Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 14,499 papers

Optimizing potassium polysulfides for high performance potassium-sulfur batteries.

  • Wanqing Song‎ et al.
  • Nature communications‎
  • 2024‎

Potassium-sulfur batteries attract tremendous attention as high-energy and low-cost energy storage system, but achieving high utilization and long-term cycling of sulfur remains challenging. Here we show a strategy of optimizing potassium polysulfides for building high-performance potassium-sulfur batteries. We design the composite of tungsten single atom and tungsten carbide possessing potassium polysulfide migration/conversion bi-functionality by theoretical screening. We create two ligand environments for tungsten in the metal-organic framework, which respectively transmute into tungsten single atom and tungsten carbide nanocrystals during pyrolysis. Tungsten carbide provide catalytic sites for potassium polysulfides conversion, while tungsten single atoms facilitate sulfides migration thereby significantly alleviating the insulating sulfides accumulation and the associated catalytic poisoning. Resultantly, highly efficient potassium-sulfur electrochemistry is achieved under high-rate and long-cycling conditions. The batteries deliver 89.8% sulfur utilization (1504 mAh g-1), superior rate capability (1059 mAh g-1 at 1675 mA g-1) and long lifespan of 200 cycles at 25 °C. These advances enlighten direction for future KSBs development.


The Potassium Binding Protein Kbp Is a Cytoplasmic Potassium Sensor.

  • Khuram U Ashraf‎ et al.
  • Structure (London, England : 1993)‎
  • 2016‎

Escherichia coli possesses a number of specific K(+) influx and efflux systems that maintain an appropriate intracellular K(+) concentration. Although regulatory mechanisms have been identified for a number of these transport systems, the exact mechanism through which K(+) concentration is sensed in the cell remains unknown. In this work we show that Kbp (K(+) binding protein, formerly YgaU), a soluble 16-kDa cytoplasmic protein from Escherichia coli, is a highly specific K(+) binding protein and is required for normal growth in the presence of high levels of external K(+). Kbp binds a single potassium ion with high specificity over Na(+) and other metal ions found in biological systems, although, in common with K(+) transporters, it also binds Rb(+) and Cs(+). Dissection of the K(+) binding determinants of Kbp suggests a mechanism through which Kbp is able to sense changes in K(+) concentration over the relevant range of intracellular K(+) concentrations.


Fluorescence Imaging of Extracellular Potassium Ion Using Potassium Sensing Oligonucleotide.

  • Shinobu Sato‎ et al.
  • Frontiers in chemistry‎
  • 2022‎

Potassium-sensing oligonucleotide, PSO, a conjugate of a quadruplex structure-forming oligonucleotide with a peptide incorporating a Förster Resonance Energy Transfer (FRET) chromophore pair, has been developed for fluorescent detection of potassium ion (K+) in aqueous medium. PSO 1 could be introduced into cells for real-time imaging of cytoplasmic K+ concentrations. To perform fluorescent imaging of K+ on the cell surface, we synthesized twelve PSO derivatives with different types of peptide types and lengths, and oligonucleotide sequences including thrombin-binding aptamer (TBA) sequences with FAM and TAMRA as a FRET chromophore pair, and evaluated their performance. 1 was shown to respond selectively to K+, not to most ions present in vivo, and to show reciprocal fluorescence changes in response to K+ concentration. For the peptide chains and oligonucleotide sequences examined in this study, the PSO derivatives had K d values for K+ in the range of 5-30 mM. All PSO derivatives showed high K+ selectivity even in the presence of excess Na+. The PSO derivatives were successfully localized to the cell surface by biotinylated concanavalin A (ConA) or sulfo-NHS-biotin via streptavidin (StAv). Fluorescence imaging of extracellular K+ upon addition of apoptosis inducers was successfully achieved by 1 localized to the cell surface.


Extracellular potassium inhibits Kv7.1 potassium channels by stabilizing an inactivated state.

  • Anders Peter Larsen‎ et al.
  • Biophysical journal‎
  • 2011‎

Kv7.1 (KCNQ1) channels are regulators of several physiological processes including vasodilatation, repolarization of cardiomyocytes, and control of secretory processes. A number of Kv7.1 pore mutants are sensitive to extracellular potassium. We hypothesized that extracellular potassium also modulates wild-type Kv7.1 channels. The Kv7.1 currents were measured in Xenopus laevis oocytes at different concentrations of extracellular potassium (1-50 mM). As extracellular potassium was elevated, Kv7.1 currents were reduced significantly more than expected from theoretical calculations based on the Goldman-Hodgkin-Katz flux equation. Potassium inhibited the steady-state current with an IC(50) of 6.0 ± 0.2 mM. Analysis of tail-currents showed that potassium increased the fraction of channels in the inactivated state. Similarly, the recovery from inactivation was slowed by potassium, suggesting that extracellular potassium stabilizes an inactivated state in Kv7.1 channels. The effect of extracellular potassium was absent in noninactivating Kv7.1/KCNE1 and Kv7.1/KCNE3 channels, further supporting a stabilized inactivated state as the underlying mechanism. Interestingly, coexpression of Kv7.1 with KCNE2 did not attenuate the inhibition by potassium. In a number of other Kv channels, including Kv1.5, Kv4.3, and Kv7.2-5 channels, currents were only minimally reduced by an increase in extracellular potassium as expected. These results show that extracellular potassium modulates Kv7.1 channels and suggests that physiological changes in potassium concentrations may directly control the function of Kv7.1 channels. This may represent a novel regulatory mechanism of excitability and of potassium transport in tissues expressing Kv7.1 channels.


Sodium and potassium competition in potassium-selective and non-selective channels.

  • David B Sauer‎ et al.
  • Nature communications‎
  • 2013‎

Potassium channels selectively conduct K(+), primarily to the exclusion of Na(+), despite the fact that both ions can bind within the selectivity filter. Here we perform crystallographic titration and single-channel electrophysiology to examine the competition of Na(+) and K(+) binding within the filter of two NaK channel mutants; one is the potassium-selective NaK2K mutant and the other is the non-selective NaK2CNG, a CNG channel pore mimic. With high-resolution structures of these engineered NaK channel constructs, we explicitly describe the changes in K(+) occupancy within the filter upon Na(+) competition by anomalous diffraction. Our results demonstrate that the non-selective NaK2CNG still retains a K(+)-selective site at equilibrium, whereas the NaK2K channel filter maintains two high-affinity K(+) sites. A double-barrier mechanism is proposed to explain K(+) channel selectivity at low K(+) concentrations.


Potassium deposition during and after hypokinesia in potassium supplemented and unsupplemented rats.

  • Yan G Zorbas‎ et al.
  • International journal of medical sciences‎
  • 2005‎

The aim of this study was to determine that hypokinesia (restricted motor activity) could increase potassium (K+) losses with decreased tissue K+ content showing decreased K+ deposition. To this end, measurements were made of K+absorption, tissue K+ content, plasma K+ levels, fecal and urinary K+ excretion during and after hypokinesia (HK) with and without K+ supplementation. Studies conducted on male Wistar rats during a pre-hypokinetic period, a hypokinetic period and a post-hypokinetic period. Rats were equally divided into four groups: unsupplemented vivarium control rats (UVCR), unsupplemented hypokinetic rats (UHKR), supplemented vivarium control rats (SVCR) and supplemented hypokinetic rats (SHKR). SHKR and UHKR were kept in small individual cages which restricted their movements in all directions without hindering food and water consumption. SVCR and UVCR were housed in individual cages under vivarium control conditions. SVCR and SHKR consume daily 3.96 mEq potassium chloride (KCl) per day. Absorption of K+, and K+ levels in bone, muscle, plasma, urine and feces and PA levels did not change in SVCR and UVCR compared with their pre-HK levels. During HK, plasma, fecal and urinary K+ levels and plasma aldosterone (PA) levels increased significantly (p<0.05) with time, while K+ absorption, muscle and bone K+ content decreased significantly (p<0.05) with time in SHKR and UHKR compared with their pre-HK values and the values in their respective vivarium controls (SVCR and UVCR). During the initial 9-days of post-HK, K+ absorption increased significantly (p<0.05) and plasma K+ levels, fecal and urinary K+ losses and PA levels decreased significantly (p<0.05) and muscle and bone K+ content remained significantly (p<0.05) depressed in SHKR and UHKR compared with their pre-HK and their respective vivarium control values. During HK and post-HK periods, K+ absorption, bone and muscle K+ content, and K+ levels in plasma, urine and feces and PA levels were affected significantly (p<0.05) more in SHKR than in UHKR. By the 15th day of post-HK the values in SHKR and UHKR approach the control values. The higher K+ losses during HK with decreased tissue K+ levels shows decreased K+ deposition. The higher K+ loss with lower tissue K+ levels in SHKR than in UHKR shows that K+ deposition decreases more with K+ supplementation than without. Because SHKR had shown lower tissue K+ content and lost higher K+ amounts than UHKR it was concluded that the risk of decreased K+ deposition and tissue K+ depletion is inversely related to K+ intake, i.e., the higher K+ intake, the greater the risk for decreased K+ deposition, and the higher K+ losses and the greater the risk for tissue K+ depletion. The dissociation between tissue K+ depletion and K+ excretion indicates decreased K+ deposition as the principal mechanism of tissue K+ depletion during prolonged HK.


Potassium-dependent changes in the conformation of the Kv2.1 potassium channel pore.

  • D Immke‎ et al.
  • The Journal of general physiology‎
  • 1999‎

The voltage-gated K+ channel, Kv2.1, conducts Na+ in the absence of K+. External tetraethylammonium (TEAo) blocks K+ currents through Kv2.1 with an IC50 of 5 mM, but is completely without effect in the absence of K+. TEAo block can be titrated back upon addition of low [K+]. This suggested that the Kv2.1 pore undergoes a cation-dependent conformational rearrangement in the external vestibule. Individual mutation of lysine (Lys) 356 and 382 in the outer vestibule, to a glycine and a valine, respectively, increased TEAo potency for block of K+ currents by a half log unit. Mutation of Lys 356, which is located at the outer edge of the external vestibule, significantly restored TEAo block in the absence of K+ (IC50 = 21 mM). In contrast, mutation of Lys 382, which is located in the outer vestibule near the TEA binding site, resulted in very weak (extrapolated IC50 = approximately 265 mM) TEAo block in the absence of K+. These data suggest that the cation-dependent alteration in pore conformation that resulted in loss of TEA potency extended to the outer edge of the external vestibule, and primarily involved a repositioning of Lys 356 or a nearby amino acid in the conduction pathway. Block by internal TEA also completely disappeared in the absence of K+, and could be titrated back with low [K+]. Both internal and external TEA potencies were increased by the same low [K+] (30-100 microM) that blocked Na+ currents through the channel. In addition, experiments that combined block by internal and external TEA indicated that the site of K+ action was between the internal and external TEA binding sites. These data indicate that a K+-dependent conformational change also occurs internal to the selectivity filter, and that both internal and external conformational rearrangements resulted from differences in K+ occupancy of the selectivity filter. Kv2.1 inactivation rate was K+ dependent and correlated with TEAo potency; as [K+] was raised, TEAo became more potent and inactivation became faster. Both TEAo potency and inactivation rate saturated at the same [K+]. These results suggest that the rate of slow inactivation in Kv2.1 was influenced by the conformational rearrangements, either internal to the selectivity filter or near the outer edge of the external vestibule, that were associated with differences in TEA potency.


Potassium channel regulator KCNRG regulates surface expression of Shaker-type potassium channels.

  • Hyder Usman‎ et al.
  • Biochemical and biophysical research communications‎
  • 2010‎

Besides their role in the generation of action potentials, voltage-gated potassium channels are implicated in cellular processes ranging from cell division to cell death. The K(+) channel regulator protein (KCNRG), identified as a putative tumor suppressor, reduces K(+) currents through human K(+) channels hKv1.1 and hKv1.4 expressed in Xenopus oocytes. Current attenuation requires the presence of the N-terminal T1 Domain and immunoprecipitation experiments suggest association of KCNRG with the N-terminus of the channel. Our data indicates that KCNRG is an ER-associated protein, which we propose regulates Kv1 family channel proteins by retaining a fraction of channels in endomembranes.


Whole body potassium as a biomarker for potassium uptake using a mouse model.

  • Sana Tabbassum‎ et al.
  • Scientific reports‎
  • 2021‎

Potassium is known for its effect on modifiable chronic diseases like hypertension, cardiac disease, diabetes (type-2), and bone health. In this study, a new method, neutron generator based neutron activation analysis (NAA), was utilized to measure potassium (K) in mouse carcasses. A DD110 neutron generator based NAA assembly was used for irradiation.Thirty-two postmortem mice (n= 16 males and 16 females, average weight [Formula: see text] and [Formula: see text] g) were employed for this study. Soft-tissue equivalent mouse phantoms were prepared for the calibration. All mice were irradiated for 10 minutes, and the gamma spectrum with 42K was collected using a high efficiency, high purity germanium (HPGe) detector. A lead shielding assembly was designed and developed around the HPGe detector to obtain an improved detection limit. Each mouse sample was irradiated and measured twice to reduce uncertainty. The average potassium concentration was found to be significantly higher in males [Formula: see text] compared to females [Formula: see text]. We also observed a significant correlation between potassium concentration and the weight of the mice. The detection limit for potassium quantification with the NAA system was 46 ppm. The radiation dose to the mouse was approximately 56 [Formula: see text] mSv for 10-min irradiation. In conclusion, this method is suitable for estimating individual potassium concentration in small animals. The direct evaluation of total body potassium in small animals provides a new way to estimate potassium uptake in animal models. This method can be adapted later to quantify potassium in the human hand and small animals in vivo. When used in vivo, it is also expected to be a valuable tool for longitudinal assessment, kinetics, and health outcomes.


Segmental differences in upregulated apical potassium channels in mammalian colon during potassium adaptation.

  • Matthew D Perry‎ et al.
  • American journal of physiology. Gastrointestinal and liver physiology‎
  • 2016‎

Rat proximal and distal colon are net K+ secretory and net K+ absorptive epithelia, respectively. Chronic dietary K+ loading increases net K+ secretion in the proximal colon and transforms net K+ absorption to net K+ secretion in the distal colon, but changes in apical K+ channel expression are unclear. We evaluated expression/activity of apical K+ (BK) channels in surface colonocytes in proximal and distal colon of control and K+-loaded animals using patch-clamp recording, immunohistochemistry, and Western blot analyses. In controls, BK channels were more abundant in surface colonocytes from K+ secretory proximal colon (39% of patches) than in those from K+-absorptive distal colon (12% of patches). Immunostaining demonstrated more pronounced BK channel α-subunit protein expression in surface cells and cells in the upper 25% of crypts in proximal colon, compared with distal colon. Dietary K+ loading had no clear-cut effects on the abundance, immunolocalization, or expression of BK channels in proximal colon. By contrast, in distal colon, K+ loading 1) increased BK channel abundance in patches from 12 to 41%; 2) increased density of immunostaining in surface cells, which extended along the upper 50% of crypts; and 3) increased expression of BK channel α-subunit protein when assessed by Western blotting (P < 0.001). Thus apical BK channels are normally more abundant in K+ secretory proximal colon than in K+ absorptive distal colon, and apical BK channel expression in distal (but not proximal) colon is greatly stimulated as part of the enhanced K+ secretory response to dietary K+ loading.


Stable potassium isotopes (41K/39K) track transcellular and paracellular potassium transport in biological systems.

  • John A Higgins‎ et al.
  • Frontiers in physiology‎
  • 2022‎

As the most abundant cation in archaeal, bacterial, and eukaryotic cells, potassium (K+) is an essential element for life. While much is known about the machinery of transcellular and paracellular K transport-channels, pumps, co-transporters, and tight-junction proteins-many quantitative aspects of K homeostasis in biological systems remain poorly constrained. Here we present measurements of the stable isotope ratios of potassium (41K/39K) in three biological systems (algae, fish, and mammals). When considered in the context of our current understanding of plausible mechanisms of K isotope fractionation and K+ transport in these biological systems, our results provide evidence that the fractionation of K isotopes depends on transport pathway and transmembrane transport machinery. Specifically, we find that passive transport of K+ down its electrochemical potential through channels and pores in tight-junctions at favors 39K, a result which we attribute to a kinetic isotope effect associated with dehydration and/or size selectivity at the channel/pore entrance. In contrast, we find that transport of K+ against its electrochemical gradient via pumps and co-transporters is associated with less/no isotopic fractionation, a result that we attribute to small equilibrium isotope effects that are expressed in pumps/co-transporters due to their slower turnover rate and the relatively long residence time of K+ in the ion pocket. These results indicate that stable K isotopes may be able to provide quantitative constraints on transporter-specific K+ fluxes (e.g., the fraction of K efflux from a tissue by channels vs. co-transporters) and how these fluxes change in different physiological states. In addition, precise determination of K isotope effects associated with K+ transport via channels, pumps, and co-transporters may provide unique constraints on the mechanisms of K transport that could be tested with steered molecular dynamic simulations.


Preparation of Preyssler-type Phosphotungstate with One Central Potassium Cation and Potassium Cation Migration into the Preyssler Molecule to form Di-Potassium-Encapsulated Derivative.

  • Akio Hayashi‎ et al.
  • ACS omega‎
  • 2018‎

A mono-potassium cation-encapsulated Preyssler-type phosphotungstate, [P5W30O110K]14- (1), was prepared as a potassium salt, K14[P5W30O110K] (1a), by heating mono-bismuth- or mono-calcium-encapsulated Preyssler-type phosphotungstates (K12[P5W30O110Bi(H2O)] or K13[P5W30O110Ca(H2O)]) in acetate buffer. Characterization of the potassium salt 1a by single-crystal X-ray structure analysis, 31P and 183W nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy, high-resolution electrospray ionization mass spectroscopy, and elemental analysis revealed that one potassium cation is encapsulated in the central cavity of the Preyssler-type phosphotungstate molecule with a formal D 5h symmetry. Density functional theory calculations have confirmed that the potassium cation prefers the central position of the cavity over a side position, in which no water molecules are coordinated to the encapsulated potassium cation. 31P NMR and cyclic voltammetry analyses revealed the rapid protonation-deprotonation of the oxygens in the cavity compared to that of other Preyssler-type compounds. Heating of 1a in the solid state afforded a di-K+-encapsulated compound, K13[P5W30O110K2] (2a), indicating that a potassium counter-cation is introduced in one of the side cavities, concomitantly displacing the internal potassium ion from the center to a second side cavity, thus providing a new method to encapsulate an additional cation in Preyssler compounds.


Potassium Ferrite for Biomedical Applications.

  • João P F Carvalho‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2023‎

Ferrites have been widely studied for their use in the biomedical area, mostly due to their magnetic properties, which gives them the potential to be used in diagnostics, drug delivery, and in treatment with magnetic hyperthermia, for example. In this work, KFeO2 particles were synthesized with a proteic sol-gel method using powdered coconut water as a precursor; this method is based on the principles of green chemistry. To improve its properties, the base powder obtained was subjected to multiple heat treatments at temperatures between 350 and 1300 °C. The samples obtained underwent structural, morphological, biocompatibility, and magnetic characterization. The results show that upon raising the heat treatment temperature, not only is the wanted phase detected, but also the secondary phases. To overcome these secondary phases, several different heat treatments were carried out. Using scanning electron microscopy, grains in the micrometric range were observed. Saturation magnetizations between 15.5 and 24.1 emu/g were observed for the samples containing KFeO2 with an applied field of 50 kOe at 300 K. From cellular compatibility (cytotoxicity) assays, for concentrations up to 5 mg/mL, only the samples treated at 350 °C were cytotoxic. However, the samples containing KFeO2, while being biocompatible, had low specific absorption rates (1.55-5.76 W/g).


Potassium channel-based optogenetic silencing.

  • Yinth Andrea Bernal Sierra‎ et al.
  • Nature communications‎
  • 2018‎

Optogenetics enables manipulation of biological processes with light at high spatio-temporal resolution to control the behavior of cells, networks, or even whole animals. In contrast to the performance of excitatory rhodopsins, the effectiveness of inhibitory optogenetic tools is still insufficient. Here we report a two-component optical silencer system comprising photoactivated adenylyl cyclases (PACs) and the small cyclic nucleotide-gated potassium channel SthK. Activation of this 'PAC-K' silencer by brief pulses of low-intensity blue light causes robust and reversible silencing of cardiomyocyte excitation and neuronal firing. In vivo expression of PAC-K in mouse and zebrafish neurons is well tolerated, where blue light inhibits neuronal activity and blocks motor responses. In combination with red-light absorbing channelrhodopsins, the distinct action spectra of PACs allow independent bimodal control of neuronal activity. PAC-K represents a reliable optogenetic silencer with intrinsic amplification for sustained potassium-mediated hyperpolarization, conferring high operational light sensitivity to the cells of interest.


Inactivation of Kv2.1 potassium channels.

  • K G Klemic‎ et al.
  • Biophysical journal‎
  • 1998‎

We report here several unusual features of inactivation of the rat Kv2.1 delayed rectifier potassium channel, expressed in Xenopus oocytes. The voltage dependence of inactivation was U-shaped, with maximum inactivation near 0 mV. During a maintained depolarization, development of inactivation was slow and only weakly voltage dependent (tau = 4 s at 0 mV; tau = 7 s at +80 mV). However, recovery from inactivation was strongly voltage dependent (e-fold for 20 mV) and could be rapid (tau = 0.27 s at -140 mV). Kv2.1 showed cumulative inactivation, where inactivation built up during a train of brief depolarizations. A single maintained depolarization produced more steady-state inactivation than a train of pulses, but there could actually be more inactivation with the repeated pulses during the first few seconds. We term this phenomenon "excessive cumulative inactivation." These results can be explained by an allosteric model, in which inactivation is favored by activation of voltage sensors, but the open state of the channel is resistant to inactivation.


A simple modification of dialysate potassium: its impact on plasma potassium concentrations and the electrocardiogram.

  • Pierre Delanaye‎ et al.
  • Clinical kidney journal‎
  • 2021‎

Sudden death is frequent in haemodialysis (HD) patients. Both hyperkalaemia and change of plasma potassium (K) concentrations induced by HD could explain this. The impact of increasing dialysate K by 1 mEq/L on plasma K concentrations and electrocardiogram (ECG) results before and after HD sessions was studied.


Identification of a key residue in Kv7.1 potassium channel essential for sensing external potassium ions.

  • Wenying Wang‎ et al.
  • The Journal of general physiology‎
  • 2015‎

Kv7.1 voltage-gated K(+) (Kv) channels are present in the apical membranes of marginal cells of the stria vascularis of the inner ear, where they mediate K(+) efflux into the scala media (cochlear duct) of the cochlea. As such, they are exposed to the K(+)-rich (∼ 150 mM of external K(+) (K(+) e)) environment of the endolymph. Previous studies have shown that Kv7.1 currents are substantially suppressed by high K(+) e (independent of the effects of altering the electrochemical gradient). However, the molecular basis for this inhibition, which is believed to involve stabilization of an inactivated state, remains unclear. Using sequence alignment of S5-pore linkers of several Kv channels, we identified a key residue, E290, found in only a few Kv channels including Kv7.1. We used substituted cysteine accessibility methods and patch-clamp analysis to provide evidence that the ability of Kv7.1 to sense K(+) e depends on E290, and that the charge at this position is essential for Kv7.1's K(+) e sensitivity. We propose that Kv7.1 may use this feedback mechanism to maintain the magnitude of the endocochlear potential, which boosts the driving force to generate the receptor potential of hair cells. The implications of our findings transcend the auditory system; mutations at this position also result in long QT syndrome in the heart.


Potential use of potassium efflux-deficient yeast for studying trafficking signals and potassium channel functions.

  • Joshua D Bernstein‎ et al.
  • FEBS open bio‎
  • 2013‎

The activity of potassium (K(+)) channels critically depends on their density on the cell surface membrane, which is regulated by dynamic protein-protein interactions that often involve distinct trafficking signals on the cargo proteins. In this paper we explored the possibility of utilizing the Saccharomyces cerevisiae strain B31 for identification of the signal motifs that regulate surface expression of membrane proteins and for studying structure-function relationships of K(+) channels. B31 cells lack the K(+) efflux system and were reported to show overloaded K(+)-mediated growth inhibition in high K(+) media upon heterologous expression of a mammalian inwardly rectifying K(+) channel (Kir2.1). We show that while the expression of wild-type Kir2.1 channel inhibits the growth of B31 cells in high K(+) media, the human disease-causing mutations of Kir2.1 that abolish K(+) conduction (V302M) or surface trafficking (Δ314/315) fully restores the growth. The expression of two-pore-domain K(+) channel KCNK3 or KCNK9 also inhibited the growth of B31 in high K(+) media while C-terminal mutations that reduce their 14-3-3 protein-dependent cell surface trafficking restored the growth of B31. Finally, the expression of Kir2.1 channels that were C-terminally fused with known sequence motifs including ER retention/retrieval signals and an endocytosis signal allowed the growth of B31 in high K(+) media. These results demonstrate the potential of B31 yeast strain as a unique biological tool to screen the random peptide libraries for novel sequence signals that down-regulate surface expression of membrane proteins, as well as to systematically identify the structural determinants for cell surface trafficking and/or ion conductance of K(+) channels.


VKCDB: voltage-gated potassium channel database.

  • Bin Li‎ et al.
  • BMC bioinformatics‎
  • 2004‎

The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase) is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function.


Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium.

  • Yi-Cheng Fu‎ et al.
  • Journal of geriatric cardiology : JGC‎
  • 2016‎

Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (I to) and slow delayed rectifier potassium current (I Ks).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: