Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 318 papers

Neurochemical Characterization of Brainstem Pro-Opiomelanocortin Cells.

  • Teodora Georgescu‎ et al.
  • Endocrinology‎
  • 2020‎

Genetic research has revealed pro-opiomelanocortin (POMC) to be a fundamental regulator of energy balance and body weight in mammals. Within the brain, POMC is primarily expressed in the arcuate nucleus of the hypothalamus (ARC), while a smaller population exists in the brainstem nucleus of the solitary tract (POMCNTS). We performed a neurochemical characterization of this understudied population of POMC cells using transgenic mice expressing green fluorescent protein (eGFP) under the control of a POMC promoter/enhancer (PomceGFP). Expression of endogenous Pomc mRNA in the nucleus of the solitary tract (NTS) PomceGFP cells was confirmed using fluorescence-activating cell sorting (FACS) followed by quantitative PCR. In situ hybridization histochemistry of endogenous Pomc mRNA and immunohistochemical analysis of eGFP revealed that POMC is primarily localized within the caudal NTS. Neurochemical analysis indicated that POMCNTS is not co-expressed with tyrosine hydroxylase (TH), glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), brain-derived neurotrophic factor (BDNF), nesfatin, nitric oxide synthase 1 (nNOS), seipin, or choline acetyltransferase (ChAT) cells, whereas 100% of POMCNTS is co-expressed with transcription factor paired-like homeobox2b (Phox2b). We observed that 20% of POMCNTS cells express receptors for adipocyte hormone leptin (LepRbs) using a PomceGFP:LepRbCre:tdTOM double-reporter line. Elevations in endogenous or exogenous leptin levels increased the in vivo activity (c-FOS) of a small subset of POMCNTS cells. Using ex vivo slice electrophysiology, we observed that this effect of leptin on POMCNTS cell activity is postsynaptic. These findings reveal that a subset of POMCNTS cells are responsive to both changes in energy status and the adipocyte hormone leptin, findings of relevance to the neurobiology of obesity.


Impaired neonatal survival of pro-opiomelanocortin null mutants.

  • Katarzyna Saedler‎ et al.
  • Molecular and cellular endocrinology‎
  • 2011‎

Intercrosses of heterozygous pro-opiomelanocortin (POMC) mice result in homozygous null progeny at lower frequencies than expected. Genotyping offspring at pre-, peri-, and postnatal stages revealed that over half of homozygous null mutants die in the early postnatal stages. To investigate the reasons for this early postnatal lethality, we analyzed in detail different parameters in the initial hours after birth. POMC null mutants born to heterozygous dams presented at birth with corticosterone levels no different from wildtype littermates, were euglycemic, and had normal liver glycogen stores. However, already 30 min after birth corticosterone levels dropped by 80% and were undetectable thereafter, while corticosterone levels in wildtype animals increased during postnatal hours. Circulating adrenaline was almost below detection 1h after birth. Blood glucose levels fell sharply in all genotypes within 30 min after birth; however, wildtype and heterozygous pups overcame hypoglycemia within an hour, while mutant pups stayed hypoglycemic. The depletion of liver glycogen stores in mutant pups was significantly less efficient compared to their littermates in the hours after birth. POMC null mutant mice born to POMC null mutant dams completely lack corticosterone and die of the expected respiratory dysfunction. In contrast, POMC null mutant mice born to heterozygous dams do not die of respiratory problems, but rather due to hypoglycemia. Our studies confirm an essential involvement of POMC peptides and of adrenal glucocorticoids and catecholamines on glucose homeostasis critical for early postnatal survival.


The pro-opiomelanocortin gene of the zebrafish (Danio rerio).

  • Immo A Hansen‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

The cDNA and the gene for pro-opiomelanocortin (POMC) in the zebrafish (Danio rerio) were isolated and analyzed. The gene consists of three exons and two short introns and has a similar overall structural organization as in Homo sapiens. Intron 1 (339 bp) divides the 5(') untranslated region from the coding region while intron 2 (1522 bp) is located between the signal peptide and the sequence encoding ACTH. Transcription starts 26 bp downstream of a TATA box and there is one polyadenylation signal in the 3(') untranslated region. The cDNA comprises of 964 bp with an open reading frame encoding a 222 amino acid hormone prepropeptide that is split into six putative hormones. Sequence comparison of zebrafish POMC to sequences of various other vertebrate species reveals four regions that are highly conserved during the evolution of vertebrates-the N-terminal region, ACTH, beta-MSH, and beta-endorphin, whereas the connecting peptides show a much higher degree of variability. Phylogenetic analysis of the POMC sequences of various vertebrate species resulted in the expected pattern of species evolution. In situ hybridization demonstrated POMC expression in a cluster of cells (corticotrophs) in the pituitary of the zebrafish as early as 23 h after fertilization. These findings will facilitate the use of the zebrafish as a model organism in the study of the physiological role of POMC-derived peptides.


Dynorphin in pro-opiomelanocortin neurons of the hypothalamic arcuate nucleus.

  • N Maolood‎ et al.
  • Neuroscience‎
  • 2008‎

Considerable evidence suggests that dynorphin participates in the regulation of energy balance. In this study, we have used immunohistochemistry to investigate in detail the cellular localization of pro-dynorphin (DYN) immunoreactive cell bodies in the mediobasal hypothalamus with special reference to neurons producing orexigenic or anorexigenic transmitters. In colchicine-treated rats, DYN immunoreactivity was demonstrated in many cell bodies of the arcuate nucleus (Arc). Double-labeling revealed that DYN immunoreactivity was present in approximately 30% of pro-opiomelanocortin (POMC) neurons in the ventrolateral Arc as shown by presence of alpha-melanocyte-stimulating hormone (alpha-MSH) and cocaine- and amphetamine-regulated transcript (CART). In contrast, DYN immunoreactivity was not demonstrated in agouti-related peptide (AgRP)- or neuropeptide Y (NPY) -containing neurons in the ventromedial aspect of the Arc. Dynorphin immunoreactivity was also colocalized with the vesicular acetylcholine (ACh) transporter (VAChT; a marker for cholinergic neurons) in the cell soma of Arc POMC neurons. Brainstem POMC neurons in the commissural part of the solitary tract nucleus (NTS) were devoid of DYN immunoreactivity, whereas DYN immunoreactivity was detected in a few NPY-containing NTS neurons and cholinergic DMX neurons. Our results showing presence of DYN together with alpha-MSH in a subpopulation of hypothalamic POMC neurons further point to the neurochemical heterogeneity of hypothalamic POMC neurons. The results suggest a role for DYN in control of energy balance by mediating the effect of peripheral hormones such as leptin and insulin.


Intramuscular electroporation with the pro-opiomelanocortin gene in rat adjuvant arthritis.

  • I-Chuan Chuang‎ et al.
  • Arthritis research & therapy‎
  • 2004‎

Endogenous opioid peptides have an essential role in the intrinsic modulation and control of inflammatory pain, which could be therapeutically useful. In this study, we established a muscular electroporation method for the gene transfer of pro-opiomelanocortin (POMC) in vivo and investigated its effect on inflammatory pain in a rat model of rheumatoid arthritis. The gene encoding human POMC was inserted into a modified pCMV plasmid, and 0-200 microg of the plasmid-POMC DNA construct was transferred into the tibialis anterior muscle of rats treated with complete Freund's adjuvant (CFA) with or without POMC gene transfer by the electroporation method. The safety and efficiency of the gene transfer was assessed with the following parameters: thermal hyperalgesia, serum adrenocorticotropic hormone (ACTH) and endorphin levels, paw swelling and muscle endorphin levels at 1, 2 and 3 weeks after electroporation. Serum ACTH and endorphin levels of the group into which the gene encoding POMC had been transferred were increased to about 13-14-fold those of the normal control. These levels peaked 1 week after electroporation and significantly decreased 2 weeks after electroporation. Rats that had received the gene encoding POMC had less thermal hypersensitivity and paw swelling than the non-gene-transferred group at days 3, 5 and 7 after injection with CFA. Our promising results showed that transfer of the gene encoding POMC by electroporation is a new and effective method for its expression in vivo, and the analgesic effects of POMC cDNA with electroporation in a rat model of rheumatoid arthritis are reversed by naloxone.


Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis.

  • Eric D Berglund‎ et al.
  • The Journal of clinical investigation‎
  • 2013‎

Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.


5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis.

  • Yong Xu‎ et al.
  • Neuron‎
  • 2008‎

Drugs activating 5-hydroxytryptamine 2C receptors (5-HT2CRs) potently suppress appetite, but the underlying mechanisms for these effects are not fully understood. To tackle this issue, we generated mice with global 5-HT2CR deficiency (2C null) and mice with 5-HT2CRs re-expression only in pro-opiomelanocortin (POMC) neurons (2C/POMC mice). We show that 2C null mice predictably developed hyperphagia, hyperactivity, and obesity and showed attenuated responses to anorexigenic 5-HT drugs. Remarkably, all these deficiencies were normalized in 2C/POMC mice. These results demonstrate that 5-HT2CR expression solely in POMC neurons is sufficient to mediate effects of serotoninergic compounds on food intake. The findings also highlight the physiological relevance of the 5-HT2CR-melanocortin circuitry in the long-term regulation of energy balance.


Sirt6 in pro-opiomelanocortin neurons controls energy metabolism by modulating leptin signaling.

  • Qin Tang‎ et al.
  • Molecular metabolism‎
  • 2020‎

Sirt6 is an essential regulator of energy metabolism in multiple peripheral tissues. However, the direct role of Sirt6 in the hypothalamus, specifically pro-opiomelanocortin (POMC) neurons, controlling energy balance has not been established. Here, we aimed to determine the role of Sirt6 in hypothalamic POMC neurons in the regulation of energy balance and the underlying mechanisms.


Activation of Brainstem Pro-opiomelanocortin Neurons Produces Opioidergic Analgesia, Bradycardia and Bradypnoea.

  • Serena Cerritelli‎ et al.
  • PloS one‎
  • 2016‎

Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as β-endorphin, which has a key role in endogenous analgesia. The β-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, p<0.001; n = 8). All effects of NTSPOMC activation were blocked by systemic naloxone (opioid antagonist) but not by SHU9119 (melanocortin receptor antagonist). The NTSPOMC neurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control.


Polymorphisms of pro-opiomelanocortin gene and the association with reproduction traits in chickens.

  • Ke Liu‎ et al.
  • Animal reproduction science‎
  • 2019‎

Pro-opiomelanocortin (POMC) is a member of prohormone family and has important functions in stress response, skin pigmentation, thermoregulation and reproduction. In this study, the single nucleotide polymorphisms (SNPs) of POMC gene exons were detected by direct sequencing in 317 Zhenning yellow chickens. The sequencing results indicated there were seven mutation sites (g.1140C > T, g.1185 T > C, g.2085 T > C, g.3566A > C, g.3572 G > A, g.3594 G > A and g.3628 G > A) and all of these were synonymous. Furthermore, seven haplotypes were formed and sixteen diplotypes were obtained. The associations between the POMC gene polymorphisms or diplotypes and reproduction traits were also analyzed. The association analysis results indicated that the SNP of g.1140C > T was associated with egg production at 300 d of age (E300), fertilization rate (FR), hatching rate of hatching eggs (HEHR) and hatching rate of fertilized eggs (FEHR; P < 0.05). The SNP of g.3566A>C was associated with FR (P < 0.05), SNP of g.3594G>A was associated with egg weight at 300d of age (EW300; P < 0.05), and SNP of g.3628G>A was associated with HEHR and FEHR (P < 0.01), respectively. Furthermore, chickens with H2H3 diplotype had greater EW300 and FR than those with H1H7 and H3H4 diplotypes (P < 0.05). These results indicate the expression of the POMC gene had significant genotype effects on the reproduction traits of Zhenning yellow chickens, and that the H2H3 diplotype could be used as a potential genetic marker to improve the reproduction traits in chicken breeding.


Pro-opiomelanocortin-related peptides in cerebrospinal fluid: a study of manic-depressive disorder.

  • W H Berrettini‎ et al.
  • Psychiatry research‎
  • 1985‎

Five peptide fragments of pro-opiomelanocortin (alpha-melanocyte-stimulating hormone, beta-lipoprotin, adrenocorticotropic hormone, beta-endorphin, and the N-terminal fragment of pro-opiomelanocortin) were measured by radioimmunoassay in cerebrospinal fluid (CSF) and plasma from 31 normal volunteers and 26 euthymic lithium-treated bipolar patients (14 of whom provided a second CSF sample in the unmedicated state). With the exception of alpha-melanocyte-stimulating hormone, in the normal volunteers' CSF, levels of these peptides were highly correlated with one another, suggesting that: (1) some common regulatory factor may control the levels of these four peptides in CSF; and (2) CSF alpha-melanocyte-stimulating hormone is independently regulated from the other pro-opiomelanocortin products. Some of these correlations were absent in the patient groups, suggesting subtle alterations in pro-opiomelanocortin processing in manic-depressive illness. No effect of lithium on the CSF levels of these peptides was observed. No group differences were found.


Cocaine place conditioning increases pro-opiomelanocortin gene expression in rat hypothalamus.

  • Y Zhou‎ et al.
  • Neuroscience letters‎
  • 2012‎

Recent research suggests an involvement of pro-opiomelanocortin (POMC) gene products in modulating cocaine reward and addiction-like behaviors in rodents. In this study, we investigated whether cocaine-induced conditioned place preference (CPP) alters POMC gene expression in the brain or pituitary of rats. Sprague-Dawley rats were conditioned with 4 injections of 0, 10 or 30 mg/kg cocaine (i.p.) over 8 days and tested 4 days after the last conditioning session. Another group received the same pattern of cocaine injections without conditioning. POMC mRNA levels in the hypothalamus (including arcuate nucleus), amygdala and anterior pituitary, as well as plasma ACTH and corticosterone levels were measured. Cocaine place conditioning at 10 and 30 mg/kg doses increased POMC mRNA levels in a dose-dependent manner in the hypothalamus, with no effect in the amygdala. Cocaine CPP had no effect on POMC mRNA levels in the anterior pituitary or on plasma ACTH or corticosterone levels. In rats that received cocaine at 30 mg/kg without conditioning, there was no such effect on hypothalamic POMC mRNA levels. Alteration of POMC gene expression in the hypothalamus is region-specific after cocaine place conditioning, and dose-dependent. The increased POMC gene expression in the hypothalamus suggests that it is involved in the reward/learning process of cocaine-induced conditioning.


Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons.

  • Shigetomo Suyama‎ et al.
  • eLife‎
  • 2017‎

POMC neurons integrate metabolic signals from the periphery. Here, we show in mice that food deprivation induces a linear current-voltage relationship of AMPAR-mediated excitatory postsynaptic currents (EPSCs) in POMC neurons. Inhibition of EPSCs by IEM-1460, an antagonist of calcium-permeable (Cp) AMPARs, diminished EPSC amplitude in the fed but not in the fasted state, suggesting entry of GluR2 subunits into the AMPA receptor complex during food deprivation. Accordingly, removal of extracellular calcium from ACSF decreased the amplitude of mEPSCs in the fed but not the fasted state. Ten days of high-fat diet exposure, which was accompanied by elevated leptin levels and increased POMC neuronal activity, resulted in increased expression of Cp-AMPARs on POMC neurons. Altogether, our results show that entry of calcium via Cp-AMPARs is inherent to activation of POMC neurons, which may underlie a vulnerability of these neurons to calcium overload while activated in a sustained manner during over-nutrition.


Molecular cloning and characterization of the chicken pro-opiomelanocortin (POMC) gene.

  • S Takeuchi‎ et al.
  • Biochimica et biophysica acta‎
  • 1999‎

The gene for pro-opiomelanocortin (POMC), a common precursor of melanocortins, lipotropins and beta-endorphin, was isolated in the chicken first among avian species. The chicken POMC gene was found to be a single copy gene and appeared to show the same structural organization as that of other species of different classes. The predicted POMC displayed the highest identity to Xenopus POMC(A) (60. 1%), and consisted of 251 amino acid residues with nine proteolytic cleavage sites, suggesting that it could be processed to give rise to all members of the melanocortin family, including adrenocorticotropic hormone and alpha-, beta- and gamma-melanocyte-stimulating hormones, as well as the other POMC-derived peptides. RT-PCR analysis detected the POMC mRNA in the brain, adrenal gland, gonads, kidney, uropygial gland and adipose tissues, each of which has been demonstrated to express melanocortin receptors. These results suggest that melanocortins act in a paracrine and/or autocrine manner to control a variety of functions both in the brain and in the peripheral tissues in the chicken.


Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice.

  • Marc Claret‎ et al.
  • Diabetes‎
  • 2011‎

AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation.


The role of pro-opiomelanocortin in the ACTH-cortisol dissociation of sepsis.

  • Arno Téblick‎ et al.
  • Critical care (London, England)‎
  • 2021‎

Sepsis is typically hallmarked by high plasma (free) cortisol and suppressed cortisol breakdown, while plasma adrenocorticotropic hormone (ACTH) is not increased, referred to as 'ACTH-cortisol dissociation.' We hypothesized that sepsis acutely activates the hypothalamus to generate, via corticotropin-releasing hormone (CRH) and vasopressin (AVP), ACTH-induced hypercortisolemia. Thereafter, via increased availability of free cortisol, of which breakdown is reduced, feedback inhibition at the pituitary level interferes with normal processing of pro-opiomelanocortin (POMC) into ACTH, explaining the ACTH-cortisol dissociation. We further hypothesized that, in this constellation, POMC leaches into the circulation and can contribute to adrenocortical steroidogenesis.


Pro-opiomelanocortin (POMC) neuron translatome signatures underlying obesogenic gestational malprogramming in mice.

  • Roberta Haddad-Tóvolli‎ et al.
  • Molecular metabolism‎
  • 2020‎

Maternal unbalanced nutritional habits during embryonic development and perinatal stages perturb hypothalamic neuronal programming of the offspring, thus increasing obesity-associated diabetes risk. However, the underlying molecular mechanisms remain largely unknown. In this study we sought to determine the translatomic signatures associated with pro-opiomelanocortin (POMC) neuron malprogramming in maternal obesogenic conditions.


Casein kinase 1α is required to maintain murine hypothalamic pro-opiomelanocortin expression.

  • Chenyang Lu‎ et al.
  • iScience‎
  • 2023‎

Hypothalamic pro-opiomelanocortin (POMC) neuron development is considered to play an essential role in the development of obesity. However, the underlying mechanisms remain unclear. Casein kinase 1α (CK1α) was expressed in the embryonic mouse hypothalamus at high levels and colocalized with POMC neurons. CK1α deletion in POMC neurons caused weight gain, metabolic defects, and increased food intake. The number of POMC-expressing cells was considerably decreased in Csnk1a1fl/fl;POMCcre (PKO) mice from embryonic day 15.5 to postnatal day 60, while apoptosis of POMC neurons was not affected. Furthermore, unchanged POMC progenitor cells and a decreased POMC phenotype established CK1α function in hypothalamic POMC neuron development. CK1α deletion led to elevated Notch intracellular domain (NICD) protein expression, and NICD inhibition rescued the PKO mouse phenotype. In summary, CK1α is involved in hypothalamic POMC expression via NICD-POMC signaling, deepening our understanding of POMC neuron development and control of systemic metabolic functions.


Transcripts and CpG islands associated with the pro-opiomelanocortin gene and other neurally expressed genes.

  • M Gardiner-Garden‎ et al.
  • Journal of molecular endocrinology‎
  • 1994‎

DNA sequences of vertebrate genes which code for neural or neuroendocrine peptides were analysed in terms of CpG dinucleotide distribution and G+C content. The vast majority of the genes were found to contain a region with the sequence characteristics of a CpG island surrounding the 5' end. In mammalian species, the gene which codes for the neuroendocrine polypeptide pro-opiomelanocortin (POMC) was shown to be associated with two separate CpG islands: a 5' CpG island which surrounds the POMC transcription start site and a 3' CpG island which lies approximately 5 kb downstream, encompassing the third exon of POMC. Short POMC-related transcripts, known to be transcribed in the germline, were found to initiate from a promoter within the 3' CpG island. The start sites of the short POMC-related transcripts in mouse testis were mapped to the region coding for gamma MSH in exon 3, in a similar location to transcription start sites identified in other mammalian POMC genes. Similar short POMC-related transcripts were identified in both the mouse F9 embryonal carcinoma cell line and mouse embryonic stem cells, suggesting that transcription initiating within the third exon may occur very early in development. No short transcripts were detected by Northern blot hybridization in either Xenopus laevis testis or oocyte poly(A)+ RNA extracts. The Xenopus laevis POMC genes, A and B, were associated with neither a 5' nor a 3' CpG island. Hence, the presence of a 5' CpG island is not required for production of full-length transcripts from the Xenopus laevis POMC gene, but the presence of a 3' CpG island may be required for transcription to occur from the third exon.


Orexin A Enhances Pro-Opiomelanocortin Transcription Regulated by BMP-4 in Mouse Corticotrope AtT20 Cells.

  • Satoshi Fujisawa‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Orexin is expressed mainly in the hypothalamus and is known to activate the hypothalamic-pituitary-adrenal (HPA) axis that is involved in various stress responses and its resilience. However, the effects of orexin on the endocrine function of pituitary corticotrope cells remain unclear. In this study, we investigated the roles of orexin A in pro-opiomelanocortin (POMC) transcription using mouse corticotrope AtT20 cells, focusing on the bone morphogenetic protein (BMP) system expressed in the pituitary. Regarding the receptors for orexin, type 2 (OXR2) rather than type 1 (OX1R) receptor mRNA was predominantly expressed in AtT20 cells. It was found that orexin A treatment enhanced POMC expression, induced by corticotropin-releasing hormone (CRH) stimulation through upregulation of CRH receptor type-1 (CRHR1). Orexin A had no direct effect on the POMC transcription suppressed by BMP-4 treatment, whereas it suppressed Smad1/5/9 phosphorylation and Id-1 mRNA expression induced by BMP-4. It was further revealed that orexin A had no significant effect on the expression levels of type I and II BMP receptors but upregulated inhibitory Smad6/7 mRNA and protein levels in AtT20 cells. The results demonstrated that orexin A upregulated CRHR signaling and downregulated BMP-Smad signaling, leading to an enhancement of POMC transcription by corticotrope cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: