Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,433 papers

The Alzheimer's β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques.

  • Patty C Kandalepas‎ et al.
  • Acta neuropathologica‎
  • 2013‎

β-Site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) is the β-secretase that initiates Aβ production in Alzheimer's disease (AD). BACE1 levels are increased in AD, which could contribute to pathogenesis, yet the mechanism of BACE1 elevation is unclear. Furthermore, the normal function of BACE1 is poorly understood. We localized BACE1 in the brain at both the light and electron microscopic levels to gain insight into normal and pathophysiologic roles of BACE1 in health and AD, respectively. Our findings provide the first ultrastructural evidence that BACE1 localizes to vesicles (likely endosomes) in normal hippocampal mossy fiber terminals of both non-transgenic and APP transgenic (5XFAD) mouse brains. In some instances, BACE1-positive vesicles were located near active zones, implying a function for BACE1 at the synapse. In addition, BACE1 accumulated in swollen dystrophic autophagosome-poor presynaptic terminals surrounding amyloid plaques in 5XFAD cortex and hippocampus. Importantly, accumulations of BACE1 and APP co-localized in presynaptic dystrophies, implying increased BACE1 processing of APP in peri-plaque regions. In primary cortical neuron cultures, treatment with the lysosomal protease inhibitor leupeptin caused BACE1 levels to increase; however, exposure of neurons to the autophagy inducer trehalose did not reduce BACE1 levels. This suggests that BACE1 is degraded by lysosomes but not by autophagy. Our results imply that BACE1 elevation in AD could be linked to decreased lysosomal degradation of BACE1 within dystrophic presynaptic terminals. Elevated BACE1 and APP levels in plaque-associated presynaptic dystrophies could increase local peri-plaque Aβ generation and accelerate amyloid plaque growth in AD.


SPARC prevents maturation of cholinergic presynaptic terminals.

  • David Albrecht‎ et al.
  • Molecular and cellular neurosciences‎
  • 2012‎

Secreted Protein Acidic and Rich in Cysteine (SPARC) is a matricellular protein produced by glial cells. Although it is highly expressed in synaptogenic areas in the developing nervous system, it is still unclear whether this molecule displays an action on synaptic activity. We show that nanomolar concentrations of SPARC favour a more efficient synapse formation and increase short term depression in single cell cholinergic microcultures. The change in synaptic plasticity, which is also observed when SPARC is locally secreted on stable synapses for 24-48 h, is caused by a high release probability and a reduction in the size of the rapidly releasable pool of vesicles. Both features are attributable to synapses operating at an immature stage as demonstrated by correlative electrophysiology and electron microscopy experiments. Presynaptic terminals developed in the presence of SPARC display few cytoplasmic vesicles and two to threefold decrease in the number of docked vesicles at active zones. At the postsynaptic level, the analysis of miniature excitatory postsynaptic currents suggests SPARC has little effect on the number of nicotinic receptors but might alter their composition. The widespread distribution of SPARC makes current findings potentially relevant to other excitatory synapses and development of neuronal circuits.


Biophysical constraints of optogenetic inhibition at presynaptic terminals.

  • Mathias Mahn‎ et al.
  • Nature neuroscience‎
  • 2016‎

We investigated the efficacy of optogenetic inhibition at presynaptic terminals using halorhodopsin, archaerhodopsin and chloride-conducting channelrhodopsins. Precisely timed activation of both archaerhodopsin and halorhodpsin at presynaptic terminals attenuated evoked release. However, sustained archaerhodopsin activation was paradoxically associated with increased spontaneous release. Activation of chloride-conducting channelrhodopsins triggered neurotransmitter release upon light onset. Thus, the biophysical properties of presynaptic terminals dictate unique boundary conditions for optogenetic manipulation.


Neddylation is required for presynaptic clustering of mGlu7 and maturation of presynaptic terminals.

  • Minji Kang‎ et al.
  • Experimental & molecular medicine‎
  • 2021‎

Neddylation is a posttranslational modification in which NEDD8 is conjugated to a target substrate by cellular processes similar to those involved in ubiquitination. Recent studies have identified PSD-95 and cofilin as substrates for neddylation in the brain and have shown that neddylation modulates the maturation and stability of dendritic spines in developing neurons. However, the precise substrates and functional consequences of neddylation at presynaptic terminals remain elusive. Here, we provide evidence that the mGlu7 receptor is a target of neddylation in heterologous cells and rat primary cultured neurons. We found that mGlu7 neddylation is reduced by agonist treatment and is required for the clustering of mGlu7 in the presynaptic active zone. In addition, we observed that neddylation is not required for the endocytosis of mGlu7, but it facilitates the ubiquitination of mGlu7 and stabilizes mGlu7 protein expression. Finally, we demonstrate that neddylation is necessary for the maturation of excitatory presynaptic terminals, providing a key role for neddylation in synaptic function.


The sodium-driven chloride/bicarbonate exchanger in presynaptic terminals.

  • Alain C Burette‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

The sodium-driven chloride/bicarbonate exchanger (NDCBE), a member of the SLC4 family of bicarbonate transporters, was recently found to modulate excitatory neurotransmission in hippocampus. By using light and electron microscopic immunohistochemistry, we demonstrate here that NDCBE is expressed throughout the adult rat brain, and selectively concentrates in presynaptic terminals, where it is closely associated with synaptic vesicles. NDCBE is in most glutamatergic axon terminals, and is also present in the terminals of parvalbumin-positive γ-aminobutyric acid (GABA)ergic cells. These findings suggest that NDCBE can regulate glutamatergic transmission throughout the brain, and point to a role for NDCBE as a possible regulator of GABAergic neurotransmission.


Adaptation of Ca(2+)-triggered exocytosis in presynaptic terminals.

  • S F Hsu‎ et al.
  • Neuron‎
  • 1996‎

Rapid increases in Ca2+ concentration, produced by photolysis of caged Ca2+, triggered exocytosis in squid nerve terminals. This exocytosis was transient in nature, decaying with a time constant of approximately 30 ms. The decay could not be explained by a decline in presynaptic Ca2+ concentration, depletion of synaptic vesicles, or desensitization of postsynaptic receptors. Experiments in which Ca2+ was increased either in a series of steps or continuously at different rates suggested that the decay is caused by adaptation of the exocytotic Ca2+ receptor to higher levels of Ca2+. This adjustable sensitivity to Ca2+ represents a novel property of the triggering mechanism that can be used to evaluate molecular models of exocytosis. Adaptation can limit the amount of transmitter released by a nerve terminal and permit the speed of a presynaptic Ca2+ rise to serve as a critical determinant of synaptic efficacy.


ELKS1 Captures Rab6-Marked Vesicular Cargo in Presynaptic Nerve Terminals.

  • Hajnalka Nyitrai‎ et al.
  • Cell reports‎
  • 2020‎

Neurons face unique transport challenges. They need to deliver cargo over long axonal distances and to many presynaptic nerve terminals. Rab GTPases are master regulators of vesicular traffic, but essential presynaptic Rabs have not been identified. Here, we find that Rab6, a Golgi-derived GTPase for constitutive secretion, associates with mobile axonal cargo and localizes to nerve terminals. ELKS1 is a stationary presynaptic protein with Golgin homology that binds to Rab6. Knockout and rescue experiments for ELKS1 and Rab6 establish that ELKS1 captures Rab6 cargo. The ELKS1-Rab6-capturing mechanism can be transferred to mitochondria by mistargeting ELKS1 or Rab6 to them. We conclude that nerve terminals have repurposed mechanisms from constitutive exocytosis for their highly regulated secretion. By employing Golgin-like mechanisms with anchored ELKS extending its coiled-coils to capture Rab6 cargo, they have spatially separated cargo capture from fusion. ELKS complexes connect to active zones and may mediate vesicle progression toward release sites.


Dishevelled proteins are associated with olfactory sensory neuron presynaptic terminals.

  • Diego J Rodriguez-Gil‎ et al.
  • PloS one‎
  • 2013‎

Olfactory sensory neurons (OSNs) project their axons from the olfactory epithelium toward the olfactory bulb (OB) in a heterogeneous and unsorted arrangement. However, as the axons approach the glomerular layer of the OB, axons from OSNs expressing the same odorant receptor (OR) sort and converge to form molecularly homogeneous glomeruli. Axon guidance cues, cell adhesion molecules, and OR induced activity have been implicated in the final targeting of OSN axons to specific glomeruli. Less understood, and often controversial, are the mechanisms used by OSN axons to initially navigate from the OE toward the OB. We previously demonstrated a role for Wnt and Frizzled (Fz) molecules in OSN axon extension and organization within the olfactory nerve. Building on that we now turned our attention to the downstream signaling cascades from Wnt-Fz interactions. Dishevelled (Dvl) is a key molecule downstream of Fz receptors. Three isoforms of Dvl with specific as well as overlapping functions are found in mammals. Here, we show that Dvl-1 expression is restricted to OSNs in the dorsal recess of the nasal cavity, and labels a unique subpopulation of glomeruli. Dvl-2 and Dvl-3 have a widespread distribution in both the OE and OB. Both Dvl-1 and Dvl-2 are associated with intra-glomerular pre-synaptic OSN terminals, suggesting a role in synapse formation/stabilization. Moreover, because Dvl proteins were observed in all OSN axons, we hypothesize that they are important determinants of OSN cell differentiation and axon extension.


Phospho-dependent Accumulation of GABABRs at Presynaptic Terminals after NMDAR Activation.

  • Saad Hannan‎ et al.
  • Cell reports‎
  • 2016‎

Here, we uncover a mechanism for regulating the number of active presynaptic GABAB receptors (GABABRs) at nerve terminals, an important determinant of neurotransmitter release. We find that GABABRs gain access to axon terminals by lateral diffusion in the membrane. Their relative accumulation is dependent upon agonist activation and the presence of the two distinct sushi domains that are found only in alternatively spliced GABABR1a subunits. Following brief activation of NMDA receptors (NMDARs) using glutamate, GABABR diffusion is reduced, causing accumulation at presynaptic terminals in a Ca(2+)-dependent manner that involves phosphorylation of GABABR2 subunits at Ser783. This signaling cascade indicates how synaptically released glutamate can initiate, via a feedback mechanism, increased levels of presynaptic GABABRs that limit further glutamate release and excitotoxicity.


Developmental relocation of presynaptic terminals along distinct types of dendritic filopodia.

  • J F Evers‎ et al.
  • Developmental biology‎
  • 2006‎

Dendritic filopodia are long thin protrusions occurring predominantly on developing neurons. Data from different systems suggest a range of crucial functions for filopodia in central circuit formation, including steering of dendritic growth, branch formation, synaptogenesis, and spinogenesis. Are the same filopodia competent to mediate all these processes, do filopodia acquire different functions through development, or do different filopodial types with distinct functions exist? In this study, 3-dimensional reconstructions from confocal image stacks demonstrate the existence of two morphologically and functionally distinct types of filopodia located on the dendritic tips versus the dendritic shafts of the same developing motoneuron. During dendritic growth, both filopodial types undergo a process of stage-specific morphogenesis. Using novel quantification strategies of 3-dimensional co-localization analysis for immunocytochemically labeled presynaptic specializations along postsynaptic filopodia, we find that presynaptic terminals accumulate along filopodia towards the dendrites at both stable dendritic shafts and on growing dendritic tips. On tips, this is likely to reflect synaptotrophic growth of the dendrite. At stable shafts, however, presynaptic sites become relocated along filopodia towards dendritic branches. This indicates the interactive growth of both pre- and postsynaptic partner towards one another during synaptogenesis, using filopodia as guides.


Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells.

  • A P Southan‎ et al.
  • The Journal of physiology‎
  • 2000‎

Using patch-clamp techniques, a hyperpolarization-activated current (I(h)) was recorded from synaptic terminals of mouse cerebellar basket cells. Ih was blocked quickly and reversibly by 2 mM Cs(+), and subtraction revealed a rapidly activating and deactivating I(h) current. Similar gating and block of presynaptic I(h) were also seen with the more selective inhibitor ZD 7288 (10 microM). The time constant of activation (tau (a))of presynaptic I(h) current became faster with membrane hyperpolarization, being approximately 74 ms at -130 mV, changing e-fold for a 33 mV change in membrane potential. Whole-cell recordings from basket cell somata also revealed an I(h) current, which was similarly sensitive to block by ZD 7288. Inhibition of I(h) by 10 microM ZD 7288 reduced the frequency ( approximately 34 %) and amplitude ( approximately 26 %) of spontaneous IPSCs (sIPSCs) recorded in Purkinje cells, one of the principal synaptic targets of basket neurones. This is the first report of an I(h) current in mammalian inhibitory presynaptic terminals, which may be an important target for neuromodulation in the cerebellum. Comparing the biophysical properties and distribution of cloned hyperpolarization-activated cation channels, we also suggest a molecular candidate underlying I(h) at these synapses.


A novel 65 kDa RNA-binding protein in squid presynaptic terminals.

  • D T P Lico‎ et al.
  • Neuroscience‎
  • 2010‎

A polyclonal antibody (C4), raised against the head domain of chicken myosin Va, reacted strongly towards a 65 kDa polypeptide (p65) on Western blots of extracts from squid optic lobes but did not recognize the heavy chain of squid myosin V. This peptide was not recognized by other myosin Va antibodies, nor by an antibody specific for squid myosin V. In an attempt to identify it, p65 was purified from optic lobes of Loligo plei by cationic exchange and reverse phase chromatography. Several peptide sequences were obtained by mass spectroscopy from p65 cut from sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels. BLAST analysis and partial matching with expressed sequence tags (ESTs) from a Loligo pealei data bank indicated that p65 contains consensus signatures for the heterogeneous nuclear ribonucleoprotein (hnRNP) A/B family of RNA-binding proteins. Centrifugation of post mitochondrial extracts from optic lobes on sucrose gradients after treatment with RNase gave biochemical evidence that p65 associates with cytoplasmic RNP complexes in an RNA-dependent manner. Immunohistochemistry and immunofluorescence studies using the C4 antibody showed partial co-labeling with an antibody against squid synaptotagmin in bands within the outer plexiform layer of the optic lobes and at the presynaptic zone of the stellate ganglion. Also, punctate labeling by the C4 antibody was observed within isolated optic lobe synaptosomes. The data indicate that p65 is a novel RNA-binding protein located to the presynaptic terminal within squid neurons and may have a role in synaptic localization of RNA and its translation or processing.


Localization of Kv1.3 channels in presynaptic terminals of brainstem auditory neurons.

  • Valeswara-Rao Gazula‎ et al.
  • The Journal of comparative neurology‎
  • 2010‎

Elimination of the Kv1.3 voltage-dependent potassium channel gene produces striking changes in the function of the olfactory bulb, raising the possibility that this channel also influences other sensory systems. We have examined the cellular and subcellular localization of Kv1.3 in the medial nucleus of the trapezoid body (MNTB) in the auditory brainstem, a nucleus in which neurons fire at high rates with high temporal precision. A clear gradient of Kv1.3 immunostaining along the lateral to medial tonotopic axis of the MNTB was detected. Highest levels were found in the lateral region of the MNTB, which corresponds to neurons that respond selectively to low-frequency auditory stimuli. Previous studies have demonstrated that MNTB neurons and their afferent inputs from the cochlear nucleus express three other members of the Kv1 family, Kv1.1, Kv1.2, and Kv1.6. Nevertheless, confocal microscopy of MNTB sections coimmunostained for Kv1.3 with these subunits revealed that the distribution of Kv1.3 differed significantly from other Kv1 family subunits. In particular, no axonal staining of Kv1.3 was detected, and most prominent labeling was in structures surrounding the somata of the principal neurons, suggesting specific localization to the large calyx of Held presynaptic endings that envelop the principal cells. The presence of Kv1.3 in presynaptic terminals was confirmed by coimmunolocalization with the synaptic markers synaptophysin, syntaxin, and synaptotagmin and by immunogold electron microscopy. Kv1.3 immunogold particles in the terminals were arrayed along the plasma membrane and on internal vesicular structures. To confirm these patterns of staining, we carried out immunolabeling on sections from Kv1.3(-/-) mice. No immunoreactivity could be detected in Kv1.3(-/-) mice either at the light level or in immunogold experiments. The finding of a tonotopic gradient in presynaptic terminals suggests that Kv1.3 may regulate neurotransmitter release differentially in neurons that respond to different frequencies of sound.


Symmetrical arrangement of proteins under release-ready vesicles in presynaptic terminals.

  • Abhijith Radhakrishnan‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Controlled release of neurotransmitters stored in synaptic vesicles (SVs) is a fundamental process that is central to all information processing in the brain. This relies on tight coupling of the SV fusion to action potential-evoked presynaptic Ca2+ influx. This Ca2+-evoked release occurs from a readily releasable pool (RRP) of SVs docked to the plasma membrane (PM). The protein components involved in initial SV docking/tethering and the subsequent priming reactions which make the SV release ready are known. Yet, the supramolecular architecture and sequence of molecular events underlying SV release are unclear. Here, we use cryoelectron tomography analysis in cultured hippocampal neurons to delineate the arrangement of the exocytosis machinery under docked SVs. Under native conditions, we find that vesicles are initially "tethered" to the PM by a variable number of protein densities (∼10 to 20 nm long) with no discernible organization. In contrast, we observe exactly six protein masses, each likely consisting of a single SNAREpin with its bound Synaptotagmins and Complexin, arranged symmetrically connecting the "primed" vesicles to the PM. Our data indicate that the fusion machinery is likely organized into a highly cooperative framework during the priming process which enables rapid SV fusion and neurotransmitter release following Ca2+ influx.


Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord.

  • Michael Mende‎ et al.
  • Neuron‎
  • 2016‎

Circuit function in the CNS relies on the balanced interplay of excitatory and inhibitory synaptic signaling. How neuronal activity influences synaptic differentiation to maintain such balance remains unclear. In the mouse spinal cord, a population of GABAergic interneurons, GABApre, forms synapses with the terminals of proprioceptive sensory neurons and controls information transfer at sensory-motor connections through presynaptic inhibition. We show that reducing sensory glutamate release results in decreased expression of GABA-synthesizing enzymes GAD65 and GAD67 in GABApre terminals and decreased presynaptic inhibition. Glutamate directs GAD67 expression via the metabotropic glutamate receptor mGluR1β on GABApre terminals and regulates GAD65 expression via autocrine influence on sensory terminal BDNF. We demonstrate that dual retrograde signals from sensory terminals operate hierarchically to direct the molecular differentiation of GABApre terminals and the efficacy of presynaptic inhibition. These retrograde signals comprise a feedback mechanism by which excitatory sensory activity drives GABAergic inhibition to maintain circuit homeostasis.


Regulation of density of functional presynaptic terminals by local energy supply.

  • Hang Zhou‎ et al.
  • Molecular brain‎
  • 2015‎

The density of functional synapses is an important parameter in determining the efficacy of synaptic transmission. However, how functional presynaptic terminal density is regulated under natural physiological conditions is still poorly understood.


Central presynaptic terminals are enriched in ATP but the majority lack mitochondria.

  • Vrushali Chavan‎ et al.
  • PloS one‎
  • 2015‎

Synaptic neurotransmission is known to be an energy demanding process. At the presynapse, ATP is required for loading neurotransmitters into synaptic vesicles, for priming synaptic vesicles before release, and as a substrate for various kinases and ATPases. Although it is assumed that presynaptic sites usually harbor local mitochondria, which may serve as energy powerhouse to generate ATP as well as a presynaptic calcium depot, a clear role of presynaptic mitochondria in biochemical functioning of the presynapse is not well-defined. Besides a few synaptic subtypes like the mossy fibers and the Calyx of Held, most central presynaptic sites are either en passant or tiny axonal terminals that have little space to accommodate a large mitochondrion. Here, we have used imaging studies to demonstrate that mitochondrial antigens poorly co-localize with the synaptic vesicle clusters and active zone marker in the cerebral cortex, hippocampus and the cerebellum. Confocal imaging analysis on neuronal cultures revealed that most neuronal mitochondria are either somatic or distributed in the proximal part of major dendrites. A large number of synapses in culture are devoid of any mitochondria. Electron micrographs from neuronal cultures further confirm our finding that the majority of presynapses may not harbor resident mitochondria. We corroborated our ultrastructural findings using serial block face scanning electron microscopy (SBFSEM) and found that more than 60% of the presynaptic terminals lacked discernible mitochondria in the wild-type mice hippocampus. Biochemical fractionation of crude synaptosomes into mitochondria and pure synaptosomes also revealed a sparse presence of mitochondrial antigen at the presynaptic boutons. Despite a low abundance of mitochondria, the synaptosomal membranes were found to be highly enriched in ATP suggesting that the presynapse may possess alternative mechanism/s for concentrating ATP for its function. The potential mechanisms including local glycolysis and the possible roles of ATP-binding synaptic proteins such as synapsins, are discussed.


Ca2+ -activated K+ current at presynaptic terminals of goldfish retinal bipolar cells.

  • T Sakaba‎ et al.
  • Neuroscience research‎
  • 1997‎

Properties of the Ca2+ -activated K+ current (I[K(Ca)]) were investigated in bipolar cells isolated from the goldfish retina. Pharmacological experiments and single channel current recordings demonstrated that I[K(Ca)] represented currents through BK channels, which were confined mostly to the presynaptic terminal. The ensemble noise analysis of I[K(Ca)], which was evoked following the activation of presynaptic Ca2+ current, revealed that the single channel conductance and open probability (P(o)) were approximately 50 pS ([K+]o = 2.6 mM, [K+]i = 140 mM) and 0.6 at 0 mV, respectively. To estimate [Ca2+]i at the cytosolic side of BK channels, activation of I[K(Ca)] was examined in Ca2+-loaded bipolar cells bathed in Co2+ solution. [Ca2+]i was monitored using furaptra fluorimetry. It was found that [Ca2+]i ranged between 10 and 20 microM when P(o) was 0.6. A high concentration of BAPTA ( > 20 mM) was required to suppress I[K(Ca)]. Under this condition, channel number was reduced without changing P(o). Therefore, it is likely that some BK channels are co-localized with Ca2+ channels in presynaptic terminals of retinal bipolar cells.


Presynaptic release-regulating NMDA receptors in isolated nerve terminals: A narrative review.

  • Anna Pittaluga‎
  • British journal of pharmacology‎
  • 2021‎

The existence of presynaptic, release-regulating NMDA receptors in the CNS has been long matter of discussion. Most of the reviews dedicated to support this conclusion have preferentially focussed on the results from electrophysiological studies, paying little or no attention to the data obtained with purified synaptosomes, even though this experimental approach has been recognized as providing reliable information concerning the presence and the role of presynaptic release-regulating receptors in the CNS. To fill the gap, this review is dedicated to summarising the results from studies with synaptosomes published during the last 40 years, which support the existence of auto and hetero NMDA receptors controlling the release of transmitters such as glutamate, GABA, dopamine, noradrenaline, 5-HT, acetylcholine and peptides, in the CNS of mammals. The review also deals with the results from immunochemical studies in isolated nerve endings that confirm the functional observations.


A LRRK2-Dependent EndophilinA Phosphoswitch Is Critical for Macroautophagy at Presynaptic Terminals.

  • Sandra-Fausia Soukup‎ et al.
  • Neuron‎
  • 2016‎

Synapses are often far from the soma and independently cope with proteopathic stress induced by intense neuronal activity. However, how presynaptic compartments turn over proteins is poorly understood. We show that the synapse-enriched protein EndophilinA, thus far studied for its role in endocytosis, induces macroautophagy at presynaptic terminals. We find that EndophilinA executes this unexpected function at least partly independent of its role in synaptic vesicle endocytosis. EndophilinA-induced macroautophagy is activated when the kinase LRRK2 phosphorylates the EndophilinA-BAR domain and is blocked in animals where EndophilinA cannot be phosphorylated. EndophilinA-phosphorylation promotes the formation of highly curved membranes, and reconstitution experiments show these curved membranes serve as docking stations for autophagic factors, including Atg3. Functionally, deregulation of the EndophilinA phosphorylation state accelerates activity-induced neurodegeneration. Given that EndophilinA is connected to at least three Parkinson's disease genes (LRRK2, Parkin and Synaptojanin), dysfunction of EndophilinA-dependent synaptic macroautophagy may be common in this disorder.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: