Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 254 papers

Poly(ADP-Ribose) Polymerase-3 Regulates Regeneration in Planarians.

  • Paul G Barghouth‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Protein ADP-ribosylation is a reversible post-translational modification (PTM) process that plays fundamental roles in cell signaling. The covalent attachment of ADP ribose polymers is executed by PAR polymerases (PARP) and it is essential for chromatin organization, DNA repair, cell cycle, transcription, and replication, among other critical cellular events. The process of PARylation or polyADP-ribosylation is dynamic and takes place across many tissues undergoing renewal and repair, but the molecular mechanisms regulating this PTM remain mostly unknown. Here, we introduce the use of the planarian Schmidtea mediterranea as a tractable model to study PARylation in the complexity of the adult body that is under constant renewal and is capable of regenerating damaged tissues. We identified the evolutionary conservation of PARP signaling that is expressed in planarian stem cells and differentiated tissues. We also demonstrate that Smed-PARP-3 homolog is required for proper regeneration of tissues in the anterior region of the animal. Furthermore, our results demonstrate, Smed-PARP-3(RNAi) disrupts the timely location of injury-induced cell death near the anterior facing wounds and also affects the regeneration of the central nervous system. Our work reveals novel roles for PARylation in large-scale regeneration and provides a simplified platform to investigate PARP signaling in the complexity of the adult body.


tec-1 kinase negatively regulates regenerative neurogenesis in planarians.

  • Alexander Karge‎ et al.
  • eLife‎
  • 2020‎

Negative regulators of adult neurogenesis are of particular interest as targets to enhance neuronal repair, but few have yet been identified. Planarians can regenerate their entire CNS using pluripotent adult stem cells, and this process is robustly regulated to ensure that new neurons are produced in proper abundance. Using a high-throughput pipeline to quantify brain chemosensory neurons, we identify the conserved tyrosine kinase tec-1 as a negative regulator of planarian neuronal regeneration. tec-1RNAi increased the abundance of several CNS and PNS neuron subtypes regenerated or maintained through homeostasis, without affecting body patterning or non-neural cells. Experiments using TUNEL, BrdU, progenitor labeling, and stem cell elimination during regeneration indicate tec-1 limits the survival of newly differentiated neurons. In vertebrates, the Tec kinase family has been studied extensively for roles in immune function, and our results identify a novel role for tec-1 as negative regulator of planarian adult neurogenesis.


Injury Delays Stem Cell Apoptosis after Radiation in Planarians.

  • Divya A Shiroor‎ et al.
  • Current biology : CB‎
  • 2020‎

Stem cells are continuously exposed to multiple stresses, including radiation and tissue injury. As central drivers of tissue repair and regeneration, it is necessary to understand how their behavior is influenced by these stressors. Planarians have an abundant population of stem cells that are rapidly eliminated after radiation exposure via apoptosis. Low doses of radiation eliminate the majority of these stem cells, allowing a few to remain [1]. Here, we combine radiation with injury to define how stem cells respond to tissue damage. We find that a variety of injuries induced within a defined window of time surrounding radiation cause stem cells to outlast those in uninjured animals. Injury stimulates localized cell death adjacent to wounds [2], in the same regions where stem cells persist. This persistence occurs in the absence of proliferation. Instead, stem cells are retained near the wound due to delayed apoptosis, which we quantify by combining fluorescence-activated cell sorting (FACS) with annexin V staining. Pharmacological inhibition of the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase (ERK) prevents stem cell persistence after injury, implicating wound-induced ERK activity in this response. By combining radiation with injury, our work reveals a novel connection between dying cells and stem cells that remain. Furthermore, the ability to induce stem cell persistence after radiation provides a paradigm to study mechanisms that may contribute to unanticipated consequences of injury, such as tumorigenesis.


Efficient depletion of ribosomal RNA for RNA sequencing in planarians.

  • Iana V Kim‎ et al.
  • BMC genomics‎
  • 2019‎

The astounding regenerative abilities of planarian flatworms prompt steadily growing interest in examining their molecular foundation. Planarian regeneration was found to require hundreds of genes and is hence a complex process. Thus, RNA interference followed by transcriptome-wide gene expression analysis by RNA-seq is a popular technique to study the impact of any particular planarian gene on regeneration. Typically, the removal of ribosomal RNA (rRNA) is the first step of all RNA-seq library preparation protocols. To date, rRNA removal in planarians was primarily achieved by the enrichment of polyadenylated (poly(A)) transcripts. However, to better reflect transcriptome dynamics and to cover also non-poly(A) transcripts, a procedure for the targeted removal of rRNA in planarians is needed.


The pharyngeal nervous system orchestrates feeding behavior in planarians.

  • Mai Miyamoto‎ et al.
  • Science advances‎
  • 2020‎

Planarians exhibit traits of cephalization but are unique among bilaterians in that they ingest food by means of goal-directed movements of a trunk-positioned pharynx, following protrusion of the pharynx out of the body, raising the question of how planarians control such a complex set of body movements for achieving robust feeding. Here, we use the freshwater planarian Dugesia japonica to show that an isolated pharynx amputated from the planarian body self-directedly executes its entire sequence of feeding functions: food sensing, approach, decisions about ingestion, and intake. Gene-specific silencing experiments by RNA interference demonstrated that the pharyngeal nervous system (PhNS) is required not only for feeding functions of the pharynx itself but also for food-localization movements of individual animals, presumably via communication with the brain. These findings reveal an unexpected central role of the PhNS in the linkage between unique morphological phenotypes and feeding behavior in planarians.


A low percent ethanol method for immobilizing planarians.

  • Claire G Stevenson‎ et al.
  • PloS one‎
  • 2010‎

Planarians have recently become a popular model system for the study of adult stem cells, regeneration and polarity. The system is attractive for both undergraduate and graduate research labs, since planarian colonies are low cost and easy to maintain. Also in situ hybridization, immunofluorescence and RNA-interference (RNAi) gene knockdown techniques have been developed for planarian studies. However, imaging of live worms (particularly at high magnifications) is difficult because animals are strongly photophobic; they quickly move away from light sources and out of frame. The current methods available to inhibit movement in planarians include RNAi injection and exposure to cold temperatures. The former is labor and time intensive, while the latter precludes the use of many fluorescent reporter dyes. Here, we report a simple, inexpensive and reversible method to immobilize planarians for live imaging. Our data show that a short 1 hour treatment with 3% ethanol (EtOH) is sufficient to inhibit both the fine and gross movements of Schmidtea mediterranea planarians, of the typical size used (4-6 mm), with full recovery of movement within 3-4 hours. Importantly, EtOH treatment did not interfere with regeneration, even after repeated exposure, nor lyse epithelial cells (as assayed by H&E staining). We demonstrate that a short exposure to a low concentration of EtOH is a quick and effective method of immobilizing planarians, one that is easily adaptable to planarians of all sizes and will increase the accessibility of live imaging assays to planarian researchers.


On-chip immobilization of planarians for in vivo imaging.

  • Joseph P Dexter‎ et al.
  • Scientific reports‎
  • 2014‎

Planarians are an important model organism for regeneration and stem cell research. A complete understanding of stem cell and regeneration dynamics in these animals requires time-lapse imaging in vivo, which has been difficult to achieve due to a lack of tissue-specific markers and the strong negative phototaxis of planarians. We have developed the Planarian Immobilization Chip (PIC) for rapid, stable immobilization of planarians for in vivo imaging without injury or biochemical alteration. The chip is easy and inexpensive to fabricate, and worms can be mounted for and removed after imaging within minutes. We show that the PIC enables significantly higher-stability immobilization than can be achieved with standard techniques, allowing for imaging of planarians at sub-cellular resolution in vivo using brightfield and fluorescence microscopy. We validate the performance of the PIC by performing time-lapse imaging of planarian wound closure and sequential imaging over days of head regeneration. We further show that the device can be used to immobilize Hydra, another photophobic regenerative model organism. The simple fabrication, low cost, ease of use, and enhanced specimen stability of the PIC should enable its broad application to in vivo studies of stem cell and regeneration dynamics in planarians and Hydra.


The NuRD complex component p66 suppresses photoreceptor neuron regeneration in planarians.

  • Constanza Vásquez-Doorman‎ et al.
  • Regeneration (Oxford, England)‎
  • 2016‎

Regeneration involves precise control of cell fate to produce an appropriate complement of tissues formed within a blastema. Several chromatin-modifying complexes have been identified as required for regeneration in planarians, but it is unclear whether this class of molecules uniformly promotes the production of differentiated cells. We identify a function for p66, encoding a DNA-binding protein component of the NuRD (nucleosome remodeling and deacetylase) complex, as well as the chromodomain helicase chd4, in suppressing production of photoreceptor neurons (PRNs) in planarians. This suppressive effect appeared restricted to PRNs because p66 inhibition did not influence numbers of eye pigment cup cells (PCCs) and decreased numbers of brain neurons and epidermal progenitors. PRNs from p66(RNAi) animals differentiated with some abnormalities but nonetheless produced arrestin+ projections to the brain. p66 inhibition produced excess ovo+otxA+ PRN progenitors without affecting numbers of ovo+otxA- PCC progenitors, and ovo and otxA were each required for the p66(RNAi) excess PRN phenotype. Together these results suggest that p66 acts through the NuRD complex to suppress PRN production by limiting expression of lineage-specific transcription factors.


Enzymatic decontamination of paraoxon-ethyl limits long-term effects in planarians.

  • Laetitia Poirier‎ et al.
  • Scientific reports‎
  • 2020‎

Organophosphorus compounds (OP) are highly toxic molecules used as insecticides that inhibit cholinesterase enzymes involved in neuronal transmission. The intensive use of OP for vector control and agriculture has led to environmental pollutions responsible for severe intoxications and putative long-term effects on humans and wild animals. Many in vivo models were studied over the years to assess OP acute toxicity, but the long-term effects are poorly documented. Planarian, a freshwater flatworm having a cholinergic system, has emerged as a new original model for addressing both toxicity and developmental perturbations. We used Schmidtea mediterranea planarians to evaluate long-term effects of paraoxon-ethyl at two sublethal concentrations over three generations. Toxicity, developmental perturbations and disruption of behavior were rapidly observed and higher sensitivity to paraoxon-ethyl of next generations was noticed suggesting that low insecticide doses can induce transgenerational effects. With the view of limiting OP poisoning, SsoPox, an hyperthermostable enzyme issued from the archaea Saccharolobus solfataricus, was used to degrade paraoxon-ethyl prior to planarian exposure. The degradation products, although not lethal to the worms, were found to decrease cholinesterase activities for the last generation of planarians and to induce abnormalities albeit in lower proportion than insecticides.


Measuring protein levels in planarians using western blotting.

  • Benjamin Ziman‎ et al.
  • STAR protocols‎
  • 2021‎

In the planarian field, two techniques are mostly used for protein detection: immunohistochemistry (IHC) and western blotting. While IHC is great for visualizing the spatial distribution of proteins in whole organisms, it has limitations in antibody availability and issues related to nonspecific expression. The use of western blotting can circumvent nonspecific expression, providing a dependable way to quantify proteins of interest. Here, we present a standardized, easily reproducible protocol with details on protein extractions of whole planarians and western blotting. For complete details on the use and execution of this protocol, please refer to Ziman et al. (2020a).


Planarians recruit piRNAs for mRNA turnover in adult stem cells.

  • Iana V Kim‎ et al.
  • Genes & development‎
  • 2019‎

PIWI proteins utilize small RNAs called piRNAs to silence transposable elements, thereby protecting germline integrity. In planarian flatworms, PIWI proteins are essential for regeneration, which requires adult stem cells termed neoblasts. Here, we characterize planarian piRNAs and examine the roles of PIWI proteins in neoblast biology. We find that the planarian PIWI proteins SMEDWI-2 and SMEDWI-3 cooperate to degrade active transposons via the ping-pong cycle. Unexpectedly, we discover that SMEDWI-3 plays an additional role in planarian mRNA surveillance. While SMEDWI-3 degrades numerous neoblast mRNAs in a homotypic ping-pong cycle, it is also guided to another subset of neoblast mRNAs by antisense piRNAs and binds these without degrading them. Mechanistically, the distinct activities of SMEDWI-3 are primarily dictated by the degree of complementarity between target mRNAs and antisense piRNAs. Thus, PIWI proteins enable planarians to repurpose piRNAs for potentially critical roles in neoblast mRNA turnover.


Yorkie is required to restrict the injury responses in planarians.

  • Alexander Y T Lin‎ et al.
  • PLoS genetics‎
  • 2017‎

Regeneration requires the precise integration of cues that initiate proliferation, direct differentiation, and ultimately re-pattern tissues to the proper size and scale. Yet how these processes are integrated with wounding responses remains relatively unknown. The freshwater planarian, Schmidtea mediterranea, is an ideal model to study the stereotyped proliferative and transcriptional responses to injury due to its high capacity for regeneration. Here, we characterize the effector of the Hippo signalling cascade, yorkie, during planarian regeneration and its role in restricting early injury responses. In yki(RNAi) regenerating animals, wound responses are hyper-activated such that both stem cell proliferation and the transcriptional wound response program are heighted and prolonged. Using this observation, we also uncovered novel wound-induced genes by RNAseq that were de-repressed in yki(RNAi) animals compared with controls. Additionally, we show that yki(RNAi) animals have expanded epidermal and muscle cell populations, which we hypothesize are the increased sources of wound-induced genes. Finally, we show that in yki(RNAi) animals, the sensing of the size of an injury by eyes or the pharynx is not appropriate, and the brain, gut, and midline cannot remodel or scale correctly to the size of the regenerating fragment. Taken together, our results suggest that yki functions as a key molecule that can integrate multiple aspects of the injury response including proliferation, apoptosis, injury-induced transcription, and patterning.


A Bruno-like gene is required for stem cell maintenance in planarians.

  • Tingxia Guo‎ et al.
  • Developmental cell‎
  • 2006‎

The regenerative abilities of freshwater planarians are based on neoblasts, stem cells maintained throughout the animal's life. We show that a member of the Bruno-like family of RNA binding proteins is critical for regulating neoblasts in the planarian Schmidtea mediterranea. Smed-bruno-like (bruli) mRNA and protein are expressed in neoblasts and the central nervous system. Following bruli RNAi, which eliminates detectable Bruli protein, planarians initiate the proliferative response to amputation and form small blastemas but then undergo tissue regression and lysis. We characterize the neoblast population by using antibodies recognizing SMEDWI-1 and Histone H4 (monomethyl-K20) and cell-cycle markers to label subsets of neoblasts and their progeny. bruli knockdown results in a dramatic reduction/elimination of neoblasts. Our analyses indicate that neoblasts lacking Bruli can respond to wound stimuli and generate progeny that can form blastemas and differentiate; yet, they are unable to self-renew. These results suggest that Bruli is required for stem cell maintenance.


The use of lectins as markers for differentiated secretory cells in planarians.

  • Ricardo M Zayas‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2010‎

Freshwater planarians have reemerged as excellent models to investigate mechanisms underlying regeneration. The introduction of molecular tools has facilitated the study of planarians, but cell- and tissue-specific markers are still needed to examine differentiation of most cell types. Here we report the utility of fluorescent lectin-conjugates to label tissues in the planarian Schmidtea mediterranea. We show that 16 lectin-conjugates stain planarian cells or tissues; 13 primarily label the secretory cells, their cytoplasmic projections, and terminal pores. Thus, we examined regeneration of the secretory system using lectin markers and functionally characterized two genes expressed in the secretory cells: marginal adhesive gland-1 (mag-1) and Smed-reticulocalbin1 (Smed-rcn1). RNAi knockdown of these genes caused a dramatic reduction of secretory cell lectin staining, suggesting a role for mag-1 and Smed-rcn1 in secretory cell differentiation. Our results provide new insights into planarian secretory system regeneration and add new markers for labeling several planarian tissues.


Novel monoclonal antibodies to study tissue regeneration in planarians.

  • Kelly G Ross‎ et al.
  • BMC developmental biology‎
  • 2015‎

Planarians are an attractive model organism for studying stem cell-based regeneration due to their ability to replace all of their tissues from a population of adult stem cells. The molecular toolkit for planarian studies currently includes the ability to study gene function using RNA interference (RNAi) and observe gene expression via in situ hybridizations. However, there are few antibodies available to visualize protein expression, which would greatly enhance analysis of RNAi experiments as well as allow further characterization of planarian cell populations using immunocytochemistry and other immunological techniques. Thus, additional, easy-to-use, and widely available monoclonal antibodies would be advantageous to study regeneration in planarians.


Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians.

  • Marta Iglesias‎ et al.
  • Development (Cambridge, England)‎
  • 2008‎

Little is known about the molecular mechanisms responsible for axis establishment during non-embryonic processes such as regeneration and homeostasis. To address this issue, we set out to analyze the role of the canonical Wnt pathway in planarians, flatworms renowned for their extraordinary morphological plasticity. Canonical Wnt signalling is an evolutionarily conserved mechanism to confer polarity during embryonic development, specifying the anteroposterior (AP) axis in most bilaterians and the dorsoventral (DV) axis in early vertebrate embryos. beta-Catenin is a key element in this pathway, although it is a bifunctional protein that is also involved in cell-cell adhesion. Here, we report the characterization of two beta-catenin homologs from Schmidtea mediterranea (Smed-betacatenin1/2). Loss of function of Smed-betacatenin1, but not Smed-betacatenin2, in both regenerating and intact planarians, generates radial-like hypercephalized planarians in which the AP axis disappears but the DV axis remains unaffected, representing a unique example of a striking body symmetry transformation. The radial-like hypercephalized phenotype demonstrates the requirement for Smed-betacatenin1 in AP axis re-establishment and maintenance, and supports a conserved role for canonical Wnt signalling in AP axis specification, whereas the role of beta-catenin in DV axis establishment would be a vertebrate innovation. When considered alongside the protein domains present in each S. mediterranea beta-catenin and the results of functional assays in Xenopus embryos demonstrating nuclear accumulation and axis induction with Smed-betacatenin1, but not Smed-betacatenin2, these data suggest that S. mediterranea beta-catenins could be functionally specialized and that only Smed-betacatenin1 is involved in Wnt signalling.


Astacin gene family of metalloproteinases in planarians: Structural organization and tissue distribution.

  • Maria Emilia Isolani‎ et al.
  • Gene expression patterns : GEP‎
  • 2018‎

Planarian flatworms possess extraordinary regenerative capability and body plasticity, which rely on a composite population of stem cells, the neoblasts. Despite impressive advances have been recently achieved in the knowledge of neoblast biology, few is still known about factors that are released by differentiated tissues and influence the neoblast fate. Extracellular matrix (ECM) is a fundamental component of the stem cell niche and its remodeling affects stem cell fate. Here we provide the characterization of the astacin gene family of metalloproteinases in planarians, good candidate enzymes for generating dynamicity in the ECM. Ten and eighteen astacin isoforms were identified in the planarian species Schmidtea mediterranea and Dugesia japonica, respectively. Besides the already characterized Smedolloid, in Schmidtea mediterranea are present eight astacins with a minimal structure (a signal peptide, an activation domain and a Zn-binding catalytic domain), that are colocalized in large cells organized in a peculiar, not yet morphologically characterized, two-ring-shaped structure located in the middle of the body. A single astacin, characterized by a ShK toxin domain in its C-terminal region, has been found to be produced in gastrodermal cells.


Noggin and noggin-like genes control dorsoventral axis regeneration in planarians.

  • M Dolores Molina‎ et al.
  • Current biology : CB‎
  • 2011‎

Planarians regenerate a whole animal from a small body piece within a few days. Recent studies have shown that the bone morphogenetic protein (BMP) pathway is required to reestablish the dorsoventral (DV) axis. In vertebrates, the specification of the DV axis depends on the coordinated action of a dual organizer defined by BMP and antidorsalizing morphogenetic protein (ADMP) under the control of several factors, including the inhibitors chordin and noggin. Planarians have an expanded noggin family (up to ten members), which have been classified as canonical noggin (nog) and noggin-like (nlg) genes, the latter carrying an insertion within the noggin domain. Here we show that a BMP/ADMP organizer governs DV axis reestablishment during planarian regeneration, highlighting a greater-than-thought conservation of the mechanisms that establish this axis in protostomes and deuterostomes. Also, we report that whereas noggin genes function as canonical BMP inhibitors, the silencing of planarian nlg8 induces ectopic neurogenesis and enhances ventralizing bmp(RNAi) phenotypes. Finally, we show that noggin-like genes are conserved from cnidarian to vertebrates and that both planarian nlg8 and Xenopus nlg ventralize Xenopus embryos when overexpressed. Remarkably, this ventralization is not associated with an increase in SMAD1/5/8 phosphorylation.


teashirt is required for head-versus-tail regeneration polarity in planarians.

  • Jared H Owen‎ et al.
  • Development (Cambridge, England)‎
  • 2015‎

Regeneration requires that the identities of new cells are properly specified to replace missing tissues. The Wnt signaling pathway serves a central role in specifying posterior cell fates during planarian regeneration. We identified a gene encoding a homolog of the Teashirt family of zinc-finger proteins in the planarian Schmidtea mediterranea to be a target of Wnt signaling in intact animals and at posterior-facing wounds. Inhibition of Smed-teashirt (teashirt) by RNA interference (RNAi) resulted in the regeneration of heads in place of tails, a phenotype previously observed with RNAi of the Wnt pathway genes β-catenin-1, wnt1, Dvl-1/2 or wntless. teashirt was required for β-catenin-1-dependent activation of posterior genes during regeneration. These findings identify teashirt as a transcriptional target of Wnt signaling required for Wnt-mediated specification of posterior blastemas.


Outstanding intraindividual genetic diversity in fissiparous planarians (Dugesia, Platyhelminthes) with facultative sex.

  • Laia Leria‎ et al.
  • BMC evolutionary biology‎
  • 2019‎

Predicted genetic consequences of asexuality include high intraindividual genetic diversity (i.e., the Meselson effect) and accumulation of deleterious mutations (i.e., Muller's Ratchet), among others. These consequences have been largely studied in parthenogenetic organisms, but studies on fissiparous species are scarce. Differing from parthenogens, fissiparous organisms inherit part of the soma of the progenitor, including somatic mutations. Thus, in the long term, fissiparous reproduction may also result in genetic mosaicism, besides the presence of the Meselson effect and Muller's Ratchet. Dugesiidae planarians show outstanding regeneration capabilities, allowing them to naturally reproduce by fission, either strictly or combined with sex (facultative). Therefore, they are an ideal model to analyze the genetic footprint of fissiparous reproduction, both when it is alternated with sex and when it is the only mode of reproduction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: