-10 was also increased, and the TGFβ expression statistically significantly remained the same. In Jurkat T cells, expression of IL-2 and TNFα mRNA decreased, while expression of IL-10 increased, and expression of TGFβ did not change. Thus, progestins act on the immune cells through mPRs and have both pro- and anti-inflammatory effects, depending on the phenotypes of these cells. The data obtained are important for understanding the complexity of the immune system regulation by progestins, which depends on the type of the immune cells and individual characteristics of the immune system.


Progesterone/Org inhibits lung adenocarcinoma cell growth via membrane progesterone receptor alpha.

  • Jian Xiao‎ et al.
  • Thoracic cancer‎
  • 2020‎

The aim of this study was to determine whether progesterone could inhibit the growth of lung adenocarcinoma cells via membrane progesterone receptor alpha (mPRα) and elucidate its potential mechanism. The relationship between mPRα expression and the survival prognosis of lung adenocarcinoma patients was studied.


Neonatal Progesterone Programs Adult Uterine Responses to Progesterone and Susceptibility to Uterine Dysfunction.

  • Pramod Dhakal‎ et al.
  • Endocrinology‎
  • 2015‎

In this report, we investigated the consequences of neonatal progesterone exposure on adult rat uterine function. Female pups were subcutaneously injected with vehicle or progesterone from postnatal days 3 to 9. Early progesterone exposure affected endometrial gland biogenesis, puberty, decidualization, and fertility. Because decidualization and pregnancy success are directly linked to progesterone action on the uterus, we investigated the responsiveness of the adult uterus to progesterone. We first identified progesterone-dependent uterine gene expression using RNA sequencing and quantitative RT-PCR in Holtzman Sprague-Dawley rats and progesterone-resistant Brown Norway rats. The impact of neonatal progesterone treatment on adult uterine progesterone responsiveness was next investigated using quantitative RT-PCR. Progesterone resistance affected the spectrum and total number of progesterone-responsive genes and the magnitude of uterine responses for a subset of progesterone targets. Several progesterone-responsive genes in adult uterus exhibited significantly dampened responses in neonatally progesterone-treated females compared with those of vehicle-treated controls, whereas other progesterone-responsive transcripts did not differ between female rats exposed to vehicle or progesterone as neonates. The organizational actions of progesterone on the uterus were dependent on signaling through the progesterone receptor but not estrogen receptor 1. To summarize, neonatal progesterone exposure leads to disturbances in endometrial gland biogenesis, progesterone resistance, and uterine dysfunction. Neonatal progesterone effectively programs adult uterine responsiveness to progesterone.


Characterisation of progestins used in hormonal contraception and progesterone via the progesterone receptor.

  • Kim Enfield‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Different progestogens are widely used in hormonal therapy and mediate their therapeutic actions via the progesterone receptor (PR). Little published data exist on their relative efficacies and potencies via the PR, while those available may be confounded by off-target receptors, different methodologies and model systems. We performed dose-response analysis to investigate the efficacies and potencies for transcription of progesterone and several progestins widely used in contraception via the B isoform of human PR (PR-B). We compared responses using three different cell lines and two different transient transfection conditions. Results show that in vitro biological responses via PR-B for the select progestogens can vary significantly in biocharacter, rank order and absolute values for efficacies and potencies, depending on the cell line and transfection condition. Progestogen rank orders for published relative binding affinities are mostly different to those for relative efficacies and potencies. These in vitro differences suggest that rank orders and absolute values of the efficacies and potencies of the progestogens are likely to vary in vivo in a cell-specific and progestogen-specific manner, and cannot easily be extrapolated from in vitro data, as is usually the practice. While obtaining such data in vivo is not possible, these in vitro data show proof of concept for likely significant cell- and progestogen-specific PR-B effects.


Progesterone release profile and follicular development in Nelore cows receiving intravaginal progesterone devices.

  • Lucas Oliveira E Silva‎ et al.
  • Theriogenology‎
  • 2022‎

This study aimed to evaluate the progesterone (P4) release profile provided by four commercially available intravaginal P4 devices, as well as the effect of circulating P4 concentrations exclusively from these devices on the development of the dominant follicle (DF) in Nelore (Bos indicus) cows. Therefore, non-lactating multiparous Nelore cows were enrolled in an experimental design, over three replicates, starting on Day -9 with the insertion of a reused P4 device (2 g - original P4 load) for 7 d, followed by two treatments of cloprostenol sodium (PGF; 0.482 mg), 24 h apart, on Days -3 and -2. Just before device removal, on Day -2, a norgestomet ear implant was inserted and, 2 d later (Day 0), at the time of norgestomet withdrawal, cows were randomly assigned to receive one of the intravaginal devices: Primer (0.5 g); Prociclar (0.75 g); Sincrogest (1 g); or CIDR (1.9 g), and 2 mg of estradiol benzoate (EB) im. Blood samples were collected immediately before P4 device insertion, 12 h later and daily over 15 d (1 d after P4 device removal). Ultrasound examinations were performed on Days 0, 7, 8, 9, 10, 12, and 14 to evaluate ovarian dynamics. Results are presented as mean ± SEM and differences were considered when P ≤ 0.05. Overall, the devices resulted in distinct circulating P4 concentrations over 10 d, varying according to their initial P4 load and P4 impregnated surface area. Primer provided the lowest circulating P4 concentrations over time, whereas, CIDR had the greatest concentration. Sincrogest and Prociclar were similar, producing intermediary circulating P4. There was no effect of treatment on the DF diameter on any specific day, nor on follicular growth rate from Day 7-10. However, the Primer device resulted in a greater mean DF diameter over time. Additionally, greater circulating P4 concentrations, mainly during the first 3 d of device insertion, were associated with smaller DF diameters regardless of the treatment. In conclusion, results from this study provided a better understanding of the P4 profile of intravaginal P4 devices, as well as, their effect on DF development in Bos indicus cows. These data contribute to optimize the use of P4 devices in the reproductive management of beef cattle.


Progesterone release profile and follicular development in Holstein cows receiving intravaginal progesterone devices.

  • Lucas Oliveira E Silva‎ et al.
  • Theriogenology‎
  • 2021‎

The aim of this study was to evaluate the progesterone (P4) release profile provided by eight commercial intravaginal P4 devices, as well as the effect of circulating P4 concentrations produced exclusively by these devices on the development of the dominant follicle (DF) in non-lactating multiparous Holstein cows. All cows were submitted to the same experimental design starting with the insertion of a reused P4 device (2 g - original P4 load) for 7 d, followed by two treatments of cloprostenol sodium (PGF; 0.482 mg), 24 h apart, 6 and 7 d after device insertion. Just before device removal, a Norgestomet ear implant was inserted and, 2 d later (Day 0), simultaneously to Norgestomet withdrawal, cows received one of the tested intravaginal devices and 2 mg of estradiol benzoate (EB) im. In Exp.1 (n = 22; three replicates), cows were randomized to receive: CIDR (1.38 g); PRID-Delta (1.55 g); Prociclar (0.75 g); or Repro sync (2 g). In Exp. 2 (n = 29; four replicates), cows were randomized to receive: Cue-Mate (1.56 g); DIB 0.5 (0.5 g); DIB (1 g); PRID-Delta (1.55 g); or Sincrogest (1 g). Blood samples were collected before P4 device insertion (Day 0), 12 h later and daily over 15 d (1 d after P4 device removal). Ultrasound examinations were performed to evaluate growth of the DF on Days 0, 7, 8, 9, and 10. Results are presented as mean ± SEM and differences were considered when P ≤ 0.05. Overall, the circulating P4 profile and mean circulating P4 over 10 d differed among treatments. However, no effects were observed on the DF diameter and follicular growth rate from Day 7-10 after P4 device insertion. In Exp. 2, devices that provided higher circulating P4 concentrations were associated to a slower DF growth during the treatment period. Finally, this study provided a better understanding of the P4 release profile produced by intravaginal P4 devices as well as their effect on circulating P4 concentrations and DF development in non-lactating Holstein cows.


Knockdown of Progesterone Receptor (PGR) in Macaque Granulosa Cells Disrupts Ovulation and Progesterone Production.

  • Cecily V Bishop‎ et al.
  • Biology of reproduction‎
  • 2016‎

Adenoviral vectors (vectors) expressing short-hairpin RNAs complementary to macaque nuclear progesterone (P) receptor PGR mRNA (shPGR) or a nontargeting scrambled control (shScram) were used to determine the role PGR plays in ovulation/luteinization in rhesus monkeys. Nonluteinized granulosa cells collected from monkeys (n = 4) undergoing controlled ovarian stimulation protocols were exposed to either shPGR, shScram, or no virus for 24 h; human chorionic gonadotropin (hCG) was then added to half of the wells to induce luteinization (luteinized granulosa cells [LGCs]; n = 4-6 wells/treatment/monkey). Cells/media were collected 48, 72, and 120 h postvector for evaluation of PGR mRNA and P levels. Addition of hCG increased (P < 0.05) PGR mRNA and medium P levels in controls. However, a time-dependent decline (P < 0.05) in PGR mRNA and P occurred in shPGR vector groups. Injection of shPGR, but not shScram, vector into the preovulatory follicle 20 h before hCG administration during controlled ovulation protocols prevented follicle rupture in five of six monkeys as determined by laparoscopic evaluation, with a trapped oocyte confirmed in three of four follicles of excised ovaries. Injection of shPGR also prevented the rise in serum P levels following the hCG bolus compared to shScram (P < 0.05). Nuclear PGR immunostaining was undetectable in granulosa cells from shPGR-injected follicles, compared to intense staining in shScram controls. Thus, the nuclear PGR appears to mediate P action in the dominant follicle promoting ovulation in primates. In vitro and in vivo effects of PGR knockdown in LGCs also support the hypothesis that P enhances its own synthesis in the primate corpus luteum by promoting luteinization.


Progesterone acts via the progesterone receptor to induce adamts proteases in ovarian cancer cells.

  • Maíra A Lima‎ et al.
  • Journal of ovarian research‎
  • 2016‎

Ovarian carcinomas, usually associated with sex hormones dysregulation, are the leading cause of gynecological neoplastic death. In normal ovaries, hormones play a central role in regulating cell proliferation, differentiation, and apoptosis. On the other hand, hormonal alterations also play a variety of roles in cancer. Stimulation by sex hormones potentially affects gene expression, invasiveness, cell growth and angiogenesis. Proteases of the "a disintegrin and metalloproteinase with thrombospondin motifs" (ADAMTS) family are secreted by different cell types and become involved in collagen processing, cleavage of the proteoglycan matrix, and angiogenesis. We evaluated whether sex hormones affect ADAMTS 1 and 4 expression in ovarian cancer cells.


Tissue-specific progesterone receptor-chromatin binding and the regulation of progesterone-dependent gene expression.

  • D T Dinh‎ et al.
  • Scientific reports‎
  • 2019‎

Progesterone receptor (PGR) co-ordinately regulates ovulation, fertilisation and embryo implantation through tissue-specific actions, but the mechanisms for divergent PGR action are poorly understood. Here we characterised PGR activity in mouse granulosa cells using combined ChIP-seq for PGR and H3K27ac and gene expression microarray. Comparison of granulosa, uterus and oviduct PGR-dependent genes showed almost complete tissue specificity in PGR target gene profiles. In granulosa cells 82% of identified PGR-regulated genes bound PGR within 3 kb of the gene and PGR binding sites were highly enriched in proximal promoter regions in close proximity to H3K27ac-modified active chromatin. Motif analysis showed highly enriched PGR binding to the PGR response element (GnACAnnnTGTnC), but PGR also interacted significantly with other transcription factor binding motifs. In uterus PGR showed far more tendency to bind intergenic chromatin regions and low evidence of interaction with other transcription factors. This is the first genome-wide description of PGR action in granulosa cells and systematic comparison of diverse PGR action in different reproductive tissues. It clarifies finely-tuned contextual PGR-chromatin interactions with implications for more targeted reproductive medicine.


Cerebroprotection by progesterone following ischemic stroke: Multiple effects and role of the neural progesterone receptors.

  • Xiaoyan Zhu‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2019‎

Treatment with progesterone limits brain damage after stroke. However, the cellular bases of the cerebroprotective effects of progesterone are not well documented. The aims of this study were to determine neural cells and functions that are affected by progesterone treatment and the role of neural progesterone receptors (PR) after stroke. Adult male PRNesCre mice, selectively lacking PR in the central nervous system, and their control PRloxP/loxP littermates were subjected to transient ischemia by middle cerebral artery occlusion (MCAO) for 30 min. Mice received either progesterone (8 mg/kg) or vehicle at 1-, 6- and 24- hrs post-MCAO and outcomes were analyzed at 48 h post-MCAO. In PRloxP/loxP mice, progesterone exerted multiple effects on different neural cell types, improved motor functional outcomes and reduced total infarct volumes. In the peri-infarct, progesterone increased the density of neurons (NeuN+ cells), of cells of the oligodendroglial lineage (Olig2+ cells) and of oligodendrocyte progenitors (OP, NG2+ cells). Progesterone decreased the density of activated astrocytes (GFAP+ cells) and reactive microglia (Iba1+ cells) coexpressing the mannose receptor type 1 CD206 marker. Progesterone also reduced the expression of aquaporin 4 (AQP4), the water channel involved in both edema formation and resorption. The beneficial effects of progesterone were not observed in PRNesCre mice. Our findings show that progesterone treatment exerts beneficial effects on neurons, oligodendroglial cells and neuroinflammatory responses via PR. These findings demonstrate that progesterone is a pleiotropic cerebroprotective agent and that neural PR represent a therapeutic target for stroke cerebroprotection.


Progesterone-induced progesterone receptor membrane component 1 rise-to-decline changes are essential for decidualization.

  • Hailun Liu‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2024‎

Decidualization of endometrial cells is the prerequisite for embryo implantation and subsequent placenta formation and is induced by rising progesterone levels following ovulation. One of the hormone receptors contributing to endometrial homeostasis is Progesterone Receptor Membrane Component 1 (PGRMC1), a non-classical membrane-bound progesterone receptor with yet unclear function. In this study, we aimed to investigate how PGRMC1 contributes to human decidualization.


Progestins, progesterone receptor modulators, and progesterone antagonists change VEGF release of endometrial cells in culture.

  • I Classen-Linke‎ et al.
  • Steroids‎
  • 2000‎

The influences of the synthetic progestin, medroxyprogesterone acetate (MPA), the progesterone receptor modulator J867, and the antagonist ZK137316 were studied in vitro on isolated endometrial epithelial cells, as well as endometrial fibroblasts. We evaluated the expression of estrogen receptor alpha (ER) and the progesterone receptor (PR) by RT-PCR. ER and PR were strongly expressed in the fibroblasts and epithelial cells under treatment with 10(-8) M 17beta-estradiol (E(2)). Treatment with 10(-6) M J867 or ZK137316 upregulated the PR expression as did E(2), in contrast to treatment with 10(-6) M MPA, which caused a downregulation of PR in epithelial cells, but not in fibroblasts. In addition, the vascular endothelial growth factor (VEGF) release into the cell culture medium was analyzed by a VEGF-ELISA. VEGF which plays an important role in angiogenesis, is regulated by steroid hormones as well as hypoxia. E(2) stimulates VEGF release into the medium in both cell types. MPA reduces VEGF release significantly in the fibroblast cell culture, but increases it in the epithelial cell culture. ZK137316, in the presence or absence of E(2), reduces VEGF release in fibroblast cell culture. J867 increases the VEGF production in fibroblasts only in the presence of E(2). Both compounds show no significant effects, compared to E(2), in epithelial cell culture. The different results for the epithelial cells and fibroblasts indicate that the pharmacological effects of PR modulators (PRMs) and progesterone antagonists (PAs) may be cell specific and depend on the presence or absence of partial progestagenic agonistic activities. This observation opens up new perspectives for various clinical applications.


The inhibition of female rabbit sexual behavior by progesterone: progesterone receptor-dependent and-independent effects.

  • K L Hoffman‎ et al.
  • Hormones and behavior‎
  • 2009‎

In the pregnant domestic rabbit, scent marking ("chinning") and sexual behavior are inhibited by ovarian-derived progesterone (P). In order to distinguish behavioral effects of P that are PR-dependent from those mediated by its ring A reduced metabolites, we administered P, P+RU486 (PR antagonist), chlormadinone acetate (CA, synthetic progestin that does not form ring A reduced metabolites), or vehicle to ovariectomized (ovx) estradiol-benzoate (EB)-treated female rabbits, via sc injection, on experimental day 0. Chinning was quantified daily, and mating tests were done on days -1, 1, 3, 5, and 7. On day 1, chinning was significantly decreased, and the latency to be mounted by the male was significantly increased (indicating decreased sexual attractivity of the female) in P-treated females. The effect of P on chinning, but not its effect on sexual attractivity, was completely blocked by RU486 and replicated by CA. Although CA had no effect on attractivity on day 1, it decreased both sexual receptivity and attractivity on day 3. In a preference test in which the male could interact with either an ovx EB-treated female or an ovx female that had received one of the above hormone treatments 24 h earlier, P decreased sexual attractivity and increased aggression. The effect of P on aggression, but not its effect on attractivity, was blocked by RU486 and replicated by CA. These results indicate that both PR-dependent and PR-independent mechanisms decrease sexual attractivity, whereas PR activation is necessary for the inhibition of chinning and sexual receptivity, and for the stimulation of aggression.


Progesterone Receptors in Prostate Cancer: Progesterone receptor B is the isoform associated with disease progression.

  • Thea Grindstad‎ et al.
  • Scientific reports‎
  • 2018‎

The role of steroid hormones in carcinogenesis of the prostate is to some extent unraveled thorough the effect of androgen deprivation therapy on prostate cancer (PCa) progression. Other members of the steroid hormone family, such as progesterone, are also implicated in PCa, but progesterone's role remains undefined. This study aimed to examine the distribution of progesterone receptor isoforms (PGRA, PGRB) in PCa tissue and their association with clinical endpoints. This was conducted retrospectively by collecting radical prostatectomy specimens from 535 patients. Tissue was analyzed using tissue microarray, where representative tumor areas were carefully selected. Protein expression was evaluated through immunohistochemistry, in stromal and epithelial tissue. Associations between receptor expression and clinical data were considered using statistical survival analyses. Herein, we discovered a solely stromal PGRA- and a stromal and epithelial PGRB expression. Further, a high PGRB expression in tumor tissue was associated with an unfavorable prognosis in both univariate and multivariate analyses: Biochemical failure (HR: 2.0, 95% CI: 1.45-2.76, p < 0.001) and clinical failure (HR: 2.5, 95% CI: 1.29-4.85, p = 0.006). These findings are in agreement with our previous investigation on pan-PGR, indicating that the observed negative effect of PGR is represented by PGRB.


The Role of Progesterone and a Novel Progesterone Receptor, Progesterone Receptor Membrane Component 1, in the Inflammatory Response of Fetal Membranes to Ureaplasma parvum Infection.

  • Liping Feng‎ et al.
  • PloS one‎
  • 2016‎

Ureaplasma parvum (U. parvum) is gaining recognition as an important pathogen for chorioamnionitis and preterm premature rupture of membranes. We aimed to investigate the roles of progesterone (P4) and a novel progesterone receptor, progesterone receptor membrane component 1 (PGRMC1), in the response of fetal membranes to U. parvum. Fetal membrane cells (amnion, chorion and decidua) were isolated and confirmed to be free of Mycoplasmataceae. Cells were treated with U. parvum (5x106 CFU), and adherence was quantified by qPCR. Amnion and chorion cells were transfected with scrambled siRNA or validated PGRMC1 siRNA for 72h. Cells were then treated with U. parvum for 4h with or without pretreatment with P4 (10-7 M) or ethanol for 1h. Interleukin-8 (IL-8), matrix metalloproteinase 9 (MMP9) and cyclooxygenase (COX-2) mRNA expression were quantified by qRT-PCR. Culture medium was harvested and analyzed for IL-8 and prostaglandin (PGE2) secretion by ELISA and MMP9 activity by zymography. U. parvum had a mean adherence of 15.0±0.6%, 16.9± 3.7% and 4.7±0.3% in cultured amnion, chorion and decidua cells, respectively. Exposure to U. parvum elicited significant inflammatory responses including induction of IL-8, COX-2, PGE2 and MMP9. A possible role of PGRMC1 was identified in the inhibition of U. parvum-stimulated COX-2 and MMP9 mRNA expression in chorion cells and MMP9 activity in amnion cells. On the other hand, it might enhance the U. parvum-stimulated IL-8 protein secretion in amnion cells. P4, mediated through PGRMC1, significantly inhibited U. Parvum-induced MMP9 mRNA and COX-2 mRNA expression in chorion cells. P4 appeared to attenuate U. parvum induced IL-8 mRNA expression in chorion cells, but this P4 effect might not mediated through PGRMC1. In summary, U. parvum preferentially adheres to and induces inflammatory responses in chorion and amnion cells. P4 and PGRMC1 appear to differentially modulate the inflammatory responses induced by U. parvum among amnion and chorion cells.


The classical progesterone receptor mediates the rapid reduction of fallopian tube ciliary beat frequency by progesterone.

  • Anna Bylander‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2013‎

The transport of gametes as well as the zygote is facilitated by motile cilia lining the inside of the fallopian tube. Progesterone reduces the ciliary beat frequency within 30 minutes in both cows and mice. This rapid reduction suggest the involvement of a non-genomic signaling mechanism, although it is not known which receptors that are involved. Here we investigated the possible involvement of the classical progesterone receptor in this process.


miR-129-2 mediates down-regulation of progesterone receptor in response to progesterone in breast cancer cells.

  • Mukul Godbole‎ et al.
  • Cancer biology & therapy‎
  • 2017‎

Hormonal therapy is an important component of first line of treatment for breast cancer. Response to hormonal therapy is influenced by the progesterone receptor (PR)-status of breast cancer patients. However as an early effect, exposure to progesterone decreases expression of PR in breast cancer cells. An understanding of the mechanism underlying down-regulation of PR could help improve response to hormonal therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: