Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 493 papers

Lvrn expression is not critical for mouse placentation.

  • Tomohiro Tobita‎ et al.
  • The Journal of reproduction and development‎
  • 2019‎

Preeclampsia is a systemic disease caused by abnormal placentation that affects both mother and fetus. It was reported that Laeverin (LVRN, also known as Aminopeptidase Q) was up-regulated in the placenta of preeclamptic patients. However, physiological and pathological functions of LVRN remained to be unknown. Here we characterized Lvrn function during placentation in mice. RT-PCR showed that Lvrn is expressed in both fetus and placenta during embryogenesis, and several adult tissues. When we overexpressed Lvrn in a placenta-specific manner using lentiviral vectors, we did not see any defects in both placentae and fetuses. The mice carrying Lvrn overexpressing placentas did not show any preeclampsia-like symptoms such as maternal high blood pressure and fetal growth restriction. We next ablated Lvrn by CRISPR/Cas9-mediated genome editing to see physiological function. In Lvrn ablated mice, maternal blood pressure during pregnancy was not affected, and both placentas and fetuses grew normally. Collectively, these results suggest that, LVRN is irrelevant to preeclampsia and dispensable for normal placentation and embryonic development in mice.


Sources for comparative studies of placentation I. embryological collections.

  • A M Carter‎
  • Placenta‎
  • 2008‎

A rich source of material for comparative studies of the placenta is the collections made by pioneers in the field such as H.W. Mossman, A.A.W. Hubrecht and J.P. Hill. This overview gives a brief description of collections known to be available and information on how each can be accessed. Included are some of the major series of human and animal embryos, such as the Boyd and Carnegie collections, as these also house placental material.


How does variability of immune system genes affect placentation?

  • F Colucci‎ et al.
  • Placenta‎
  • 2011‎

Formation of the placenta is a crucial step in mammalian pregnancy. Apart from its function in ensuring an optimal supply of nutrients and oxygen to the fetus, the placenta is also the interface at which allo-recognition of invading trophoblast cells by the maternal immune system can potentially occur. We summarise here the "state of the art" on how variability of immune system genes that code for major histocompatibility complex (MHC) molecules and natural killer receptors (NKR) may impact on human placentation. MHC and NKR are the most polymorphic human genes. Our recent reports point out that specific combinations of fetal MHC and maternal NKR genes in humans correlate with the risk of pre-eclampsia, recurrent miscarriage (RM) and fetal growth restriction (FGR). Research in this field is still at an early stage and future studies in mouse and humans will be needed before the results can be translated to clinical applications. We discuss our recent work, as well as the opportunities offered by mouse genetics, to understand the cellular and molecular mechanisms underlying immune interactions at the maternal-fetal interface.


Molecular conservation of marsupial and eutherian placentation and lactation.

  • Michael W Guernsey‎ et al.
  • eLife‎
  • 2017‎

Eutherians are often mistakenly termed 'placental mammals', but marsupials also have a placenta to mediate early embryonic development. Lactation is necessary for both infant and fetal development in eutherians and marsupials, although marsupials have a far more complex milk repertoire that facilitates morphogenesis of developmentally immature young. In this study, we demonstrate that the anatomically simple tammar placenta expresses a dynamic molecular program that is reminiscent of eutherian placentation, including both fetal and maternal signals. Further, we provide evidence that genes facilitating fetal development and nutrient transport display convergent co-option by placental and mammary gland cell types to optimize offspring success.


Dynamic maternal and fetal Notch activity and expression in placentation.

  • Heather I Levin‎ et al.
  • Placenta‎
  • 2017‎

Murine placentation requires trophoblast Notch2, while the Notch ligand, JAGGED1, is reduced in invasive trophoblasts from women with preeclampsia. However, the placental cells with active Notch signaling and expression of other Notch proteins and ligands in placentation have yet to be defined. We sought to identify endothelial cell and trophoblast subtypes with canonical Notch signaling in the decidua and placenta and correlate this to expression of Notch proteins and ligands.


A differentiation roadmap of murine placentation at single-cell resolution.

  • Xiangxiang Jiang‎ et al.
  • Cell discovery‎
  • 2023‎

The placenta is one of the most important yet least understood organs. Due to the limitations of conventional research approaches, we are still far from a comprehensive understanding of mouse placentation, especially regarding the differentiation of trophoblast lineages at the early developmental stage. To decipher cell compositions and developmental processes, we systematically profile the single-cell transcriptomes of trophoblast cells from extraembryonic tissues (embryonic day 7.5 (E7.5) and E8.5) and placentae (E9.5-E14.5) at one-day intervals. We identify distinct trophoblast cell types during mouse placentation, including unreported progenitor cells and intermediate precursor cells. An updated differentiation roadmap of mouse trophoblast lineages is presented following systematic transcriptome analyses. Based on transcriptomic regulatory network inference, we specify transcription factors responsible for the regulation of dynamic developmental processes during lineage diversification. We map lineage differentiation trajectories and find that sinusoid trophoblast giant cells arise from the subpopulation of ectoplacental cone cells. We provide a comprehensive single-cell data resource to shed light on future mechanistic studies of the gene regulatory networks governing hemochorial placentation.


Elephant transcriptome provides insights into the evolution of eutherian placentation.

  • Zhuo-Cheng Hou‎ et al.
  • Genome biology and evolution‎
  • 2012‎

The chorioallantoic placenta connects mother and fetus in eutherian pregnancies. In order to understand the evolution of the placenta and provide further understanding of placenta biology, we sequenced the transcriptome of a term placenta of an African elephant (Loxodonta africana) and compared these data with RNA sequence and microarray data from other eutherian placentas including human, mouse, and cow. We characterized the composition of 55,910 expressed sequence tag (i.e., cDNA) contigs using our custom annotation pipeline. A Markov algorithm was used to cluster orthologs of human, mouse, cow, and elephant placenta transcripts. We found 2,963 genes are commonly expressed in the placentas of these eutherian mammals. Gene ontology categories previously suggested to be important for placenta function (e.g., estrogen receptor signaling pathway, cell motion and migration, and adherens junctions) were significantly enriched in these eutherian placenta-expressed genes. Genes duplicated in different lineages and also specifically expressed in the placenta contribute to the great diversity observed in mammalian placenta anatomy. We identified 1,365 human lineage-specific, 1,235 mouse lineage-specific, 436 cow lineage-specific, and 904 elephant-specific placenta-expressed (PE) genes. The most enriched clusters of human-specific PE genes are signal/glycoprotein and immunoglobulin, and humans possess a deeply invasive human hemochorial placenta that comes into direct contact with maternal immune cells. Inference of phylogenetically conserved and derived transcripts demonstrates the power of comparative transcriptomics to trace placenta evolution and variation across mammals and identified candidate genes that may be important in the normal function of the human placenta, and their dysfunction may be related to human pregnancy complications.


Immunohistochemical Examination of Trophoblast Syncytialization during Early Placentation in Sheep.

  • Heewon Seo‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

During the peri-implantation period, multinucleated syncytia are formed in the sheep placenta. For over 20 years the scientific consensus has been that during trophoblast syncytialization in sheep, binucleate trophoblast giant cells (BNCs) differentiate from mononuclear trophoblast cells, and individual BNCs fuse with individual luminal epithelial (LE) cells to form trinucleate cells. These trophoblast-LE syncytial plaques then grow through continued BNC migration and fusion. Therefore, LE cells are thought to be incorporated into syncytial plaques. However, these ideas were based on electron microscopy studies, without benefit of molecular markers for BNC and LE cells to support conclusions. The aim of this study was to observe interactions between BNCs and uterine LE cells using immunohistochemical localization for molecular markers for BNCs and uterine LE cells. We performed immunofluorescence staining, laser capture microdissection, and TUNEL staining on the uterine-placental tissues of sheep during early placentation. We observed: (1) syncytial cells containing more than two nuclei within the trophoblast cell layer; (2) depolarized LE cells that express caspase 3 and stain positively for TUNEL; (3) engulfment of caspase 3-positive LE cells by trophoblast giant cells (TGCs) and empty spaces within the LE layer at sites of implantation; (4) rapid enlargement of syncytial plaques; and (5) E-cadherin and TUNEL-positive cells within the uterine stroma underlying degenerating LE was coincident with accumulation of CD45-positive cells at these sites. These data suggest that during early placentation: (1) fusion between trophoblasts is not limited to the formation of BNCs, and the term 'trophoblast giant cell (TGC)' may be appropriate; (2) LE cells undergo apoptosis; (3) apoptotic LE cells are eliminated by TGCs; (4) fusion is not limited to the incorporation of new BNCs but involves the lateral fusion between growing syncytial plaques; and (5) TGCs carry apoptotic LE cells away from the uterine-placental interface for elimination by immune cells within the stroma. These data indicate that uterine LE cells are not incorporated into syncytial plaques, but are engulfed and eliminated, and that early placentation in sheep is more similar to early placentation in humans than is currently understood in that both develop mononucleated cytotrophoblast and multinucleated syncytiotrophoblast layers of entirely placental origin. The elimination of LE cells by sheep TGCs might provide insights into elimination and penetration of LE cells during human embryo implantation.


Pluripotent stem cells proliferation is associated with placentation in dogs.

  • Juliana Barbosa Casals‎ et al.
  • Animal reproduction‎
  • 2020‎

Pluripotent stem cells have been studied as source of cells for regenerative medicine and acquire or genetic diseases, as an innovative therapy. Most tissues have stem cells populations, however in few quantities or impossible to be used during adult life, which lead to scientists look for new sources. Thus, this study aimed to analyze the presence of pluripotent cells in the uterus and placenta, following up non-pregnant, pregnant (begin, middle, and final), and postpartum periods in dogs. The uteri were obtained from social castration programs for population control in Pirassununga, Sao Paulo, Brazil. It was collected 20 uteri at different stages. The samples were fixed and processed for immunohistochemical analysis of NANOG, OCT4 and SOX2 expression, knowing as pluripotent stem cells makers. Our results showed positive expression for NANOG, OCT4 and SOX2 in all stages of gestation and nonpregnant uterus; however, we highlight some quantitative different between stages. OCT4 showed more expression in non-pregnant uterus than NANOG and SOX2, and its expression increased in pregnant uterus. In pregnant uterus there was more expression of NANOG than OCT4 and SOX2. Interesting, no difference was found between these markers in the other periods. In conclusion, it was possible to identify pluripotent stem cells in all periods in dog placenta and uterus, however during the early stage of pregnancy we observed more pluripotent stem cells than in all the others periods confirming the high plasticity and regeneration capacity of the uterine tissue.


Function and Hormonal Regulation of GATA3 in Human First Trimester Placentation.

  • Bora Lee‎ et al.
  • Biology of reproduction‎
  • 2016‎

Pregnancies resulting from fresh in vitro fertilization (IVF) cycles exposed to supraphysiologic estrogen levels have been associated with higher rates of low birth weight and small for gestational age babies. We identified GATA3, a transcription factor selectively expressed in the trophectoderm during the blastocyst stage of embryo development, in an upstream analysis of genes that were differentially methylated in chorionic villus samples between IVF and non-IVF infertility treatment pregnancies. In this study, we investigate the hypothesis that GATA3 is hormonally regulated and plays an important functional role in trophoblast migration, invasion, and placentation. We found that GATA3 expression was hormonally regulated by estradiol in HTR8/SVneo first trimester trophoblast cells; however, no change in expression was seen with progesterone treatment. Furthermore, GATA3 knockdown resulted in decreased HTR8/SVneo cell migration and invasion compared with controls. RNA sequencing of GATA3 knockdown cells demonstrated 96 differentially regulated genes compared with controls. Genes known to play an important role in cell-cell and cell-extracellular matrix interactions, cell invasion, and placentation were identified, including CTGF, CYR61, ADAMTS12, and TIMP3 Our results demonstrate estradiol down-regulates GATA3, and decreased GATA3 expression leads to impaired trophoblast cell migration and invasion, likely through regulation of downstream genes important in placentation. These results are consistent with clinical data suggesting that supraphysiologic estrogen levels seen in IVF pregnancies may play an important role in attenuated trophoblast migration, invasion, and impaired placentation. GATA3 appears to be an important regulator of placentation and may play a role in impaired outcomes associated with fresh IVF cycles.


Baby Genomics: Tracing the Evolutionary Changes That Gave Rise to Placentation.

  • Yue Hao‎ et al.
  • Genome biology and evolution‎
  • 2020‎

It has long been challenging to uncover the molecular mechanisms behind striking morphological innovations such as mammalian pregnancy. We studied the power of a robust comparative orthology pipeline based on gene synteny to address such problems. We inferred orthology relations between human genes and genes from each of 43 other vertebrate genomes, resulting in ∼18,000 orthologous pairs for each genome comparison. By identifying genes that first appear coincident with origin of the placental mammals, we hypothesized that we would define a subset of the genome enriched for genes that played a role in placental evolution. We thus pinpointed orthologs that appeared before and after the divergence of eutherian mammals from marsupials. Reinforcing previous work, we found instead that much of the genetic toolkit of mammalian pregnancy evolved through the repurposing of preexisting genes to new roles. These genes acquired regulatory controls for their novel roles from a group of regulatory genes, many of which did in fact originate at the appearance of the eutherians. Thus, orthologs appearing at the origin of the eutherians are enriched in functions such as transcriptional regulation by Krüppel-associated box-zinc-finger proteins, innate immune responses, keratinization, and the melanoma-associated antigen protein class. Because the cellular mechanisms of invasive placentae are similar to those of metastatic cancers, we then used our orthology inferences to explore the association between placenta invasion and cancer metastasis. Again echoing previous work, we find that genes that are phylogenetically older are more likely to be implicated in cancer development.


Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation.

  • Kai-Lun Hu‎ et al.
  • Human reproduction update‎
  • 2019‎

Initially identified as suppressors of metastasis in various types of cancer, kisspeptins are a family of neuropeptides that are key regulators of the mammalian reproductive axis. Accumulating evidence has shown that kisspeptin is able to control both the pulsatile and surge GnRH release, playing fundamental roles in female reproduction, which include the secretion of gonadotropins, puberty onset, brain sex differentiation, ovulation and the metabolic regulation of fertility. Furthermore, recent studies have demonstrated the involvement of the kisspeptin system in the processes of implantation and placentation. This review summarizes the current knowledge of the pathophysiological role and utility of these local placental regulatory factors as potential biomarkers during the early human gestation.


Inverted formin 2 regulates intracellular trafficking, placentation, and pregnancy outcome.

  • Katherine Young Bezold Lamm‎ et al.
  • eLife‎
  • 2018‎

Healthy pregnancy depends on proper placentation-including proliferation, differentiation, and invasion of trophoblast cells-which, if impaired, causes placental ischemia resulting in intrauterine growth restriction and preeclampsia. Mechanisms regulating trophoblast invasion, however, are unknown. We report that reduction of Inverted formin 2 (INF2) alters intracellular trafficking and significantly impairs invasion in a model of human extravillous trophoblasts. Furthermore, global loss of Inf2 in mice recapitulates maternal and fetal phenotypes of placental insufficiency. Inf2-/- dams have reduced spiral artery numbers and late gestational hypertension with resolution following delivery. Inf2-/- fetuses are growth restricted and demonstrate changes in umbilical artery Doppler consistent with poor placental perfusion and fetal distress. Loss of Inf2 increases fetal vascular density in the placenta and dysregulates trophoblast expression of angiogenic factors. Our data support a critical regulatory role for INF2 in trophoblast invasion-a necessary process for placentation-representing a possible future target for improving placentation and fetal outcomes.


Imatinib treatments have long-term impact on placentation and embryo survival.

  • Wael Salem‎ et al.
  • Scientific reports‎
  • 2019‎

Imatinib is an oral chemotherapeutic used primarily to treat chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (GIST). The potential effects of cancer treatments on a patient's future fertility  are a major concern affecting the quality of life for cancer survivors. The effects of imatinib on future fertility are unknown. It is teratogenic. Therefore, patients are advised to stop treatment before pregnancy. Unfortunately, CML and GIST have high rates of recurrence in the absence of the drug, therefore halting imatinib during pregnancy endangers the mother. Possible long-term (post-treatment) effects of imatinib on reproduction have not been studied. We have used a mouse model to examine the effects of imatinib on the placenta and implantation after long-term imatinib exposure. We found significant changes in epigenetic markers of key imprinted genes in the placenta. There was a significant decrease in the labyrinth zone and vasculature of the placenta, which could impact fetal growth later in pregnancy. These effects on placental growth occurred even when imatinib was stopped prior to pregnancy. These results indicate potential long-term effects of imatinib on pregnancy and implantation. A prolonged wash-out period prior to pregnancy or extra monitoring for possible placental insufficiency may be advisable.


Placentation defects are highly prevalent in embryonic lethal mouse mutants.

  • Vicente Perez-Garcia‎ et al.
  • Nature‎
  • 2018‎

Large-scale phenotyping efforts have demonstrated that approximately 25-30% of mouse gene knockouts cause intrauterine lethality. Analysis of these mutants has largely focused on the embryo and not the placenta, despite the crucial role of this extraembryonic organ for developmental progression. Here we screened 103 embryonic lethal and sub-viable mouse knockout lines from the Deciphering the Mechanisms of Developmental Disorders program for placental phenotypes. We found that 68% of knockout lines that are lethal at or after mid-gestation exhibited placental dysmorphologies. Early lethality (embryonic days 9.5-14.5) is almost always associated with severe placental malformations. Placental defects correlate strongly with abnormal brain, heart and vascular development. Analysis of mutant trophoblast stem cells and conditional knockouts suggests that a considerable number of factors that cause embryonic lethality when ablated have primary gene function in trophoblast cells. Our data highlight the hugely under-appreciated importance of placental defects in contributing to abnormal embryo development and suggest key molecular nodes that govern placenta formation.


Investigating human placentation and pregnancy using first trimester chorionic villi.

  • Roberta L Hannibal‎ et al.
  • Placenta‎
  • 2018‎

Chorionic villus sampling (CVS), routinely used for prenatal diagnosis of cytogenetic disorders, also possesses great potential for the study of placentation. To better understand villus biology, human placentation, and how these relate to pregnancy outcomes, we examined the morphology and transcriptomes of villi obtained via CVS from 10 to 14 weeks of pregnancy and correlated these with pregnancy attributes and clinical outcomes. First, we established a morphological scoring system based on three main villus features: branching, budding and vascularization. We then tested whether morphology scores were predictive of pregnancy attributes and clinical outcomes. Finally, we used RNA sequencing to assess the transcriptional basis of villus morphology and tested the hypothesis that gene expression may predict pregnancy outcomes. We demonstrate that villus morphology varies tremendously between patients, irrespective of gestational age, and that transcriptional differences are highly predictive of villus morphology. We show that pre-eclampsia markers are associated with villi with low morphology scores. Additionally, we identify SVEP1 as a possible biomarker for defining gestational age. Overall, chorionic villi in the first trimester remain one of the few means to correlate placental function with pregnancy outcome and these samples are a valuable and increasingly rare resource.


Trophoblast organoids as a model for maternal-fetal interactions during human placentation.

  • Margherita Y Turco‎ et al.
  • Nature‎
  • 2018‎

The placenta is the extraembryonic organ that supports the fetus during intrauterine life. Although placental dysfunction results in major disorders of pregnancy with immediate and lifelong consequences for the mother and child, our knowledge of the human placenta is limited owing to a lack of functional experimental models1. After implantation, the trophectoderm of the blastocyst rapidly proliferates and generates the trophoblast, the unique cell type of the placenta. In vivo, proliferative villous cytotrophoblast cells differentiate into two main sub-populations: syncytiotrophoblast, the multinucleated epithelium of the villi responsible for nutrient exchange and hormone production, and extravillous trophoblast cells, which anchor the placenta to the maternal decidua and transform the maternal spiral arteries2. Here we describe the generation of long-term, genetically stable organoid cultures of trophoblast that can differentiate into both syncytiotrophoblast and extravillous trophoblast. We used human leukocyte antigen (HLA) typing to confirm that the organoids were derived from the fetus, and verified their identities against four trophoblast-specific criteria3. The cultures organize into villous-like structures, and we detected the secretion of placental-specific peptides and hormones, including human chorionic gonadotropin (hCG), growth differentiation factor 15 (GDF15) and pregnancy-specific glycoprotein (PSG) by mass spectrometry. The organoids also differentiate into HLA-G+ extravillous trophoblast cells, which vigorously invade in three-dimensional cultures. Analysis of the methylome reveals that the organoids closely resemble normal first trimester placentas. This organoid model will be transformative for studying human placental development and for investigating trophoblast interactions with the local and systemic maternal environment.


Involvement of the Endocrine-Disrupting Chemical Bisphenol A (BPA) in Human Placentation.

  • Sophie-Christine de Aguiar Greca‎ et al.
  • Journal of clinical medicine‎
  • 2020‎

Endocrine-disrupting chemicals (EDCs) are environmental chemicals/toxicants that humans are exposed to, interfering with the action of multiple hormones. Bisphenol A (BPA) is classified as an EDC with xenoestrogenic activity with potentially adverse effects in reproduction. Currently, a significant knowledge gap remains regarding the complete spectrum of BPA-induced effects on the human placenta. As such, the present study examined the effects of physiologically relevant doses of BPA in vitro.


Molecular Signatures of Placentation and Secretion Uncovered in Poeciliopsis Maternal Follicles.

  • Michael W Guernsey‎ et al.
  • Molecular biology and evolution‎
  • 2020‎

Placentation evolved many times independently in vertebrates. Although the core functions of all placentas are similar, we know less about how this similarity extends to the molecular level. Here, we study Poeciliopsis, a unique genus of live-bearing fish that have independently evolved complex placental structures at least three times. The maternal follicle is a key component of these structures. It envelops yolk-rich eggs and is morphologically simple in lecithotrophic species but has elaborate villous structures in matrotrophic species. Through sequencing, the follicle transcriptome of a matrotrophic, Poeciliopsis retropinna, and lecithotrophic, P. turrubarensis, species we found genes known to be critical for placenta function expressed in both species despite their difference in complexity. Additionally, when we compare the transcriptome of different river populations of P. retropinna, known to vary in maternal provisioning, we find differential expression of secretory genes expressed specifically in the top layer of villi cells in the maternal follicle. This provides some of the first evidence that the placental structures of Poeciliopsis function using a secretory mechanism rather than direct contact with maternal circulation. Finally, when we look at the expression of placenta proteins at the maternal-fetal interface of a larger sampling of Poeciliopsis species, we find expression of key maternal and fetal placenta proteins in their cognate tissue types of all species, but follicle expression of prolactin is restricted to only matrotrophic species. Taken together, we suggest that all Poeciliopsis follicles are poised for placenta function but require expression of key genes to form secretory villi.


Eutherian-Specific Gene TRIML2 Attenuates Inflammation in the Evolution of Placentation.

  • Xuzhe Zhang‎ et al.
  • Molecular biology and evolution‎
  • 2020‎

Evolution of highly invasive placentation in the stem lineage of eutherians and subsequent extension of pregnancy set eutherians apart from other mammals, that is, marsupials with short-lived placentas, and oviparous monotremes. Recent studies suggest that eutherian implantation evolved from marsupial attachment reaction, an inflammatory process induced by the direct contact of fetal placenta with maternal endometrium after the breakdown of the shell coat, and shortly before the onset of parturition. Unique to eutherians, a dramatic downregulation of inflammation after implantation prevents the onset of premature parturition, and is critical for the maintenance of gestation. This downregulation likely involved evolutionary changes on maternal as well as fetal/placental side. Tripartite-motif family-like2 (TRIML2) only exists in eutherian genomes and shows preferential expression in preimplantation embryos, and trophoblast-derived structures, such as chorion and placental disc. Comparative genomic evidence supports that TRIML2 originated from a gene duplication event in the stem lineage of Eutheria that also gave rise to eutherian TRIML1. Compared with TRIML1, TRIML2 lost the catalytic RING domain of E3 ligase. However, only TRIML2 is induced in human choriocarcinoma cell line JEG3 with poly(I:C) treatment to simulate inflammation during viral infection. Its knockdown increases the production of proinflammatory cytokines and reduces trophoblast survival during poly(I:C) stimulation, while its overexpression reduces proinflammatory cytokine production, supporting TRIML2's role as a regulatory inhibitor of the inflammatory pathways in trophoblasts. TRIML2's potential virus-interacting PRY/SPRY domain shows significant signature of selection, suggesting its contribution to the evolution of eutherian-specific inflammation regulation during placentation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: