Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 330 papers

Synthesis of Polylysine/Silica Hybrids through Branched-Polylysine-Mediated Biosilicification.

  • Jiakang Min‎ et al.
  • ACS omega‎
  • 2018‎

Although many biosilicification methods based on cationic linear α-poly -l- lysine for synthesis of polylysine/silica hybrids have been investigated, these methods tend to rely on the counteranions, added catalysts, and complex synthesis process. To explore a simple and efficient biosilicification method, in this work, branched poly-l-lysine (BPL) is used as both a catalyst to hydrolyze tetraethoxysilane (TEOS) and an in situ template to direct silicic acids forming polylysine/silica hybrids in one-pot mode. The catalysis of BPL to hydrolyze TEOS results from the abundant hydrogen bonding (as the active site) to increase the nucleophilicity of BPL. Meanwhile, the hydrogen bonding is also found to be the key factor determining the self-assembly of BPL. During biosilicification, owing to self-assembly of BPL molecules, BPL would form spherical particles by keeping a random-coil conformation or form lamellar structures by undergoing a conformational transition from a random-coil to β-sheet construction. As a result, polylysine/silica hybrids with tunable topological structures are synthesized using aggregated BPLs as templates after the hydrolysis of TEOS. This finding of applying BPL to fulfill the biosilicification procedure without counteranions and added catalysts would enable a better understanding of the polypeptide-governed biosilicification process and pave a way for fabricating complex inorganic architectures applicable to silica transformational chemistry.


Polylysine is a Proteostasis Network-Engaging Structural Determinant.

  • Wei-Han Lang‎ et al.
  • Journal of proteome research‎
  • 2018‎

C-terminal polylysine (PL) can be synthesized from the polyadenine tail of prematurely cleaved mRNAs or when a read-though of a stop codon happens. Due to the highly positive charge, PL stalls in the electrostatically negative ribosomal exit channel. The stalled polypeptide recruits the Ribosome-associated quality control (RQC) complex which processes and extracts the nascent chain. Dysfunction of the RQC leads to the accumulation of PL-tagged proteins, induction of a stress response, and cellular toxicity. Not much is known about the PL-specific aspect of protein quality control. Using quantitative mass spectrometry, we uncovered the post-ribosomal PL-processing machinery in human cytosol. It encompasses key cytosolic complexes of the proteostasis network, such as chaperonin TCP-1 ring complexes (TRiC) and half-capped 19S-20S proteasomes. Furthermore, we found that the nuclear transport machinery associates with PL, which suggests a novel mechanism by which faulty proteins can be compartmentalized in the cell. The enhanced nuclear import of a PL-tagged polypeptide confirmed this implication, which leads to questions regarding the biological rationale behind it.


Polylysine Enriched Matrices: A Promising Approach for Vascular Grafts.

  • Luca Fusaro‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Cardiovascular diseases represent the leading cause of death in developed countries. Modern surgical methods show poor efficiency in the substitution of small-diameter arteries (<6 mm). Due to the difference in mechanical properties between the native artery and the substitute, the behavior of the vessel wall is a major cause of inefficient substitutions. The use of decellularized scaffolds has shown optimal prospects in different applications for regenerative medicine. The purpose of this work was to obtain polylysine-enriched vascular substitutes, derived from decellularized porcine femoral and carotid arteries. Polylysine acts as a matrix cross-linker, increasing the mechanical resistance of the scaffold with respect to decellularized vessels, without altering the native biocompatibility and hemocompatibility properties. The biological characterization showed an excellent biocompatibility, while mechanical tests displayed that the Young's modulus of the polylysine-enriched matrix was comparable to native vessel. Burst pressure test demonstrated strengthening of the polylysine-enriched matrix, which can resist to higher pressures with respect to native vessel. Mechanical analyses also show that polylysine-enriched vessels presented minimal degradation compared to native. Concerning hemocompatibility, the performed analyses show that polylysine-enriched matrices increase coagulation time, with respect to commercial Dacron vascular substitutes. Based on these findings, polylysine-enriched decellularized vessels resulted in a promising approach for vascular substitution.


Nuclear entry of hyperbranched polylysine nanoparticles into cochlear cells.

  • Weikai Zhang‎ et al.
  • International journal of nanomedicine‎
  • 2011‎

Gene therapy is a potentially effective therapeutic modality for treating sensorineural hearing loss. Nonviral gene delivery vectors are expected to become extremely safe and convenient, and nanoparticles are the most promising types of vectors. However, infrequent nuclear localization in the cochlear cells limits their application for gene therapy. This study aimed to investigate the potential nuclear entry of hyperbranched polylysine nanoparticles (HPNPs) for gene delivery to cochlear targets.


Preparation and characterization of bifunctional edible gellan-polylysine fiber.

  • Ying Zhang‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

A gellan-polylysine (GPL) fiber was prepared by wet spinning molding with gellan solution containing glucose, soybean peptide, fish collagen peptide as spinning liquid, and ε-poly-l-lysine as fixative liquid. Results showed that the material addition order affects the spinning and an acceptable material addition order was as follows: soybean peptides →glucose → fish collagen peptides. The mechanical strength of the GPL fiber decreased with the collagen peptide titer and the fiber strength can reach 0.99 cN/dtex. In addition, the GPL fiber showed comparable water absorption capacity. The GPL fiber demonstrated good antibacterial properties against Escherichia coli and Staphylococcus aureus. The GPL fiber also had no cytotoxicity on mouse embryo fibroblast L-929 cells and could effectively promote wound healing for rats. As a result, the bifunctional edible GPL fiber is potentially used as a military and rescue emergency equipment.


Aragonite-Polylysine: Neuro-Regenerative Scaffolds with Diverse Effects on Astrogliosis.

  • Tzachy Morad‎ et al.
  • Polymers‎
  • 2020‎

Biomaterials, especially when coated with adhesive polymers, are a key tool for restorative medicine, being biocompatible and supportive for cell adherence, growth, and function. Aragonite skeletons of corals are biomaterials that support survival and growth of a range of cell types, including neurons and glia. However, it is not known if this scaffold affects neural cell migration or elongation of neuronal and astrocytic processes, prerequisites for initiating repair of damage in the nervous system. To address this, hippocampal cells were aggregated into neurospheres and cultivated on aragonite skeleton of the coral Trachyphyllia geoffroyi (Coral Skeleton (CS)), on naturally occurring aragonite (Geological Aragonite (GA)), and on glass, all pre-coated with the oligomer poly-D-lysine (PDL). The two aragonite matrices promoted equally strong cell migration (4.8 and 4.3-fold above glass-PDL, respectively) and axonal sprouting (1.96 and 1.95-fold above glass-PDL, respectively). However, CS-PDL had a stronger effect than GA-PDL on the promotion of astrocytic processes elongation (1.7 vs. 1.2-fold above glass-PDL, respectively) and expression of the glial fibrillary acidic protein (3.8 vs. and 1.8-fold above glass-PDL, respectively). These differences are likely to emerge from a reaction of astrocytes to the degree of roughness of the surface of the scaffold, which is higher on CS than on GA. Hence, CS-PDL and GA-PDL are scaffolds of strong capacity to derive neural cell movements and growth required for regeneration, while controlling the extent of astrocytic involvement. As such, implants of PDL-aragonites have significant potential as tools for damage repair and the reduction of scar formation in the brain following trauma or disease.


Titanium Functionalized with Polylysine Homopolymers: In Vitro Enhancement of Cells Growth.

  • Maria Contaldo‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2021‎

In oral implantology, the success and persistence of dental implants over time are guaranteed by the bone formation around the implant fixture and by the integrity of the peri-implant mucosa seal, which adheres to the abutment and becomes a barrier that hinders bacterial penetration and colonization close to the outer parts of the implant. Research is constantly engaged in looking for substances to coat the titanium surface that guarantees the formation and persistence of the peri-implant bone, as well as the integrity of the mucous perimeter surrounding the implant crown. The present study aimed to evaluate in vitro the effects of a titanium surface coated with polylysine homopolymers on the cell growth of dental pulp stem cells and keratinocytes to establish the potential clinical application. The results reported an increase in cell growth for both cellular types cultured with polylysine-coated titanium compared to cultures without titanium and those without coating. These preliminary data suggest the usefulness of polylysine coating not only for enhancing osteoinduction but also to speed the post-surgery mucosal healings, guarantee appropriate peri-implant epithelial seals, and protect the fixture against bacterial penetration, which is responsible for compromising the implant survival.


Hydrophilic Natural Polylysine as Drug Nanocarrier for Preparation of Helical Delivery System.

  • Bo Yu‎ et al.
  • Pharmaceutics‎
  • 2022‎

Polypeptide materials have clear secondary structure and biodegradability, which can be further modified and functionalized, so that they can be employed as therapeutic agents in clinical applications. PEGylation of polylysine (PEG-PLL) is a kind of safe and effective nanocarrier that is utilized for gene and drug delivery. However, PEG-PLL needs to be produced through chemical synthesis, which is expensive and difficult to obtain. We hope to simplify the nanocarrier and use hydrophilic natural polylysine (PLL) to develop a high-efficacy delivery system. To evaluate the possibility of PLL as nanocarriers, methotrexate (MTX) is selected as a model drug and PEG-PLL is utilized as control nanocarriers. The experimental results showed that PLL is an ideal polypeptide to prepare MTX-loaded PLL nanoparticles (PLL/MTX NPs). Compared with PEG-PLL as nanocarriers, PLL/MTX NPs showed higher drug-loading content (58.9%) and smaller particle sizes (113.7 nm). Moreover, the shape of PLL/MTX NPs was a unique helical nanorod. The PLL/MTX NPs had good storage stability, media stability, and sustained release effect. Animal research demonstrated that PLL/MTX NPs could improve the anti-tumor activity of MTX, the antitumor efficacy is enhanced 1.9-fold and 1.2-fold compared with MTX injection and PEG-PLL/MTX NPs, respectively. To sum up, natural polymer PLL is an ideal nano drug delivery carrier which has potential clinical applications.


ε-Polylysine Inhibits Shewanella putrefaciens with Membrane Disruption and Cell Damage.

  • Weiqing Lan‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

ε-Polylysine (ε-PL) was studied for the growth inhibition of Shewanella putrefaciens (S. putrefaciens). The minimal inhibitory concentration (MIC) of ε-PL against S. putrefaciens was measured by the broth dilution method, while the membrane permeability and metabolism of S. putrefaciens were assessed after ε-PL treatment. Additionally, growth curves, the content of alkaline phosphatase (AKP), the electrical conductivity (EC), the UV absorbance and scanning electron microscope (SEM) data were used to study cellular morphology. The impact of ε-PL on cell metabolism was also investigated by different methods, such as enzyme activity (peroxidase [POD], catalase [CAT], succinodehydrogenase [SDH] and malic dehydrogenase [MDH]) and cell metabolic activity. The results showed that the MIC of ε-PL against S. putrefaciens was 1.0 mg/mL. When S. putrefaciens was treated with ε-PL, the growth of the bacteria was inhibited and the AKP content, electrical conductivity and UV absorbance were increased, which demonstrated that ε-PL could damage the cell structure. The enzyme activities of POD, CAT, SDH, and MDH in the bacterial solution with ε-PL were decreased compared to those in the ordinary bacterial solution. As the concentration of ε-PL was increased, the enzyme activity decreased further. The respiratory activity of S. putrefaciens was also inhibited by ε-PL. The results suggest that ε-PL acts on the cell membrane of S. putrefaciens, thereby increasing membrane permeability and inhibiting enzyme activity in relation to respiratory metabolism and cell metabolism. This leads to inhibition of cell growth, and eventually cell death.


Metabolomic Analysis of Biosynthesis Mechanism of ε-Polylysine Produced by Streptomyces diastatochromogenes.

  • Ziyuan Wang‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2021‎

ε-Polylysine (ε-PL), a natural preservative with broad-spectrum antimicrobial activity, has been widely used as a green food additive, and it is now mainly produced by Streptomyces in industry. In the previous study, strain 6#-7 of high-yield ε-PL was obtained from the original strain TUST by mutagenesis. However, the biosynthesis mechanism of ε-PL in 6#-7 is still unclear. In this study, the metabolomic analyses of the biosynthesis mechanism of ε-PL in both strains are investigated. Results show that the difference in metabolisms between TUST and 6#-7 is significant. Based on the results of both metabolomic and enzymatic activities, a metabolic regulation mechanism of the high-yield strain is revealed. The transport and absorption capacity for glucose of 6#-7 is improved. The enzymatic activity benefits ε-PL synthesis, such as pyruvate kinase and aspartokinase, is strengthened. On the contrary, the activity of homoserine dehydrogenase in the branched-chain pathways is decreased. Meanwhile, the increase of trehalose, glutamic acid, etc. makes 6#-7 more resistant to ε-PL. Thus, the ability of the mutagenized strain 6#-7 to synthesize ε-PL is enhanced, and it can produce more ε-PLs compared with the original strain. For the first time, the metabolomic analysis of the biosynthesis mechanism of ε-PL in the high-yield strain 6#-7 is investigated, and a possible mechanism is then revealed. These findings provide a theoretical basis for further improving the production of ε-PL.


Polylysine as a functional biopolymer to couple gold nanorods to tumor-tropic cells.

  • Claudia Borri‎ et al.
  • Journal of nanobiotechnology‎
  • 2018‎

The delivery of plasmonic particles, such as gold nanorods, to the tumor microenvironment has attracted much interest in biomedical optics for topical applications as the photoacoustic imaging and photothermal ablation of cancer. However, the systemic injection of free particles still crashes into a complexity of biological barriers, such as the reticuloendothelial system, that prevent their efficient biodistribution. In this context, the notion to exploit the inherent features of tumor-tropic cells for the creation of a Trojan horse is emerging as a plausible alternative.


Preparation and Properties of Tumor-Targeting MRI Contrast Agent Based on Linear Polylysine Derivatives.

  • Xuanrong Sun‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

We developed a tumor-targeted contrast agent based on linear polylysine (PLL) by conjugating a small molecular imaging agent, fluorescent molecule and targeting agent amino phenylboronic acid onto the amino groups of polylysine, which can specifically target monosaccharide sialic acid residues overexpressing on the surface of tumor cell membranes. Further, 3,4,5,6-Tetrahydrophthalic anhydride (DCA) was attached to the free amino groups of the polylysine to change to a negative charge at physiology pH to lower the cytotoxicity, but it soon regenerated to a positive charge again once reaching the acidic intratumoral environment and therefore increased cell uptake. Laser confocal microscopy images showed that most of the polymeric contrast agents were bound to the cancer cell membrane. Moreover, the tumor targeting contrast agent showed the same magnetic resonance imaging (MRI) contrasting performance in vitro as the small molecule contrast agent used in clinic, which made it a promising tumor-targeting polymeric contrast agent for cancer diagnosis.


Phosphohistidine phosphatase 1 (PHPT1) also dephosphorylates phospholysine of chemically phosphorylated histone H1 and polylysine.

  • Pia Ek‎ et al.
  • Upsala journal of medical sciences‎
  • 2015‎

Phosphohistidine phosphatase 1 (PHPT1), also named protein histidine phosphatase (PHP), is a eukaryotic enzyme dephosphorylating proteins and peptides that are phosphorylated on a histidine residue. A preliminary finding that histone H1, which lacks histidine, was phosphorylated by phosphoramidate and dephosphorylated by PHPT1 prompted the present investigation.


Ultrasound-Assisted Preparation, Characterization, and Antibacterial Activity of Montmorillonite Modified by ε-Polylysine Hydrochloride.

  • Xinfu Yuan‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2019‎

In this study, two types of antibacterial montmorillonites (Mt) were prepared using a facile method. The Mt modified with ε-polylysine hydrochloride (ε-PL) was named PL-Mt, while the Mt dually modified with dioctadecyl dimethylammonium chloride (D1821) and ε-PL was named PL-OMt. The results of the X-ray diffraction, Fourier-transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA) of the PL-Mt indicated that 30% ε-PL was the most suitable amount for intercalating the Mt. The particle size and distribution of the ε-PL in the solution demonstrated that the Mt d-value could not be further increased owing to the increasing ε-PL diameter. The result of the X-ray diffraction of PL-OMt displayed that ultrasonic treatment at 600 W facilitated ε-PL to intercalate into the OMt interlayer space. The PL-OMt prepared with ultrasonic treatment at 600 W exhibited antibacterial activity against Escherichia coli and Bacillus subtilis superior to that of the PL-OMt prepared with higher-power ultrasonic treatment. Thus, the addition of 30% ε-PL based on the dry Mt mass is the most suitable ratio for preparing PL-Mt, while ultrasonic treatment at 600 W is the most suitable for preparing PL-OMt. These findings may expand the application fields of ε-PL.


Arginine-glycine-aspartate (RGD)-targeted positron-labeled dendritic polylysine nanoprobe for tumor PET imaging.

  • Qi Fang‎ et al.
  • RSC advances‎
  • 2020‎

This work investigated the optimization of the 68Ga radiolabeling of the dendritic polylysine-1,4,7-triazacyclononane-1,4,7-triacetic acid conjugate (DGL-NOTA). Under pH = 4.0, reaction temperature of 70 °C, and incubation time of 10.0 min, the conjugate (DGL-NOTA) radiochemical yield was between 50% and 70%. After separation and purification, the radiochemical purity was greater than 98%. The radiolabeled formulation (68Ga-NOTA-DGL-PEG-RGDyC) remained stable in both phosphate buffer and serum (all radiochemically greater than 95%) for up to 2 hours with a specific activity of 30 GBq/μmol. Cellular experimental studies have shown that radiolabeled preparations can rapidly enter U87MG cells, and after 2 hours, there was still retention of imaging agents in the cells. In vivo distribution studies had shown that the tracer is excreted by the kidneys. Two hours after injecting the imaging agent, the U87MG tumor tissue uptake value was (4.67 ± 0.09)% ID/g. Positron emission tomography (PET) imaging in animals showed that 68Ga-NOTA-DGL-PEG-RGDyC had good targeting and can be enriched in tumor sites. Through hemolysis testing and morphological changes of red blood cells, it was proved that NOTA-DGL-PEG-RGDyC has good blood compatibility.


Dietary Supplementation of ε-Polylysine Beneficially Affects Ileal Microbiota Structure and Function in Ningxiang Pigs.

  • Xuelei Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Intestinal microbiota plays an important role in the health of animals. However, little is known about the gut microbiota in Ningxiang pigs. Thus, we investigated how dietary supplementation with different ε-polylysine concentrations (0, 20, 40, 80, and 160 ppm) affected the ileal microbiota in Ningxiang pigs using a replicated 5 × 5 Latin square method. Each experimental period included 10 days for diet adaptation, 3 days for feces collection and 2 days for digesta collection. The ileal contents were collected and used for sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The results revealed that ε-polylysine significantly decreased the digestibility of crude protein and crude fiber, as well as the utilization of metabolizable energy (P < 0.05). The relative abundances of 19 bacterial genera significantly increased, while those of 26 genera significantly decreased (P < 0.05). In addition, ε-polylysine increased the abundance of some bacteria (e.g., Faecalibacterium, Bifidobacterium, and lactic acid bacteria) and inhibited some other bacteria (e.g., Micrococcaceae, Acinetobacter, Anaerococcus, Peptoniphilus, Dehalobacterium, Finegoldia, Treponema, and Brevundimonas). Furthermore, based on the 16S rRNA gene data and data from the precalculated GreenGenes database, bacterial communities in the ileal contents exhibited enhanced functional maturation, including changes in the metabolism of carbohydrates, amino acids (e.g., alanine, lysine, tryptophan, cysteine, and methionine), cofactors, and vitamins (e.g., biotin, thiamine, and folate), as well as in the activity of the insulin signaling pathway. This study suggests that ε-polylysine may influence the utilization of feed nutrients by Ningxiang pigs, including proteins, lipids, metabolizable energy, and fiber, by regulating the gut microbiota.


Cell surface nucleolin serves as receptor for DNA nanoparticles composed of pegylated polylysine and DNA.

  • Xuguang Chen‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2008‎

Compacted DNA nanoparticles deliver transgenes efficiently to the lung following intrapulmonary dosing. Here we show that nucleolin, a protein known to shuttle between the nucleus, cytoplasm, and cell surface, is a receptor for DNA nanoparticles at the cell surface. By using surface plasmon resonance (SPR), we demonstrate that nucleolin binds to DNA nanoparticles directly. The presence of nucleolin on the surface of HeLa and 16HBEo- cells was confirmed by surface biotinylation assay and immunofluorescence. Rhodamine-labeled DNA nanoparticles colocalize with nucleolin on the cell surface, as well as in the cytoplasm and nucleus, but not with transferrin or markers of early endosome or lysosome following cellular uptake. Reducing nucleolin on the cell surface by serum-free medium or siRNA against nucleolin treatment leads to significant reduction in luciferase reporter gene activity, while overexpressing nucleolin has the opposite effect. Competition for binding to DNA nanoparticles with exogenous purified nucleolin decreases the transfection efficiency by 60-90% in a dose-dependent manner. Therefore, the data strongly suggest that cell surface nucleolin serves as a receptor for DNA nanoparticles, and that nucleolin is essential for internalization and/or transport of the nanoparticles from cell surface to the nucleus.


Electrostatic interactions between polyglutamic acid and polylysine yields stable polyion complex micelles for deoxypodophyllotoxin delivery.

  • Yutong Wang‎ et al.
  • International journal of nanomedicine‎
  • 2017‎

To achieve enhanced physical stability of poly(ethylene glycol)-poly(d,l-lactide) polymeric micelles (PEG-PDLLA PMs), a mixture of methoxy PEG-PDLLA-polyglutamate (mPEG-PDLLA-PLG) and mPEG-PDLLA-poly(l-lysine) (mPEG-PDLLA-PLL) copolymers was applied to self-assembled stable micelles with polyion-stabilized cores. Prior to micelle preparation, the synthetic copolymers were characterized by 1H-nuclear magnetic resonance (NMR) and infrared spectroscopy (IR), and their molecular weights were calculated by 1H-NMR and gel permeation chromatography (GPC). Dialysis was used to prepare PMs with deoxypodophyllotoxin (DPT). Transmission electron microscopy (TEM) images showed that DPT polyion complex micelles (DPT-PCMs) were spherical, with uniform distribution and particle sizes of 36.3±0.8 nm. In addition, compared with nonpeptide-modified DPT-PMs, the stability of DPT-PCMs was significantly improved under various temperatures. In the meantime, the pH sensitivity induced by charged peptides allowed them to have a stronger antitumor effect and a pH-triggered release profile. As a result, the dynamic characteristic of DPT-PCM was retained, and high biocompatibility of DPT-PCM was observed in an in vivo study. These results indicated that the interaction of anionic and cationic charged polyionic segments could be an effective strategy to control drug release and to improve the stability of polymer-based nanocarriers.


Sorafenib/2800Z Co-Loaded into Cholesterol and PEG Grafted Polylysine NPs for Liver Cancer Treatment.

  • Chen Zhang‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

The treatment of liver cancer remains challenging due to the low responsiveness of advanced cancer to therapeutic options. Sorafenib is the first line chemotherapeutic drug for advanced liver cancer but is frequently associated with severe side effects lead to discontinuation of chemotherapy. We previously developed a specific SIRT7 inhibitor 2800Z, which suppressed tumor growth and enhanced the chemosensitivity of sorafenib. In this study, we constructed polylysine polymer nanoparticles modified with cholesterol and GSH-sensitive PEG (mPssPC) to load sorafenib (SOR) and the SIRT7 inhibitor 2800Z to form dual-loaded NPs (S2@PsPCs) to reduce the toxicity and increase efficacy of sorafenib in liver cancer. The average size of S2@PsPC NPs was approximately 370 nm and the zeta potential was approximately 50-53 mV. We found that the release of the drugs exhibited pH sensitivity and was significantly accelerated in an acid release medium simulating the tumor environment. In addition, S2@PsPC NPs inhibited the proliferation and induced apoptosis of liver cancer cells in vitro. An in vivo study further revealed that S2@PsPCs showed high specificity to the liver cancer but low affinity and toxicity to the main organs including the heart, kidneys, lungs, and liver. Our data thus further approved the combination of a SIRT7 inhibitor and sorafenib for the treatment of liver cancer and provided new drug delivery system for targeted therapy.


Polylysine-mediated translocation of the diphtheria toxin catalytic domain through the anthrax protective antigen pore.

  • Onkar Sharma‎ et al.
  • Biochemistry‎
  • 2014‎

The protective antigen (PA) moiety of anthrax toxin forms oligomeric pores in the endosomal membrane, which translocate the effector proteins of the toxin to the cytosol. Effector proteins bind to oligomeric PA via their respective N-terminal domains and undergo N- to C-terminal translocation through the pore. Earlier we reported that a tract of basic amino acids fused to the N-terminus of an unrelated effector protein (the catalytic domain diphtheria toxin, DTA) potentiated that protein to undergo weak PA-dependent translocation. In this study, we varied the location of the tract (N-terminal or C-terminal) and the length of a poly-Lys tract fused to DTA and examined the effects of these variations on PA-dependent translocation into cells and across planar bilayers in vitro. Entry into cells was most efficient with ∼12 Lys residues (K12) fused to the N-terminus but also occurred, albeit 10-100-fold less efficiently, with a C-terminal tract of the same length. Similarly, K12 tracts at either terminus occluded PA pores in planar bilayers, and occlusion was more efficient with the N-terminal tag. We used biotin-labeled K12 constructs in conjunction with streptavidin to show that a biotinyl-K12 tag at either terminus is transiently exposed to the trans compartment of planar bilayers at 20 mV; this partial translocation in vitro was more efficient with an N-terminal tag than a C-terminal tag. Significantly, our studies with polycationic tracts fused to the N- and C-termini of DTA suggest that PA-mediated translocation can occur not only in the N to C direction but also in the C to N direction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: