Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,300 papers

Arp1, an actin-related protein, in Plasmodium berghei.

  • Inga Siden-Kiamos‎ et al.
  • Molecular and biochemical parasitology‎
  • 2010‎

Actin-related proteins (Arps) constitute a family of eukaryotic cytoskeletal proteins involved in such diverse events as cell motility, cytokinesis, vesicle transport, and chromatin remodelling. Previously, in a study of Plasmodium berghei gene expression in ookinetes and oocysts, we detected stage-specific increased expression of a gene encoding an Arp. Here we further characterize this gene and the encoded protein. We present a phylogenetic and three-dimensional modelling analysis as well as cell biological and genetic data that support classification of this gene as being an orthologue of the actin-related protein 1 (Arp1). This gene was found to be expressed in asexual stages as well as in the mosquito stages of the parasite, both on the transcript and protein level. Our attempts to delete the gene in the parasite for functional studies were unsuccessful, suggesting that it may be essential. The protein was localized apically of the nucleus in ookinetes, and in combination with the known function of Arp1 proteins, this suggests a role in vesicular transport. Expression of the gene in Saccharomyces cerevisiae resulted in toxic effects and interference with the yeast cytoskeleton.


Quantitative characterization of hemozoin in Plasmodium berghei and vivax.

  • John M Pisciotta‎ et al.
  • International journal for parasitology. Drugs and drug resistance‎
  • 2017‎

The incidence and global distribution of chloroquine resistant (CR) Plasmodium vivax infection has increased since emerging in 1989. The mechanism of resistance in CR P. vivax has not been defined. The resistance likely relates to the formation and disposition of hemozoin as chloroquine's primary mechanism of action involves disruption of hemozoin formation. CR P. berghei strains, like CR P. vivax strains, are confined to reticulocyte host cells and reportedly they do not accumulate appreciable intraerythrocytic hemozoin. Reports comparing hemozoin production between P. vivax strains and CR to chloroquine sensitive (CS) P. berghei are absent. Here we compare in vivo patterns of hemozoin formation and distribution in blood, spleen and liver tissue of male Swiss mice infected with CS or CR P. berghei not treated with chloroquine and CR P. berghei also treated with chloroquine. Light microscopy, laser desorption mass spectrometry and a colorimetric hemozoin assay detect trace hemozoin in the blood of CR P. berghei infected mice but significant hemozoin accumulation in liver and spleen tissue. Field emission in lens scanning electron microscopy reveals CR P. berghei hemozoin crystals are morphologically smaller but similar to those formed by CS parasites. CR P. berghei produces approximately five-fold less total hemozoin than CS strain. Lipid analysis of CS and CR P. berghei sucrose gradient purified bloodstage hemozoin indicates a similar lipid environment around the isolated hemozoin, predominately monopalmitic glycerol and monostearic glycerol. In contrast to CR and CS P. berghei, colorimetric hemozoin analysis of P. vivax strains indicates similar amounts of hemozoin are produced despite differing chloroquine sensitivities. These results suggest CR P. berghei forms significant hemozoin which accumulates in liver and spleen tissues and that the P. vivax chloroquine resistance mechanism differs from P. berghei.


Plasmodium berghei-induced malaria decreases pain sensitivity in mice.

  • Aboyeji L Oyewole‎ et al.
  • The Onderstepoort journal of veterinary research‎
  • 2021‎

Various types of pain were reported by people with Plasmodium falciparum and were mostly attributed to a symptom of malarial infection. Neural processes of pain sensation during malarial infection and their contributions to malaria-related death are poorly understood. Thus, these form the focus of this study. Swiss mice used for this study were randomly divided into two groups. Animals in the first group (Pb-infected group) were inoculated with Plasmodium berghei to induce malaria whilst the other group (intact group) was not infected. Formalin test was used to assess pain sensitivity in both groups and using various antagonists, the possible mechanism for deviation in pain sensitivity was probed. Also, plasma and brain samples collected from animals in both groups were subjected to biochemical and/or histological studies. The results showed that Pb-infected mice exhibited diminished pain-related behaviours to noxious chemical. The observed parasite-induced analgesia appeared to be synergistically mediated via µ-opioid, α2 and 5HT2A receptors. When varied drugs capable of decreasing pain threshold (pro-nociceptive drugs) were used, the survival rate was not significantly different in the Pb-infected mice. This showed little or no contribution of the pain processing system to malaria-related death. Also, using an anti-CD68 antibody, there was no immunopositive cell in the brain to attribute the observed effects to cerebral malaria. Although in the haematoxylin and eosin-stained tissues, there were mild morphological changes in the motor and anterior cingulate cortices. In conclusion, the pain symptom was remarkably decreased in the animal model for malaria, and thus, the model may not be appropriate for investigating malaria-linked pain as reported in humans. This is the first report showing that at a critical point, the malaria parasite caused pain-relieving effects in Swiss mice.


Transcriptome analysis of Plasmodium berghei during exo-erythrocytic development.

  • Reto Caldelari‎ et al.
  • Malaria journal‎
  • 2019‎

The complex life cycle of malaria parasites requires well-orchestrated stage specific gene expression. In the vertebrate host the parasites grow and multiply by schizogony in two different environments: within erythrocytes and within hepatocytes. Whereas erythrocytic parasites are well-studied in this respect, relatively little is known about the exo-erythrocytic stages.


Plasmodium berghei bio-burden correlates with parasite lactate dehydrogenase: application to murine Plasmodium diagnostics.

  • Sai Lata De‎ et al.
  • Malaria journal‎
  • 2016‎

The spectrum of techniques to detect malaria parasites in whole blood is limited to measuring parasites in circulation. One approach that is currently used to enumerate total parasite bio-burden involves the use of bio-luminescent parasites. As an alternative approach, this study describes the use of a commercial ELISA human parasite lactate dehydrogenase (pLDH) detection kit to estimate total parasite bio-burden in murine malaria models.


Plasmodium berghei ANKA causes intestinal malaria associated with dysbiosis.

  • Tomoyo Taniguchi‎ et al.
  • Scientific reports‎
  • 2015‎

Gastrointestinal symptoms, such as abdominal pain and diarrhea, are frequently observed in patients with Plasmodium falciparum malaria. However, the correlation between malaria intestinal pathology and intestinal microbiota has not been investigated. In the present study, infection of C57BL/6 mice with P. berghei ANKA (PbA) caused intestinal pathological changes, such as detachment of epithelia in the small intestines and increased intestinal permeability, which correlated with development with experimental cerebral malaria (ECM). Notably, an apparent dysbiosis occurred, characterized by a reduction of Firmicutes and an increase in Proteobacteria. Furthermore, some genera of microbiota correlated with parasite growth and/or ECM development. By contrast, BALB/c mice are resistant to ECM and exhibit milder intestinal pathology and dysbiosis. These results indicate that the severity of cerebral and intestinal pathology coincides with the degree of alteration in microbiota. This is the first report demonstrating that malaria affects intestinal microbiota and causes dysbiosis.


The crystal structures of macrophage migration inhibitory factor from Plasmodium falciparum and Plasmodium berghei.

  • Sarah E Dobson‎ et al.
  • Protein science : a publication of the Protein Society‎
  • 2009‎

Malaria, caused by Plasmodium falciparum and related parasites, is responsible for millions of deaths each year, mainly from complications arising from the blood stages of its life cycle. Macrophage migration inhibitory factor (MIF), a protein expressed by the parasite during these stages, has been characterized in mammals as a cytokine involved in a broad spectrum of immune responses. It also possesses two catalytic activities, a tautomerase and an oxidoreductase, though the physiological significance of neither reaction is known. Here, we have determined the crystal structure of MIF from two malaria parasites, Plasmodium falciparum and Plasmodium berghei at 2.2 A and 1.8 A, respectively. The structures have an alpha/beta fold and each reveals a trimer, in agreement with the results of analytical ultracentrifugation. We observed open and closed active sites, these being distinguished by movements of proline-1, the catalytic base in the tautomerase reaction. These states correlate with the covalent modification of cysteine 2 to form a mercaptoethanol adduct, an observation confirmed by mass spectrometry. The Plasmodium MIFs have a different pattern of conserved cysteine residues to the mammalian MIFs and the side chain of Cys58, which is implicated in the oxidoreductase activity, is buried. This observation and the evident redox reactivity of Cys2 suggest quite different oxidoreductase characteristics. Finally, we show in pull-down assays that Plasmodium MIF binds to the cell surface receptor CD74, a known mammalian MIF receptor implying that parasite MIF has the ability to interfere with, or modulate, host MIF activity through a competitive binding mechanism.


Nuclear Pore Complex Components in the Malaria Parasite Plasmodium berghei.

  • Jessica Kehrer‎ et al.
  • Scientific reports‎
  • 2018‎

The nuclear pore complex (NPC) is a large macromolecular assembly of around 30 different proteins, so-called nucleoporins (Nups). Embedded in the nuclear envelope the NPC mediates bi-directional exchange between the cytoplasm and the nucleus and plays a role in transcriptional regulation that is poorly understood. NPCs display modular arrangements with an overall structure that is generally conserved among many eukaryotic phyla. However, Nups of yeast or human origin show little primary sequence conservation with those from early-branching protozoans leaving those of the malaria parasite unrecognized. Here we have combined bioinformatic and genetic methods to identify and spatially characterize Nup components in the rodent infecting parasite Plasmodium berghei and identified orthologs from the human malaria parasite P. falciparum, as well as the related apicomplexan parasite Toxoplasma gondii. For the first time we show the localization of selected Nups throughout the P. berghei life cycle. Largely restricted to apicomplexans we identify an extended C-terminal poly-proline extension in SEC13 that is essential for parasite survival and provide high-resolution images of Plasmodium NPCs obtained by cryo electron tomography. Our data provide the basis for full characterization of NPCs in malaria parasites, early branching unicellular eukaryotes with significant impact on human health.


Expression and processing of Plasmodium berghei SERA3 during liver stages.

  • Anja Schmidt-Christensen‎ et al.
  • Cellular microbiology‎
  • 2008‎

Cysteine proteases mediate liberation of Plasmodium berghei merozoites from infected hepatocytes. In an attempt to identify the responsible parasite proteases, we screened the genome of P. berghei for cysteine protease-encoding genes. RT-PCR analyses revealed that transcription of four out of five P. berghei serine repeat antigen (PbSERA) genes was strongly upregulated in late liver stages briefly before the parasitophorous vacuole membrane ruptured to release merozoites into the host cell cytoplasm, suggesting a role of PbSERA proteases in these processes. In order to characterize PbSERA3 processing, we raised an antiserum against a non-conserved region of the protein and generated a transgenic P. berghei strain expressing a TAP-tagged PbSERA3 under the control of the endogenous promoter. Immunofluorescence assays revealed that PbSERA3 leaks into the host cell cytoplasm during merozoite development, where it might contribute to host cell death or activate host cell proteases that execute cell death. Importantly, processed PbSERA3 has been detected by Western blot analysis in cell extracts of schizont-infected cells and merozoite-infected detached hepatic cells.


Plasmodium berghei oocysts possess fatty acid synthesis and scavenging routes.

  • Sadia Saeed‎ et al.
  • Scientific reports‎
  • 2023‎

Malaria parasites carry out fatty acid synthesis (FAS) in their apicoplast organelle via a bacterially related (type II) enzymatic pathway. In the vertebrate host, exoerythrocytic Plasmodium stages rely on FAS, whereas intraerythrocytic stages depend on scavenging FA from their environment. In the mosquito, P. falciparum oocysts express and rely on FAS enzymes for sporozoite formation, but P. yoelii oocysts do not express, nor depend on, FAS enzymes and thus rely on FA scavenging to support sporogony. In P. berghei, FAS enzymes are similarly expendable for sporogony, indicating it conforms to the P. yoelii scenario. We show here that P. berghei, unexpectedly, expresses FAS enzymes throughout oocyst development. These findings indicate that P. berghei can employ FAS alongside FA scavenging to maximise sporogony and transmission, and is more similar to P. falciparum than previously assumed with respect to FA acquisition by the oocyst. The ability of oocysts to switch between FAS and scavenging could be an important factor in the non-competitive relationship of resource exploitation between Plasmodium parasites and their mosquito vectors, which shapes parasite virulence both in the insect and vertebrate.


Cross-protection between attenuated Plasmodium berghei and P. yoelii sporozoites.

  • M Sedegah‎ et al.
  • Parasite immunology‎
  • 2007‎

An attenuated Plasmodium falciparum sporozoite (PfSPZ) vaccine is under development, in part, based on studies in mice with P. berghei. We used P. berghei and P. yoelii to study vaccine-induced protection against challenge with a species of parasite different from the immunizing parasite in BALB/c mice. One-hundred percent of mice were protected against homologous challenge. Seventy-nine percent immunized with attenuated P. berghei sporozoite (PbSPZ) (six experiments) were protected against challenge with P. yoelii sporozoite (PySPZ), and 63% immunized with attenuated PySPZ (three experiments) were protected against challenge with PbSPZ. Antibodies in sera of immunized mice only recognized homologous sporozoites and could not have mediated protection against heterologous challenge. Immunization with attenuated PySPZ or PbSPZ induced CD8+ T cell-dependent protection against heterologous challenge. Immunization with attenuated PySPZ induced CD8+ T cell-dependent protection against homologous challenge. However, homologous protection induced by attenuated PbSPZ was not dependent on CD8+ or CD4+ T cells, and depletion of both populations only reduced protection by 36%. Immunization of C57BL/10 mice with PbSPZ induced CD8+ T cell-dependent protection against P. berghei, but no protection against P. yoelii. The cross-protection data in BALB/c mice support testing a human vaccine based on attenuated PfSPZ for its efficacy against P. vivax.


Deciphering the targets of retroviral protease inhibitors in Plasmodium berghei.

  • Noah Machuki Onchieku‎ et al.
  • PloS one‎
  • 2018‎

Retroviral protease inhibitors (RPIs) such as lopinavir (LP) and saquinavir (SQ) are active against Plasmodium parasites. However, the exact molecular target(s) for these RPIs in the Plasmodium parasites remains poorly understood. We hypothesised that LP and SQ suppress parasite growth through inhibition of aspartyl proteases. Using reverse genetics approach, we embarked on separately generating knockout (KO) parasite lines lacking Plasmepsin 4 (PM4), PM7, PM8, or DNA damage-inducible protein 1 (Ddi1) in the rodent malaria parasite Plasmodium berghei ANKA. We then tested the suppressive profiles of the LP/Ritonavir (LP/RT) and SQ/RT as well as antimalarials; Amodiaquine (AQ) and Piperaquine (PQ) against the KO parasites in the standard 4-day suppressive test. The Ddi1 gene proved refractory to deletion suggesting that the gene is essential for the growth of the asexual blood stage parasites. Our results revealed that deletion of PM4 significantly reduces normal parasite growth rate phenotype (P = 0.003). Unlike PM4_KO parasites which were less susceptible to LP and SQ (P = 0.036, P = 0.030), the suppressive profiles for PM7_KO and PM8_KO parasites were comparable to those for the WT parasites. This finding suggests a potential role of PM4 in the LP and SQ action. On further analysis, modelling and molecular docking studies revealed that both LP and SQ displayed high binding affinities (-6.3 kcal/mol to -10.3 kcal/mol) towards the Plasmodium aspartyl proteases. We concluded that PM4 plays a vital role in assuring asexual stage parasite fitness and might be mediating LP and SQ action. The essential nature of the Ddi1 gene warrants further studies to evaluate its role in the parasite asexual blood stage growth as well as a possible target for the RPIs.


Cytotoxicity and Anti-Plasmodium berghei Activity of Emodin Loaded Nanoemulsion.

  • Fatemeh Bayat‎ et al.
  • Iranian journal of parasitology‎
  • 2022‎

Malaria parasites cause a tremendous burden of disease in both the tropics and subtropics areas. Growing of drugs resistance in parasites is one of the most threats to malaria control. The aim of study was to investigate the anti-malarial activity of nano-emodin isolated from Rhamnus cathartica on Plasmodium berghei in mice to evaluate parasites inhibition rate using in-vivo test.


Dexamethasone increased the survival rate in Plasmodium berghei-infected mice.

  • Danilo Reymão Moreira‎ et al.
  • Scientific reports‎
  • 2021‎

The present study aimed to evaluate the effects of dexamethasone on the redox status, parasitemia evolution, and survival rate of Plasmodium berghei-infected mice. Two-hundred and twenty-five mice were infected with Plasmodium berghei and subjected to stimulation or inhibition of NO synthesis. The stimulation of NO synthesis was performed through the administration of L-arginine, while its inhibition was made by the administration of dexamethasone. Inducible NO synthase (iNOS) inhibition by dexamethasone promoted an increase in the survival rate of P. berghei-infected mice, and the data suggested the participation of oxidative stress in the brain as a result of plasmodial infection, as well as the inhibition of brain NO synthesis, which promoted the survival rate of almost 90% of the animals until the 15th day of infection, with possible direct interference of ischemia and reperfusion syndrome, as seen by increased levels of uric acid. Inhibition of brain iNOS by dexamethasone caused a decrease in parasitemia and increased the survival rate of infected animals, suggesting that NO synthesis may stimulate a series of compensatory redox effects that, if overstimulated, may be responsible for the onset of severe forms of malaria.


Trichinella spiralis co-infection exacerbates Plasmodium berghei malaria-induced hepatopathy.

  • Xu Mei‎ et al.
  • Parasites & vectors‎
  • 2020‎

Although Plasmodium parasites and intestinal helminths share common endemic areas, the mechanisms of these co-infections on the host immune response remain not fully understood. Liver involvement in severe Plasmodium falciparum infections is a significant cause of morbidity and mortality. However, the effect of pre-existing Trichinella spiralis infection on the immune response and liver immune-pathogenesis in P. berghei ANKA (PbANKA)-infected mice needs to be elucidated.


Characterization of the merozoite surface protein 4/5 gene of Plasmodium berghei and Plasmodium yoelii.

  • L Kedzierski‎ et al.
  • Molecular and biochemical parasitology‎
  • 2000‎

The genes encoding merozoite surface protein 4/5 (MSP4/5) from Plasmodium berghei and Plasmodium yoelii have been cloned and completely sequenced. Comparisons of the predicted protein sequences with those of Plasmodium chabaudi MSP4/5 and Plasmodium falciparum MSP4 and MSP5 show general structural similarities. All predicted proteins contain hydrophobic signal sequences, potential GPI attachment sequences and a single epidermal growth factor (EGF)-like domain at the C-terminus. The amino acid sequence of the EGF-like motif is highly conserved in rodent malaria species and also shows a considerable degree of similarity with the EGF-like domains found in the P. falciparum proteins. Both the P. yoelii and P. berghei genes show evidence of both spliced and unspliced mRNA at steady state. This phenomenon is similar to that seen for the P. chabaudi MSP4/5 gene, and is believed to be involved in regulation of protein expression. We describe here the construction of clones expressing full length recombinant protein. Antibodies directed against recombinant MSP4/5 proteins recognize a single polypeptide on parasite material and show crossreactivity between MSP4/5 from different murine malaria species, but do not crossreact with either MSP4 or MSP5 from P. falciparum. The various antisera show reactivity against reduction sensitive epitopes as well as reduction insensitive epitopes.


Functional evaluation of Plasmodium export signals in Plasmodium berghei suggests multiple modes of protein export.

  • Puran Singh Sijwali‎ et al.
  • PloS one‎
  • 2010‎

The erythrocytic stage development of malaria parasites occurs within the parasitophorous vacuole inside the infected-erythrocytes, and requires transport of several parasite-encoded proteins across the parasitophorous vacuole to several locations, including the cytosol and membrane of the infected cell. These proteins are called exported proteins; and a large number of such proteins have been predicted for Plasmodium falciparum based on the presence of an N-terminal motif known as the Plasmodium export element (PEXEL) or vacuolar transport signal (VTS), which has been shown to mediate export. The majority of exported proteins contain one or more transmembrane domains at the C-terminus and one of three types of N-terminus domain architectures. (1) The majority, including the knob-associated histidine rich protein (KAHRP), contain a signal/hydrophobic sequence preceding the PEXEL/VTS motif. (2) Other exported proteins, including the P. berghei variant antigen family bir and the P. falciparum skeleton binding protein-1, do not appear to contain a PEXEL/VTS motif. (3) The P. falciparum erythrocyte membrane protein-1 (PfEMP1) family lacks a signal/hydrophobic sequence before the motif. These different domain architectures suggest the presence of multiple export pathways in malaria parasites. To determine if export pathways are conserved in plasmodia and to develop an experimental system for studying these processes, we investigated export of GFP fused with N- and C-terminus putative export domains in the rodent malaria parasite P. berghei. Export was dependent on specific N- and C-terminal domains. Constructs with a KAHRP-like or bir N-terminus, but not the PfEMP1 N-terminus, exported GFP into the erythrocyte. The C-terminus of a P. falciparum variant antigen rifin prevented GFP export by the KAHRP-like N-terminus. In contrast, GFP chimeras containing KAHRP-like N-termini and the PfEMP1 C-terminus were exported to the surface of erythrocytes. Taken together, these results suggest that proteins with KAHRP-like architecture follow a common export pathway, but that PfEMP1s utilize an alternative pathway. Functional validation of common putative export domains of malaria parasites in P. berghei provides an alternative and simpler system to investigate export mechanisms.


Glucose transporter GLUT1 influences Plasmodium berghei infection in Anopheles stephensi.

  • Mengfei Wang‎ et al.
  • Parasites & vectors‎
  • 2020‎

Sugar-feeding provides energy for mosquitoes. Facilitated glucose transporters (GLUTs) are responsible for the uptake of glucose in animals. However, knowledge of GLUTs function in Anopheles spp. is limited.


A Plasmodium berghei sporozoite-based vaccination platform against human malaria.

  • António M Mendes‎ et al.
  • NPJ vaccines‎
  • 2018‎

There is a pressing need for safe and highly effective Plasmodium falciparum (Pf) malaria vaccines. The circumsporozoite protein (CS), expressed on sporozoites and during early hepatic stages, is a leading target vaccine candidate, but clinical efficacy has been modest so far. Conversely, whole-sporozoite (WSp) vaccines have consistently shown high levels of sterilizing immunity and constitute a promising approach to effective immunization against malaria. Here, we describe a novel WSp malaria vaccine that employs transgenic sporozoites of rodent P. berghei (Pb) parasites as cross-species immunizing agents and as platforms for expression and delivery of PfCS (PbVac). We show that both wild-type Pb and PbVac sporozoites unabatedly infect and develop in human hepatocytes while unable to establish an infection in human red blood cells. In a rabbit model, similarly susceptible to Pb hepatic but not blood infection, we show that PbVac elicits cross-species cellular immune responses, as well as PfCS-specific antibodies that efficiently inhibit Pf sporozoite liver invasion in human hepatocytes and in mice with humanized livers. Thus, PbVac is safe and induces functional immune responses in preclinical studies, warranting clinical testing and development.


Intravital observation of Plasmodium berghei sporozoite infection of the liver.

  • Ute Frevert‎ et al.
  • PLoS biology‎
  • 2005‎

Plasmodium sporozoite invasion of liver cells has been an extremely elusive event to study. In the prevailing model, sporozoites enter the liver by passing through Kupffer cells, but this model was based solely on incidental observations in fixed specimens and on biochemical and physiological data. To obtain direct information on the dynamics of sporozoite infection of the liver, we infected live mice with red or green fluorescent Plasmodium berghei sporozoites and monitored their behavior using intravital microscopy. Digital recordings show that sporozoites entering a liver lobule abruptly adhere to the sinusoidal cell layer, suggesting a high-affinity interaction. They glide along the sinusoid, with or against the bloodstream, to a Kupffer cell, and, by slowly pushing through a constriction, traverse across the space of Disse. Once inside the liver parenchyma, sporozoites move rapidly for many minutes, traversing several hepatocytes, until ultimately settling within a final one. Migration damage to hepatocytes was confirmed in liver sections, revealing clusters of necrotic hepatocytes adjacent to structurally intact, sporozoite-infected hepatocytes, and by elevated serum alanine aminotransferase activity. In summary, malaria sporozoites bind tightly to the sinusoidal cell layer, cross Kupffer cells, and leave behind a trail of dead hepatocytes when migrating to their final destination in the liver.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: