Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 827 papers

Polycomb repressive complex 1 controls uterine decidualization.

  • Fenghua Bian‎ et al.
  • Scientific reports‎
  • 2016‎

Uterine stromal cell decidualization is an essential part of the reproductive process. Decidual tissue development requires a highly regulated control of the extracellular tissue remodeling; however the mechanism of this regulation remains unknown. Through systematic expression studies, we detected that Cbx4/2, Rybp, and Ring1B [components of polycomb repressive complex 1 (PRC1)] are predominantly utilized in antimesometrial decidualization with polyploidy. Immunofluorescence analyses revealed that PRC1 members are co-localized with its functional histone modifier H2AK119ub1 (mono ubiquitination of histone-H2A at lysine-119) in polyploid cell. A potent small-molecule inhibitor of Ring1A/B E3-ubiquitin ligase or siRNA-mediated suppression of Cbx4 caused inhibition of H2AK119ub1, in conjunction with perturbation of decidualization and polyploidy development, suggesting a role for Cbx4/Ring1B-containing PRC1 in these processes. Analyses of genetic signatures by RNA-seq studies showed that the inhibition of PRC1 function affects 238 genes (154 up and 84 down) during decidualization. Functional enrichment analyses identified that about 38% genes primarily involved in extracellular processes are specifically targeted by PRC1. Furthermore, ~15% of upregulated genes exhibited a significant overlap with the upregulated Bmp2 null-induced genes in mice. Overall, Cbx4/Ring1B-containing PRC1 controls decidualization via regulation of extracellular gene remodeling functions and sheds new insights into underlying molecular mechanism(s) through transcriptional repression regulation.


Polycomb repressive complex 1 modifies transcription of active genes.

  • Michelle Pherson‎ et al.
  • Science advances‎
  • 2017‎

This study examines the role of Polycomb repressive complex 1 (PRC1) at active genes. The PRC1 and PRC2 complexes are crucial for epigenetic silencing during development of an organism. They are recruited to Polycomb response elements (PREs) and establish silenced domains over several kilobases. Recent studies show that PRC1 is also directly recruited to active genes by the cohesin complex. Cohesin participates broadly in control of gene transcription, but it is unknown whether cohesin-recruited PRC1 also plays a role in transcriptional control of active genes. We address this question using genome-wide RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq). The results show that PRC1 influences transcription of active genes, and a significant fraction of its effects are likely direct. The roles of different PRC1 subunits can also vary depending on the gene. Depletion of PRC1 subunits by RNA interference alters phosphorylation of RNA polymerase II (Pol II) and occupancy by the Spt5 pausing-elongation factor at most active genes. These effects on Pol II phosphorylation and Spt5 are likely linked to changes in elongation and RNA processing detected by nascent RNA-seq, although the mechanisms remain unresolved. The experiments also reveal that PRC1 facilitates association of Spt5 with enhancers and PREs. Reduced Spt5 levels at these regulatory sequences upon PRC1 depletion coincide with changes in Pol II occupancy and phosphorylation. Our findings indicate that, in addition to its repressive roles in epigenetic gene silencing, PRC1 broadly influences transcription of active genes and may suppress transcription of nonpromoter regulatory sequences.


Small-molecule inhibitors targeting Polycomb repressive complex 1 RING domain.

  • Shirish Shukla‎ et al.
  • Nature chemical biology‎
  • 2021‎

Polycomb repressive complex 1 (PRC1) is an essential chromatin-modifying complex that monoubiquitinates histone H2A and is involved in maintaining the repressed chromatin state. Emerging evidence suggests PRC1 activity in various cancers, rationalizing the need for small-molecule inhibitors with well-defined mechanisms of action. Here, we describe the development of compounds that directly bind to RING1B-BMI1, the heterodimeric complex constituting the E3 ligase activity of PRC1. These compounds block the association of RING1B-BMI1 with chromatin and inhibit H2A ubiquitination. Structural studies demonstrate that these inhibitors bind to RING1B by inducing the formation of a hydrophobic pocket in the RING domain. Our PRC1 inhibitor, RB-3, decreases the global level of H2A ubiquitination and induces differentiation in leukemia cell lines and primary acute myeloid leukemia (AML) samples. In summary, we demonstrate that targeting the PRC1 RING domain with small molecules is feasible, and RB-3 represents a valuable chemical tool to study PRC1 biology.


Huntingtin facilitates polycomb repressive complex 2.

  • Ihn Sik Seong‎ et al.
  • Human molecular genetics‎
  • 2010‎

Huntington's disease (HD) is caused by expansion of the polymorphic polyglutamine segment in the huntingtin protein. Full-length huntingtin is thought to be a predominant HEAT repeat alpha-solenoid, implying a role as a facilitator of macromolecular complexes. Here we have investigated huntingtin's domain structure and potential intersection with epigenetic silencer polycomb repressive complex 2 (PRC2), suggested by shared embryonic deficiency phenotypes. Analysis of a set of full-length recombinant huntingtins, with different polyglutamine regions, demonstrated dramatic conformational flexibility, with an accessible hinge separating two large alpha-helical domains. Moreover, embryos lacking huntingtin exhibited impaired PRC2 regulation of Hox gene expression, trophoblast giant cell differentiation, paternal X chromosome inactivation and histone H3K27 tri-methylation, while full-length endogenous nuclear huntingtin in wild-type embryoid bodies (EBs) was associated with PRC2 subunits and was detected with trimethylated histone H3K27 at Hoxb9. Supporting a direct stimulatory role, full-length recombinant huntingtin significantly increased the histone H3K27 tri-methylase activity of reconstituted PRC2 in vitro, and structure-function analysis demonstrated that the polyglutamine region augmented full-length huntingtin PRC2 stimulation, both in Hdh(Q111) EBs and in vitro, with reconstituted PRC2. Knowledge of full-length huntingtin's alpha-helical organization and role as a facilitator of the multi-subunit PRC2 complex provides a novel starting point for studying PRC2 regulation, implicates this chromatin repressive complex in a neurodegenerative disorder and sets the stage for further study of huntingtin's molecular function and the impact of its modulatory polyglutamine region.


DNA elements tether canonical Polycomb Repressive Complex 1 to human genes.

  • Juan I Barrasa‎ et al.
  • Nucleic acids research‎
  • 2023‎

Development of multicellular animals requires epigenetic repression by Polycomb group proteins. The latter assemble in multi-subunit complexes, of which two kinds, Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2), act together to repress key developmental genes. How PRC1 and PRC2 recognize specific genes remains an open question. Here we report the identification of several hundreds of DNA elements that tether canonical PRC1 to human developmental genes. We use the term tether to describe a process leading to a prominent presence of canonical PRC1 at certain genomic sites, although the complex is unlikely to interact with DNA directly. Detailed analysis indicates that sequence features associated with PRC1 tethering differ from those that favour PRC2 binding. Throughout the genome, the two kinds of sequence features mix in different proportions to yield a gamut of DNA elements that range from those tethering predominantly PRC1 or PRC2 to ones capable of tethering both complexes. The emerging picture is similar to the paradigmatic targeting of Polycomb complexes by Polycomb Response Elements (PREs) of Drosophila but providing for greater plasticity.


Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma.

  • Ashujit Tagde‎ et al.
  • Oncotarget‎
  • 2017‎

The polycomb repressive complex 1 (PRC1) includes the BMI1, RING1 and RING2 proteins. BMI1 is required for survival of multiple myeloma (MM) cells. The MUC1-C oncoprotein is aberrantly expressed by MM cells, activates MYC and is also necessary for MM cell survival. The present studies show that targeting MUC1-C with (i) stable and inducible silencing and CRISPR/Cas9 editing and (ii) the pharmacologic inhibitor GO-203, which blocks MUC1-C function, downregulates BMI1, RING1 and RING2 expression. The results demonstrate that MUC1-C drives BMI1 transcription by a MYC-dependent mechanism. MUC1-C thus promotes MYC occupancy on the BMI1 promoter and thereby activates BMI1 expression. We also show that the MUC1-C→MYC pathway induces RING2 expression. Moreover, in contrast to BMI1 and RING2, we found that MUC1-C drives RING1 by an NF-κB p65-dependent mechanism. Targeting MUC1-C and thereby the suppression of these key PRC1 proteins was associated with downregulation of the PRC1 E3 ligase activity as evidenced by decreases in ubiquitylation of histone H2A. Targeting MUC1-C also resulted in activation of the PRC1-repressed tumor suppressor genes, PTEN, CDNK2A and BIM. These findings identify a heretofore unrecognized role for MUC1-C in the epigenetic regulation of MM cells.


A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1.

  • Jacob I Stuckey‎ et al.
  • Nature chemical biology‎
  • 2016‎

We report the design and characterization of UNC3866, a potent antagonist of the methyllysine (Kme) reading function of the Polycomb CBX and CDY families of chromodomains. Polycomb CBX proteins regulate gene expression by targeting Polycomb repressive complex 1 (PRC1) to sites of H3K27me3 via their chromodomains. UNC3866 binds the chromodomains of CBX4 and CBX7 most potently, with a K(d) of ∼100 nM for each, and is 6- to 18-fold selective as compared to seven other CBX and CDY chromodomains while being highly selective over >250 other protein targets. X-ray crystallography revealed that UNC3866's interactions with the CBX chromodomains closely mimic those of the methylated H3 tail. UNC4195, a biotinylated derivative of UNC3866, was used to demonstrate that UNC3866 engages intact PRC1 and that EED incorporation into PRC1 is isoform dependent in PC3 prostate cancer cells. Finally, UNC3866 inhibits PC3 cell proliferation, consistent with the known ability of CBX7 overexpression to confer a growth advantage, whereas UNC4219, a methylated negative control compound, has negligible effects.


Polycomb repressive complex 1 initiates and maintains tailless repression in Drosophila embryo.

  • Gwo-Jen Liaw‎
  • Biochimica et biophysica acta. Gene regulatory mechanisms‎
  • 2022‎

Maternally-deposited morphogens specify the fates of embryonic cells via hierarchically regulating the expression of zygotic genes that encode various classes of developmental regulators. Once the cell fates are determined, Polycomb-group proteins frequently maintain the repressed state of the genes. This study investigates how Polycomb-group proteins repress the expression of tailless, which encodes a developmental regulator in Drosophila embryo. Previous studies have shown that maternal Tramtrack69 facilitates maternal GAGA-binding factor and Heat shock factor binding to the torso response element (tor-RE) to initiate tailless repression in the stage-4 embryo. Chromatin-immunoprecipitation and genetic-interaction studies exhibit that maternally-deposited Polycomb repressive complex 1 (PRC1) recruited by the tor-RE-associated Tramtrack69 represses tailless expression in the stage-4 embryo. A noncanonical Polycomb-group response element (PRE) is mapped to the tailless proximal region. High levels of Bric-a-brac, Tramtrack, and Broad (BTB)-domain proteins are fundamental for maintaining tailless repression in the stage-8 to -10 embryos. Trmtrack69 sporadically distributes in the linear BTB-domain oligomer, which recruits and retains a high level of PRC1 near the GCCAT cluster for repressing tll expression in the stage-14 embryos. Disrupting the retention of PRC1 decreases the levels of PRC1 and Pleiohomeotic protein substantially on the PRE and causes tailless derepression in the stage-14 embryo. Furthermore, the retained PRC1 potentially serves as a second foundation for assembling the well-characterized polymer of the Sterile alpha motif domain in Polyhomeotic protein, which compacts chromatin to maintain the repressed state of tailless in the embryos after stage 14.


Topology and enzymatic properties of a canonical Polycomb repressive complex 1 isoform.

  • Matteo Colombo‎ et al.
  • FEBS letters‎
  • 2019‎

Polycomb repressive complex 1 (PRC1) catalyses monoubiquitination of histone H2A on Lys119, promoting gene silencing. Cells at different developmental stages and in different tissues express different PRC1 isoforms. The topology, subunit composition, structural architecture and molecular mechanism of most of these isoforms are still poorly characterized. Here, we have purified a PRC1 isoform comprising subunits RING1B, PCGF2, CBX2 and PHC2, two stable subcomplexes (RING1B-PCGF2 and RING1B-PHC2) and the catalytic subunit RING1B in isolation. By crosslinking mass spectrometry, we identified novel interactions between RING1B and the three non-catalytic subunits. Biochemical, biophysical, and enzymatic data suggest that CBX2 and PHC2 play a structural role, whereas PCGF2 also modulates catalysis. Our data offer insights into the molecular architecture of PRC1 and its histone ubiquitination activity.


Polycomb Repressive Complex 1 Generates Discrete Compacted Domains that Change during Differentiation.

  • Sharmistha Kundu‎ et al.
  • Molecular cell‎
  • 2017‎

Master regulatory genes require stable silencing by the polycomb group (PcG) to prevent misexpression during differentiation and development. Some PcG proteins covalently modify histones, which contributes to heritable repression. The role for other effects on chromatin structure is less understood. We characterized the organization of PcG target genes in ESCs and neural progenitors using 5C and super-resolution microscopy. The genomic loci of repressed PcG targets formed discrete, small (20-140 Kb) domains of tight interaction that corresponded to locations bound by canonical polycomb repressive complex 1 (PRC1). These domains changed during differentiation as PRC1 binding changed. Their formation depended upon the Polyhomeotic component of canonical PRC1 and occurred independently of PRC1-catalyzed ubiquitylation. PRC1 domains differ from topologically associating domains in size and boundary characteristics. These domains have the potential to play a key role in transmitting epigenetic silencing of PcG targets by linking PRC1 to formation of a repressive higher-order structure.


Molecular architecture of human polycomb repressive complex 2.

  • Claudio Ciferri‎ et al.
  • eLife‎
  • 2012‎

Polycomb Repressive Complex 2 (PRC2) is essential for gene silencing, establishing transcriptional repression of specific genes by tri-methylating Lysine 27 of histone H3, a process mediated by cofactors such as AEBP2. In spite of its biological importance, little is known about PRC2 architecture and subunit organization. Here, we present the first three-dimensional electron microscopy structure of the human PRC2 complex bound to its cofactor AEBP2. Using a novel internal protein tagging-method, in combination with isotopic chemical cross-linking and mass spectrometry, we have localized all the PRC2 subunits and their functional domains and generated a detailed map of interactions. The position and stabilization effect of AEBP2 suggests an allosteric role of this cofactor in regulating gene silencing. Regions in PRC2 that interact with modified histone tails are localized near the methyltransferase site, suggesting a molecular mechanism for the chromatin-based regulation of PRC2 activity.DOI:http://dx.doi.org/10.7554/eLife.00005.001.


KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands.

  • Anca M Farcas‎ et al.
  • eLife‎
  • 2012‎

CpG islands (CGIs) are associated with most mammalian gene promoters. A subset of CGIs act as polycomb response elements (PREs) and are recognized by the polycomb silencing systems to regulate expression of genes involved in early development. How CGIs function mechanistically as nucleation sites for polycomb repressive complexes remains unknown. Here we discover that KDM2B (FBXL10) specifically recognizes non-methylated DNA in CGIs and recruits the polycomb repressive complex 1 (PRC1). This contributes to histone H2A lysine 119 ubiquitylation (H2AK119ub1) and gene repression. Unexpectedly, we also find that CGIs are occupied by low levels of PRC1 throughout the genome, suggesting that the KDM2B-PRC1 complex may sample CGI-associated genes for susceptibility to polycomb-mediated silencing. These observations demonstrate an unexpected and direct link between recognition of CGIs by KDM2B and targeting of the polycomb repressive system. This provides the basis for a new model describing the functionality of CGIs as mammalian PREs.DOI:http://dx.doi.org/10.7554/eLife.00205.001.


Identification of polycomb repressive complex 1 and 2 core components in hexaploid bread wheat.

  • Beáta Strejčková‎ et al.
  • BMC plant biology‎
  • 2020‎

Polycomb repressive complexes 1 and 2 play important roles in epigenetic gene regulation by posttranslationally modifying specific histone residues. Polycomb repressive complex 2 is responsible for the trimethylation of lysine 27 on histone H3; Polycomb repressive complex 1 catalyzes the monoubiquitination of histone H2A at lysine 119. Both complexes have been thoroughly studied in Arabidopsis, but the evolution of polycomb group gene families in monocots, particularly those with complex allopolyploid origins, is unknown.


CBFβ-SMMHC Affects Genome-wide Polycomb Repressive Complex 1 Activity in Acute Myeloid Leukemia.

  • Gaëlle Cordonnier‎ et al.
  • Cell reports‎
  • 2020‎

Mutations and deletions of polycomb repressive complex (PRC) components are increasingly recognized to affect tumor biology in a range of cancers. However, little is known about how genetic alterations of PRC-interacting molecules such as the core binding factor (CBF) complex influence polycomb activity. We report that the acute myeloid leukemia (AML)-associated CBFβ-SMMHC fusion oncoprotein physically interacts with the PRC1 complex and that these factors co-localize across the AML genome in an apparently PRC2-independent manner. Depletion of CBFβ-SMMHC caused substantial increases in genome-wide PRC1 binding and marked changes in the association between PRC1 and the CBF DNA-binding subunit RUNX1. PRC1 was more likely to be associated with actively transcribed genes in CBFβ-SMMHC-expressing cells. CBFβ-SMMHC depletion had heterogeneous effects on gene expression, including significant reductions in transcription of ribosomal loci occupied by PRC1. Our results provide evidence that CBFβ-SMMHC markedly and diversely affects polycomb recruitment and transcriptional regulation across the AML genome.


Polycomb repressive complex 1.1 coordinates homeostatic and emergency myelopoiesis.

  • Yaeko Nakajima-Takagi‎ et al.
  • eLife‎
  • 2023‎

Polycomb repressive complex (PRC) 1 regulates stem cell fate by mediating mono-ubiquitination of histone H2A at lysine 119. While canonical PRC1 is critical for hematopoietic stem and progenitor cell (HSPC) maintenance, the role of non-canonical PRC1 in hematopoiesis remains elusive. PRC1.1, a non-canonical PRC1, consists of PCGF1, RING1B, KDM2B, and BCOR. We recently showed that PRC1.1 insufficiency induced by the loss of PCGF1 or BCOR causes myeloid-biased hematopoiesis and promotes transformation of hematopoietic cells in mice. Here we show that PRC1.1 serves as an epigenetic switch that coordinates homeostatic and emergency hematopoiesis. PRC1.1 maintains balanced output of steady-state hematopoiesis by restricting C/EBPα-dependent precocious myeloid differentiation of HSPCs and the HOXA9- and β-catenin-driven self-renewing network in myeloid progenitors. Upon regeneration, PRC1.1 is transiently inhibited to facilitate formation of granulocyte-macrophage progenitor (GMP) clusters, thereby promoting emergency myelopoiesis. Moreover, constitutive inactivation of PRC1.1 results in unchecked expansion of GMPs and eventual transformation. Collectively, our results define PRC1.1 as a novel critical regulator of emergency myelopoiesis, dysregulation of which leads to myeloid transformation.


Regulatory interactions between RNA and polycomb repressive complex 2.

  • Catherine Cifuentes-Rojas‎ et al.
  • Molecular cell‎
  • 2014‎

Polycomb repressive complex 2 (PRC2) is a histone methyltransferase that is localized to thousands of mammalian genes. Though important to human disease and as a drug target, how PRC2 is recruited remains unclear. One model invokes cis-regulatory RNA. Herein, we biochemically and functionally probe PRC2's recognition of RNA using the X-inactivation model. We observe surprisingly high discriminatory capabilities. While SUZ12 and JARID2 subunits can bind RNA, EZH2 has highest affinity and is somewhat promiscuous. EED regulates the affinity of EZH2 for RNA, lending greater specificity to PRC2-RNA interactions. Intriguingly, while RNA is crucial for targeting, RNA inhibits EZH2's catalytic activity. JARID2 weakens PRC2's binding to RNA and relieves catalytic inhibition. We propose that RNA guides PRC2 to its target but inhibits its enzymatic activity until PRC2 associates with JARID2 on chromatin. Our study provides a molecular view of regulatory interactions between RNA and PRC2 at the chromatin interface.


BMI1 regulates androgen receptor in prostate cancer independently of the polycomb repressive complex 1.

  • Sen Zhu‎ et al.
  • Nature communications‎
  • 2018‎

BMI1, a polycomb group (PcG) protein, plays a critical role in epigenetic regulation of cell differentiation and proliferation, and cancer stem cell self-renewal. BMI1 is upregulated in multiple types of cancer, including prostate cancer. As a key component of polycomb repressive complex 1 (PRC1), BMI1 exerts its oncogenic functions by enhancing the enzymatic activities of RING1B to ubiquitinate histone H2A at lysine 119 and repress gene transcription. Here, we report a PRC1-independent role of BMI1 that is critical for castration-resistant prostate cancer (CRPC) progression. BMI1 binds the androgen receptor (AR) and prevents MDM2-mediated AR protein degradation, resulting in sustained AR signaling in prostate cancer cells. More importantly, we demonstrate that targeting BMI1 effectively inhibits tumor growth of xenografts that have developed resistance to surgical castration and enzalutamide treatment. These results suggest that blocking BMI1 alone or in combination with anti-AR therapy can be more efficient to suppress prostate tumor growth.


Loss of polycomb repressive complex 1 activity and chromosomal instability drive uveal melanoma progression.

  • Mathieu F Bakhoum‎ et al.
  • Nature communications‎
  • 2021‎

Chromosomal instability (CIN) and epigenetic alterations have been implicated in tumor progression and metastasis; yet how these two hallmarks of cancer are related remains poorly understood. By integrating genetic, epigenetic, and functional analyses at the single cell level, we show that progression of uveal melanoma (UM), the most common intraocular primary cancer in adults, is driven by loss of Polycomb Repressive Complex 1 (PRC1) in a subpopulation of tumor cells. This leads to transcriptional de-repression of PRC1-target genes and mitotic chromosome segregation errors. Ensuing CIN leads to the formation of rupture-prone micronuclei, exposing genomic double-stranded DNA (dsDNA) to the cytosol. This provokes tumor cell-intrinsic inflammatory signaling, mediated by aberrant activation of the cGAS-STING pathway. PRC1 inhibition promotes nuclear enlargement, induces a transcriptional response that is associated with significantly worse patient survival and clinical outcomes, and enhances migration that is rescued upon pharmacologic inhibition of CIN or STING. Thus, deregulation of PRC1 can promote tumor progression by inducing CIN and represents an opportunity for early therapeutic intervention.


Polycomb repressive complex 1 shapes the nucleosome landscape but not accessibility at target genes.

  • Hamish W King‎ et al.
  • Genome research‎
  • 2018‎

Polycomb group (PcG) proteins are transcriptional repressors that play important roles in regulating gene expression during animal development. In vitro experiments have shown that PcG protein complexes can compact chromatin to limit the activity of chromatin remodeling enzymes and access of the transcriptional machinery to DNA. In fitting with these ideas, gene promoters associated with PcG proteins have been reported to be less accessible than other gene promoters. However, it remains largely untested in vivo whether PcG proteins define chromatin accessibility or other chromatin features. To address this important question, we examine the chromatin accessibility and nucleosome landscape at PcG protein-bound promoters in mouse embryonic stem cells using the assay for transposase accessible chromatin (ATAC)-seq. Combined with genetic ablation strategies, we unexpectedly discover that although PcG protein-occupied gene promoters exhibit reduced accessibility, this does not rely on PcG proteins. Instead, the Polycomb repressive complex 1 (PRC1) appears to play a unique role in driving elevated nucleosome occupancy and decreased nucleosomal spacing in Polycomb chromatin domains. Our new genome-scale observations argue, in contrast to the prevailing view, that PcG proteins do not significantly affect chromatin accessibility and highlight an underappreciated complexity in the relationship between chromatin accessibility, the nucleosome landscape, and PcG-mediated transcriptional repression.


Polycomb Repressive Complex 1 Controls Maintenance of Fungiform Papillae by Repressing Sonic Hedgehog Expression.

  • Carmit Bar‎ et al.
  • Cell reports‎
  • 2019‎

How tissue patterns are formed and maintained are fundamental questions. The murine tongue epithelium, a paradigm for tissue patterning, consists of an array of specialized fungiform papillae structures that harbor taste cells. The formation of fungiform papillae is preceded by pronounced spatial changes in gene expression, in which taste cell genes such as Shh, initially diffused in lingual epithelial progenitors, become restricted to taste cells when their specification progresses. However, the requirement of spatial restriction of taste cell gene expression for patterning and formation of fungiform papillae is unknown. Here, we show that a chromatin regulator, Polycomb repressive complex (PRC) 1, is required for proper maintenance of fungiform papillae by repressing Shh and preventing ectopic SHH signaling in non-taste cells. Ablation of SHH signaling in PRC1-null non-taste cells rescues the maintenance of taste cells. Altogether, our studies exemplify how epigenetic regulation establishes spatial gene expression patterns necessary for specialized niche structures.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: