Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 787 papers

Structural biology of presenilin 1 complexes.

  • Yi Li‎ et al.
  • Molecular neurodegeneration‎
  • 2014‎

The presenilin genes were first identified as the site of missense mutations causing early onset autosomal dominant familial Alzheimer's disease. Subsequent work has shown that the presenilin proteins are the catalytic subunits of a hetero-tetrameric complex containing APH1, nicastrin and PEN-2. This complex (variously termed presenilin complex or gamma-secretase complex) performs an unusual type of proteolysis in which the transmembrane domains of Type I proteins are cleaved within the hydrophobic compartment of the membrane. This review describes some of the molecular and structural biology of this unusual enzyme complex. The presenilin complex is a bilobed structure. The head domain contains the ectodomain of nicastrin. The base domain contains a central cavity with a lateral cleft that likely provides the route for access of the substrate to the catalytic cavity within the centre of the base domain. There are reciprocal allosteric interactions between various sites in the complex that affect its function. For instance, binding of Compound E, a peptidomimetic inhibitor to the PS1 N-terminus, induces significant conformational changes that reduces substrate binding at the initial substrate docking site, and thus inhibits substrate cleavage. However, there is a reciprocal allosteric interaction between these sites such that prior binding of the substrate to the initial docking site paradoxically increases the binding of the Compound E peptidomimetic inhibitor. Such reciprocal interactions are likely to form the basis of a gating mechanism that underlies access of substrate to the catalytic site. An increasingly detailed understanding of the structural biology of the presenilin complex is an essential step towards rational design of substrate- and/or cleavage site-specific modulators of presenilin complex function.


Structure and dynamics of γ-secretase with presenilin 2 compared to presenilin 1.

  • Budheswar Dehury‎ et al.
  • RSC advances‎
  • 2019‎

Severe early-onset familial Alzheimer's disease (FAD) is caused by more than 200 different mutations in the genes coding for presenilin, the catalytic subunit of the 4-subunit protease complex γ-secretase, which cleaves the C99 fragment of the amyloid precursor protein (APP) to produce Aβ peptides. γ-Secretase exists with either of two homologues, PS1 and PS2. All cryo-electron microscopic structures and computational work has so far focused on γ-secretase with PS1, yet PS2 mutations also cause FAD. A central question is thus whether there are structural and dynamic differences between PS1 and PS2. To address this question, we use the cryo-electron microscopic data for PS1 to develop the first structural and dynamic model of PS2-γ-secretase in the catalytically relevant mature membrane-bound state at ambient temperature, equilibrated by three independent 500 ns molecular dynamics simulations. We find that the characteristic nicastrin extra-cellular domain breathing mode and major movements in the cytosolic loop between TM6 and TM7 occur in both PS2- and PS1-γ-secretase. The overall structures and conformational states are similar, suggesting similar catalytic activities. However, at the sequence level, charge-controlled membrane-anchoring is extracellular for PS1 and intracellular for PS2, which suggests different subcellular locations. The tilt angles of the TM2, TM6, TM7 and TM9 helices differ in the two forms of γ-secretase, suggesting that the two proteins have somewhat different substrate processing and channel sizes. Our MD simulations consistently indicated that PS2 retains several water molecules near the catalytic site at the bilayer, as required for catalysis. The possible reasons for the differences of PS1 and PS2 are discussed in relation to their location and function.


Adult hippocampal neurogenesis occurs in the absence of Presenilin 1 and Presenilin 2.

  • Jagroop Dhaliwal‎ et al.
  • Scientific reports‎
  • 2018‎

Mutations in the presenilin genes (PS1 and PS2) are a major cause of familial-Alzheimer's disease (FAD). Presenilins regulate neurogenesis in the developing brain, with loss of PS1 inducing aberrant premature differentiation of neural progenitor cells, and additional loss of PS2 exacerbating this effect. It is unclear, however, whether presenilins are involved in adult neurogenesis, a process that may be impaired in Alzheimer's disease within the hippocampus. To investigate the requirement of presenilins in adult-generated dentate granule neurons, we examined adult neurogenesis in the PS2-/- adult brain and then employ a retroviral approach to ablate PS1 selectively in dividing progenitor cells of the PS2-/- adult brain. Surprisingly, the in vivo ablation of both presenilins resulted in no defects in the survival and differentiation of adult-generated neurons. There was also no change in the morphology or functional properties of the retroviral-labeled presenilin-null cells, as assessed by dendritic morphology and whole-cell electrophysiology analyses. Furthermore, while FACS analysis showed that stem and progenitor cells express presenilins, inactivation of presenilins from these cells, using a NestinCreERT2 inducible genetic approach, demonstrated no changes in the proliferation, survival, or differentiation of adult-generated cells. Therefore, unlike their significant role in neurogenesis during embryonic development, presenilins are not required for cell-intrinsic regulation of adult hippocampal neurogenesis.


Specificity of presenilin-1- and presenilin-2-dependent γ-secretases towards substrate processing.

  • Serena Stanga‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

The two presenilin-1 (PS1) and presenilin-2 (PS2) homologs are the catalytic core of the γ-secretase complex, which has a major role in cell fate decision and Alzheimer's disease (AD) progression. Understanding the precise contribution of PS1- and PS2-dependent γ-secretases to the production of β-amyloid peptide (Aβ) from amyloid precursor protein (APP) remains an important challenge to design molecules efficiently modulating Aβ release without affecting the processing of other γ-secretase substrates. To that end, we studied PS1- and PS2-dependent substrate processing in murine cells lacking presenilins (PSs) (PS1KO, PS2KO or PS1-PS2 double-KO noted PSdKO) or stably re-expressing human PS1 or PS2 in an endogenous PS-null (PSdKO) background. We characterized the processing of APP and Notch on both endogenous and exogenous substrates, and we investigated the effect of pharmacological inhibitors targeting the PSs activity (DAPT and L-685,458). We found that murine PS1 γ-secretase plays a predominant role in APP and Notch processing when compared to murine PS2 γ-secretase. The inhibitors blocked more efficiently murine PS2- than murine PS1-dependent processing. Human PSs, especially human PS1, expression in a PS-null background efficiently restored APP and Notch processing. Strikingly, and contrary to the results obtained on murine PSs, pharmacological inhibitors appear to preferentially target human PS1- than human PS2-dependent γ-secretase activity.


Presenilin 1 Modulates Acetylcholinesterase Trafficking and Maturation.

  • María-Ángeles Cortés-Gómez‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

In Alzheimer's disease (AD), the reduction in acetylcholinesterase (AChE) enzymatic activity is not paralleled with changes in its protein levels, suggesting the presence of a considerable enzymatically inactive pool in the brain. In the present study, we validated previous findings, and, since inactive forms could result from post-translational modifications, we analyzed the glycosylation of AChE by lectin binding in brain samples from sporadic and familial AD (sAD and fAD). Most of the enzymatically active AChE was bound to lectins Canavalia ensiformis (Con A) and Lens culinaris agglutinin (LCA) that recognize terminal mannoses, whereas Western blot assays showed a very low percentage of AChE protein being recognized by the lectin. This indicates that active and inactive forms of AChE vary in their glycosylation pattern, particularly in the presence of terminal mannoses in active ones. Moreover, sAD subjects showed reduced binding to terminal mannoses compared to non-demented controls, while, for fAD patients that carry mutations in the PSEN1 gene, the binding was higher. The role of presenilin-1 (PS1) in modulating AChE glycosylation was then studied in a cellular model that overexpresses PS1 (CHO-PS1). In CHO-PS1 cells, binding to LCA indicates that AChE displays more terminal mannoses in oligosaccharides with a fucosylated core. Immunocytochemical assays also demonstrated increased presence of AChE in the trans-Golgi. Moreover, AChE enzymatic activity was higher in plasmatic membrane of CHO-PS1 cells. Thus, our results indicate that PS1 modulates trafficking and maturation of AChE in Golgi regions favoring the presence of active forms in the membrane.


Role of Presenilin-1 in Aggressive Human Melanoma.

  • Julia Sidor‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Presenilin-1 (PS-1), a component of the gamma (γ)-secretase catalytic complex, has been implicated in Alzheimer's disease (AD) and in tumorigenesis. Interestingly, AD risk is inversely related to melanoma, suggesting that AD-related factors, such as PS-1, may affect melanomagenesis. PS-1 has been shown to reduce Wnt activity by promoting degradation of beta-catenin (β-catenin), an important Wnt signaling partner. Since Wnt is known to enhance progression of different cancers, including melanoma, we hypothesized that PS-1 could affect Wnt-associated melanoma aggressiveness. Western blot results showed that aggressive melanoma cells expressed significantly lower levels of both PS-1 and phosphorylated-β-catenin (P-β-catenin) than nonaggressive melanoma cells. Immunohistochemistry of human melanoma samples showed significantly reduced staining for PS-1 in advanced stage melanoma compared with early stage melanoma. Furthermore, γ-secretase inhibitor (GSI) treatment of aggressive melanoma cells was followed by significant increases in PS-1 and P-β-catenin levels, suggesting impaired Wnt signaling activity as PS-1 expression increased. Finally, a significant reduction in cell migration was associated with the higher levels of PS-1 and P-β-catenin in the GSI-treated aggressive melanoma cells. We demonstrate for the first time that PS-1 levels can be used to assess melanoma aggressiveness and suggest that by enhancing PS-1 expression, Wnt-dependent melanoma progression may be reduced.


Presenilin 1 increases association with synaptotagmin 1 during normal aging.

  • Laura J Keller‎ et al.
  • Neurobiology of aging‎
  • 2020‎

Presenilin 1 (PS1), the catalytic component of gamma secretase, associates with synaptotagmin 1 (Syt-1). This interaction is decreased in the brains of patients with sporadic Alzheimer's disease. However, it remains unclear how this interaction changes during normal aging. Because aging is a risk factor for Alzheimer's disease, we sought to identify changes in PS1 and Syt-1 association during aging in primary neurons in vitro and mouse brain sections ex vivo. We also tested the effect of aging on the calcium dependence of the interaction by treating neurons aged in vitro with KCl. We found that PS1 and Syt-1 increase their association with age, an effect that is more robust in neuronal processes than cell bodies. Treatment with KCl triggered the interaction in both young and old neurons. Baseline calcium levels and calcium influx in response to KCl treatment were significantly higher in older neurons, which can partially explain the increase in PS1/Syt-1 binding with age. These results suggest a compensatory mechanism during normal aging to offset detrimental age-associated effects.


Noncognitive species-typical and home-cage behavioral alterations in conditional presenilin 1/presenilin 2 double knockout mice.

  • Youwen Si‎ et al.
  • Behavioural brain research‎
  • 2022‎

Impairments in activities of daily living (ADL) are common clinical symptoms of human Alzheimer's disease (AD). Describing the ADL in AD animal models might provide more insights into the mechanism/treatment of the disease. Here, we demonstrated that the forebrain presenilin 1(Psen1)/presenilin 2 (Psen2) conditional double knockout (DKO) mice exhibited deficits in nest building, marble burying and food burrowing starting at 3 months old and worsening at later ages. At 4 months of age, spontaneous activities in the home cage were also impaired in DKO mice, including physically demanding activities, habituation-like behaviors, and nourishment behaviors during the first two hours in the dark phase. These results indicated that loss of function of Psen1 and Psen2 in mice impaired a series of noncognitive behaviors in the early phase of neurodegeneration. This observation suggests that DKO mice are an ideal model for further mechanistic studies of Psen1 and Psen2 functions in regulating noncognitive behaviors.


Intracellular trafficking of TREM2 is regulated by presenilin 1.

  • Yingjun Zhao‎ et al.
  • Experimental & molecular medicine‎
  • 2017‎

Genetic mutations in triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to a variety of neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia and Parkinson's disease. In the brain, TREM2 is highly expressed on the cell surface of microglia, where it can transduce signals to regulate microglial functions such as phagocytosis. To date, mechanisms underlying intracellular trafficking of TREM2 remain elusive. Mutations in the presenilin 1 (PS1) catalytic subunit of the γ-secretase complex have been associated with increased generation of the amyloidogenic Aβ (amyloid-β) 42 peptide through cleavage of the Aβ precursor amyloid precursor protein. Here we found that TREM2 interacts with PS1 in a manner independent of γ-secretase activity. Mutations in TREM2 alter its subcellular localization and affects its interaction with PS1. Upregulation of PS1 reduces, whereas downregulation of PS1 increases, steady-state levels of cell surface TREM2. Furthermore, PS1 overexpression results in attenuated phagocytic uptake of Aβ by microglia, which is reversed by TREM2 overexpression. Our data indicate a novel role for PS1 in regulating TREM2 intracellular trafficking and pathophysiological function.


Abnormal blood vessel development in mice lacking presenilin-1.

  • Mitsunari Nakajima‎ et al.
  • Mechanisms of development‎
  • 2003‎

Presenilin-1 (PS1) is a gene responsible for the development of early-onset familial Alzheimer's disease. To explore the potential roles of PS1 in vascular development, we examined the vascular system of mouse embryos lacking PS1. PS1-deficient embryos exhibited cerebral hemorrhages and subcutaneous edema by mid gestation. Immunohistochemical analysis revealed vascular remodeling failure in the stomach and trunk dorsal median region of the skin and insufficient formation of the perineural plexus around the spinal cord of the PS1 mutant embryos. The number of capillary sprouting sites reduced and the capillary diameter increased in the mutant brains, especially at the amygdaloid and striatal regions. Endothelial cells in the sprouting capillaries of the mutant mice showed abnormal morphologies such as multiplication, apoptotic and necrotic images, in contrast to pericytes showing a normal appearance. An in vitro assay using para-aortic splanchnopleural mesoderm (P-Sp) revealed aberrant angiogenesis in the explant culture from the mutant. These findings suggest the essential roles of PS1 in angiogenesis.


Presenilin 1 phosphorylation regulates amyloid-β degradation by microglia.

  • Jose Henrique Ledo‎ et al.
  • Molecular psychiatry‎
  • 2021‎

Amyloid-β peptide (Aβ) accumulation in the brain is a hallmark of Alzheimer's Disease. An important mechanism of Aβ clearance in the brain is uptake and degradation by microglia. Presenilin 1 (PS1) is the catalytic subunit of γ-secretase, an enzyme complex responsible for the maturation of multiple substrates, such as Aβ. Although PS1 has been extensively studied in neurons, the role of PS1 in microglia is incompletely understood. Here we report that microglia containing phospho-deficient mutant PS1 display a slower kinetic response to micro injury in the brain in vivo and the inability to degrade Aβ oligomers due to a phagolysosome dysfunction. An Alzheimer's mouse model containing phospho-deficient PS1 show severe Aβ accumulation in microglia as well as the postsynaptic protein PSD95. Our results demonstrate a novel mechanism by which PS1 modulates microglial function and contributes to Alzheimer's -associated phenotypes.


CSF Presenilin-1 complexes are increased in Alzheimer's disease.

  • María-Salud García-Ayllón‎ et al.
  • Acta neuropathologica communications‎
  • 2013‎

Presenilin-1 (PS1) is the active component of the amyloid precursor protein cleaving γ-secretase complex. PS1 protein is a transmembrane protein containing multiple hydrophobic regions which presence in cerebrospinal fluid (CSF) has not been measured to date. This study assesses whether PS1 and other components of the γ-secretase complex are present in CSF.


Presenilin 1 modifies lipid raft composition of neuronal membranes.

  • Gunter P Eckert‎ et al.
  • Biochemical and biophysical research communications‎
  • 2009‎

Protein-lipid interactions in the nervous system may provide insight into the causes of neurological disorders. In this study, we elucidated if expression of human presenilin 1 (PS1) in a mouse model changes the physico-chemical properties of brain membranes. PS1 is a multifunctional transmembrane protein and part of the gamma-secretase complex. This complex is critical for the production of the Alzheimer related amyloid beta peptide. Brain membranes isolated from mice expressing a human wild-type PS1 transgene are less fluid and contain higher cholesterol and sphingomyelin levels. Moreover, our data reveal significant changes in membrane micro-domains and indicate that PS1 induces the formation of lipid rafts.


Presenilin-1 Dependent Neurogenesis Regulates Hippocampal Learning and Memory.

  • Jacqueline A Bonds‎ et al.
  • PloS one‎
  • 2015‎

Presenilin-1 (PS1), the catalytic core of the aspartyl protease γ-secretase, regulates adult neurogenesis. However, it is not clear whether the role of neurogenesis in hippocampal learning and memory is PS1-dependent, or whether PS1 loss of function in adult hippocampal neurogenesis can cause learning and memory deficits. Here we show that downregulation of PS1 in hippocampal neural progenitor cells causes progressive deficits in pattern separation and novelty exploration. New granule neurons expressing reduced PS1 levels exhibit decreased dendritic branching and dendritic spines. Further, they exhibit reduced survival. Lastly, we show that PS1 effect on neurogenesis is mediated via β-catenin phosphorylation and notch signaling. Together, these observations suggest that impairments in adult neurogenesis induce learning and memory deficits and may play a role in the cognitive deficits observed in Alzheimer's disease.


Mutant presenilin-1 deregulated peripheral immunity exacerbates Alzheimer-like pathology.

  • Yuyan Zhu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2011‎

Mutations in the presenilin-1 (PS1) gene are independent causes of familial Alzheimer's disease (AD). AD patients have dysregulated immunity, and PS1 mutant mice exhibit abnormal systemic immune responses. To test whether immune function abnormality caused by a mutant human PS1 gene (mhPS1) could modify AD-like pathology, we reconstituted immune systems of AD model mice carrying a mutant human amyloid precursor protein gene (mhAPP; Tg2576 mice) or both mhAPP and mhPS1 genes (PSAPP mice) with allogeneic bone marrow cells. Here, we report a marked reduction in amyloid-β (Aβ) levels, β-amyloid plaques and brain inflammatory responses in PSAPP mice following strain-matched wild-type PS1 bone marrow reconstitution. These effects occurred with immune switching from pro-inflammatory T helper (Th) 1 to anti-inflammatory Th2 immune responses in the periphery and in the brain, which likely instructed microglia to phagocytose and clear Aβ in an ex vivo assay. Conversely, Tg2576 mice displayed accelerated AD-like pathology when reconstituted with mhPS1 bone marrow. These data show that haematopoietic cells bearing the mhPS1 transgene exacerbate AD-like pathology, suggesting a novel therapeutic strategy for AD based on targeting PS1 in peripheral immune cells.


A Pathogenic Presenilin-1 Val96Phe Mutation from a Malaysian Family.

  • Eva Bagyinszky‎ et al.
  • Brain sciences‎
  • 2021‎

Presenilin-1 (PSEN1) is one of the causative genes for early onset Alzheimer's disease (EOAD). Recently, emerging studies have reported several novel PSEN1 mutations among Asians. In this study, a PSEN1 Val96Phe mutation was discovered in two siblings from Malaysia with a strong family history of disease. This is the second report of PSEN1 Val96Phe mutation among EOAD patients in Asia and in the world. Patients presented symptomatic changes in their behaviors and personality, such as apathy and withdrawal in their 40s. Previous cellular studies with COS1 cell lines revealed the mutation increased the amyloid-β42 (Aβ42) productions. In the present study, whole-exome sequencing was performed on the two siblings with EOAD, and they were analyzed against the virtual panel of 100 genes from various neurodegenerative diseases. In silico modeling was also performed on PSEN1 Val96Phe mutation. This mutation was located on the first transmembrane helix of PSEN1 protein, resulting significant intramolecular stresses in the helices. This helical domain would play a significant role in γ-secretase cleavage for the increased Aβ42 productions. Several other adjacent mutations were reported in this helical domain, including Ile83Thr or Val89Leu. Our study suggested that perturbations in TMI-HLI-TMII regions could also be associated with C-terminal fragment accumulation of APP and enhanced amyloid productions.


Phenylpiperidine-type γ-secretase modulators target the transmembrane domain 1 of presenilin 1.

  • Yu Ohki‎ et al.
  • The EMBO journal‎
  • 2011‎

Amyloid-β peptide ending at the 42nd residue (Aβ42) is implicated in the pathogenesis of Alzheimer's disease (AD). Small compounds that exhibit selective lowering effects on Aβ42 production are termed γ-secretase modulators (GSMs) and are deemed as promising therapeutic agents against AD, although the molecular target as well as the mechanism of action remains controversial. Here, we show that a phenylpiperidine-type compound GSM-1 directly targets the transmembrane domain (TMD) 1 of presenilin 1 (PS1) by photoaffinity labelling experiments combined with limited digestion. Binding of GSM-1 affected the structure of the initial substrate binding and the catalytic sites of the γ-secretase, thereby decreasing production of Aβ42, possibly by enhancing its conversion to Aβ38. These data indicate an allosteric action of GSM-1 by directly binding to the TMD1 of PS1, pinpointing the target structure of the phenylpiperidine-type GSMs.


Presenilin-1 influences processing of the acetylcholinesterase membrane anchor PRiMA.

  • María-Salud García-Ayllón‎ et al.
  • Neurobiology of aging‎
  • 2014‎

Presenilin-1 (PS1) is the catalytic component of the γ-secretase complex. In this study, we explore if PS1 participates in the processing of the cholinergic acetylcholinesterase (AChE). The major AChE variant expressed in the brain is a tetramer (G(4)) bound to a proline-rich membrane anchor (PRiMA). Overexpression of the transmembrane PRiMA protein in Chinese hamster ovary cells expressing AChE and treated with the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester have enabled us to study whether, through its γ-secretase activity, PS1 participates in the processing of PRiMA-linked AChE. γ-Secretase inhibition led to a notable increase in the level of PRiMA-linked AChE, suggesting that γ-secretase is involved in the cleavage of PRiMA. We demonstrate that cleavage of PRiMA by γ-secretase results in a C-terminal PRiMA fragment. Immunofluorescence labeling allowed us to identify this PRiMA fragment in the nucleus. Moreover, we have determined changes in the proportion of the raft-residing AChE-PRiMA in a PS1 conditional knockout mouse. Our results are of interest as both enzymes have therapeutic relevance for Alzheimer's disease.


APP-BP1 inhibits Abeta42 levels by interacting with Presenilin-1.

  • Yuzhi Chen‎ et al.
  • Molecular neurodegeneration‎
  • 2007‎

The beta-amyloid precursor protein (APP) is sequentially cleaved by the beta- and then gamma-secretase to generate the amyloid beta-peptides Abeta40 and Abeta42. Increased Abeta42/Abeta40 ratios trigger amyloid plaque formations in Alzheimer's disease (AD). APP binds to APP-BP1, but the biological consequence is not well understood.


Dynamic presenilin 1 and synaptotagmin 1 interaction modulates exocytosis and amyloid β production.

  • Katarzyna Marta Zoltowska‎ et al.
  • Molecular neurodegeneration‎
  • 2017‎

Alzheimer's disease (AD)-linked protein, presenilin 1 (PS1), is present at the synapse, and the knock-out of presenilin in mice leads to synaptic dysfunction. On the other hand, synaptic activity was shown to influence PS1-dependent generation of distinct amyloid β (Aβ) species. However, the precise nature of these regulations remains unclear. The current study reveals novel role of PS1 at the synapse, and deciphers how PS1 and synaptic vesicle-associated protein, synaptotagmin 1 (Syt1) modulate each other functions in neurons via direct activity-triggered interaction. Additionally, the therapeutic potential of fostering PS1-Syt1 binding is investigated as a synapse-specific strategy for AD prevention.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: