Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 461 papers

Phytochrome A antagonizes PHYTOCHROME INTERACTING FACTOR 1 to prevent over-activation of photomorphogenesis.

  • Martín Krzymuski‎ et al.
  • Molecular plant‎
  • 2014‎

Phytochrome A (phyA) is crucial to initiate the early steps of the transition between skoto- and photomorphogenesis upon light exposure and to complete this process under far-red light (typical of dense vegetation canopies). However, under prolonged red or white light, phyA mutants are hyper-photomorphogenic in many respects. To investigate this issue, we analyzed the late response of the transcriptome of the phyA mutant to red light. Compared to the wild-type (WT), hyper-responsive genes outnumbered the genes showing reduced response to red light in phyA. A network analysis revealed the co-expression of PHYTOCHROME INTERACTING FACTOR 1 (PIF1) with those genes showing hyper-promotion by red light in phyA. The enhanced responses of gene expression, cotyledon unfolding, hypocotyl growth, and greening observed in the phyA mutant compared to the WT were absent in the phyA pif1 double mutant compared to pif1, indicating that the hyper-photomorphogenic phenotype of phyA requires PIF1. PIF1 directly binds to gene promoters that displayed PIF1-mediated enhanced response to red light. Expression of mutant PIF1 deficient in interactions with phyA and phyB enhanced the long-term growth response to red light but reduced the expression of selected genes in response to red light. We propose that phytochrome-mediated degradation of PIF1 prevents over-activation of photomorphogenesis during early seedling development.


Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins.

  • Chanhee Kim‎ et al.
  • Nature communications‎
  • 2023‎

Phytochrome B (phyB) is a plant photoreceptor that forms a membraneless organelle called a photobody. However, its constituents are not fully known. Here, we isolated phyB photobodies from Arabidopsis leaves using fluorescence-activated particle sorting and analyzed their components. We found that a photobody comprises ~1,500 phyB dimers along with other proteins that could be classified into two groups: The first includes proteins that directly interact with phyB and localize to the photobody when expressed in protoplasts, while the second includes proteins that interact with the first group proteins and require co-expression of a first-group protein to localize to the photobody. As an example of the second group, TOPLESS interacts with PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) and localizes to the photobody when co-expressed with PCH1. Together, our results support that phyB photobodies include not only phyB and its primary interacting proteins but also its secondary interacting proteins.


Phytochrome-induced SIG2 expression contributes to photoregulation of phytochrome signalling and photomorphogenesis in Arabidopsis thaliana.

  • Sookyung Oh‎ et al.
  • Journal of experimental botany‎
  • 2013‎

Chloroplast-localized sigma factor (SIG) proteins promote specificity of the plastid-encoded RNA polymerase. SIG2 function appears to be necessary for light-grown Arabidopsis thaliana plants. Specific photoreceptors or light-dependent factors that impact the light-induced accumulation of SIG2 have not been reported. A molecular link between phytochromes and nuclear-encoded SIG2, which impacts photomorphogenesis specifically under red (R) and far-red (FR) light, is described here. Both phyA and phyB promote SIG2 transcript accumulation. Disruption of SIG2 results in R- and FR-specific defects in the inhibition of hypocotyl elongation and cotyledon expansion, although no impairments in these responses are detected for sig2 mutants under blue (B) or white (W) light. SIG2 also impacts root elongation under W and R, and the R-dependent expression of PIF4, encoding a phytochrome-interacting factor, and HY2, which encodes a phytochrome chromophore biosynthetic enzyme. Whereas SIG2 apparently impacts the accumulation of the phytochromobilin (PΦB) phytochrome chromophore, sig2 mutants differ significantly from PΦB mutants, primarily due to wavelength-specific defects in photomorphogenesis and disruption of a distinct subset of phytochrome-dependent responses. The molecular link between phytochromes and SIG2 is likely to be an important part of the co-ordination of gene expression to maintain stoichiometry between the nuclear-encoded phytochrome apoprotein and plastid-derived PΦB, which combine to form photoactive phytochromes, and/or light-dependent SIG2 accumulation is involved in an inductive light signalling pathway co-ordinating components between nucleus and plastids.


Fungal phytochrome chromophore biosynthesis at mitochondria.

  • Christian Streng‎ et al.
  • The EMBO journal‎
  • 2021‎

Mitochondria are essential organelles because of their function in energy conservation. Here, we show an involvement of mitochondria in phytochrome-dependent light sensing in fungi. Phytochrome photoreceptors are found in plants, bacteria, and fungi and contain a linear, heme-derived tetrapyrrole as chromophore. Linearization of heme requires heme oxygenases (HOs) which reside inside chloroplasts in planta. Despite the poor degree of conservation of HOs, we identified two candidates in the fungus Alternaria alternata. Deletion of either one phenocopied phytochrome deletion. The two enzymes had a cooperative effect and physically interacted with phytochrome, suggesting metabolon formation. The metabolon was attached to the surface of mitochondria with a C-terminal anchor (CTA) sequence in HoxA. The CTA was necessary and sufficient for mitochondrial targeting. The affinity of phytochrome apoprotein to HoxA was 57,000-fold higher than the affinity of the holoprotein, suggesting a "kiss-and-go" mechanism for chromophore loading and a function of mitochondria as assembly platforms for functional phytochrome. Hence, two alternative approaches for chromophore biosynthesis and insertion into phytochrome evolved in plants and fungi.


PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis.

  • Enamul Huq‎ et al.
  • The EMBO journal‎
  • 2002‎

Plants sense and respond to red and far-red light using the phytochrome (phy) family of photoreceptors. However, the mechanism of light signal transduction is not well defined. Here, we report the identification of a new mutant Arabidopsis locus, srl2 (short under red-light 2), which confers selective hypersensitivity to continuous red, but not far-red, light. This hypersensitivity is eliminated in srl2phyB, but not srl2phyA, double mutants, indicating that this locus functions selectively and negatively in phyB signaling. The SRL2 gene encodes a bHLH factor, designated PIF4 (phytochrome-interacting factor 4), which binds selectively to the biologically active Pfr form of phyB, but has little affinity for phyA. Despite its hypersensitive morphological phenotype, the srl2 mutant displays no perturbation of light-induced expression of marker genes for chloroplast development. These data suggest that PIF4 may function specifically in a branch of the phyB signaling network that regulates a subset of genes involved in cell expansion. Consistent with this proposal, PIF4 localizes to the nucleus and can bind to a G-box DNA sequence motif found in various light-regulated promoters.


Phytochrome regulation of cellulose synthesis in Arabidopsis.

  • Volker Bischoff‎ et al.
  • Current biology : CB‎
  • 2011‎

Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by cellulose microfibrils extruded from large cellulose synthase complexes (CSCs) that migrate in the plasma membrane along cortical microtubules. Here we show a role for the red/far-red light photoreceptor PHYTOCHROME B (PHYB) in the regulation of cellulose synthesis in the growing Arabidopsis hypocotyl. In this organ, CSCs contains three distinct cellulose synthase (CESA) isoform classes: nonredundant CESA1 and CESA3 and a third class represented by partially redundant CESA2, CESA5, and CESA6. Interestingly, in the dark, depending on which CESA subunits occupy the third position, CSC velocity is more or less inhibited through an interaction with microtubules. Activation of PHYB overrules this inhibition. The analysis of cesa5 mutants shows a role for phosphorylation in the control of CSC velocity. These results, combined with the cesa5 mutant phenotype, suggest that cellulose synthesis is fine tuned through the regulated interaction of CSCs with microtubules and that PHYB signaling impinges on this process to maintain cell wall strength and growth in changing environments.


Signal amplification and transduction in phytochrome photosensors.

  • Heikki Takala‎ et al.
  • Nature‎
  • 2014‎

Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light-sensing kinases that control diverse cellular functions in plants, bacteria and fungi. Bacterial phytochromes consist of a photosensory core and a carboxy-terminal regulatory domain. Structures of photosensory cores are reported in the resting state and conformational responses to light activation have been proposed in the vicinity of the chromophore. However, the structure of the signalling state and the mechanism of downstream signal relay through the photosensory core remain elusive. Here we report crystal and solution structures of the resting and activated states of the photosensory core of the bacteriophytochrome from Deinococcus radiodurans. The structures show an open and closed form of the dimeric protein for the activated and resting states, respectively. This nanometre-scale rearrangement is controlled by refolding of an evolutionarily conserved 'tongue', which is in contact with the chromophore. The findings reveal an unusual mechanism in which atomic-scale conformational changes around the chromophore are first amplified into an ångstrom-scale distance change in the tongue, and further grow into a nanometre-scale conformational signal. The structural mechanism is a blueprint for understanding how phytochromes connect to the cellular signalling network.


A Phytochrome-Derived Photoswitch for Intracellular Transport.

  • Max Adrian‎ et al.
  • ACS synthetic biology‎
  • 2017‎

Cells depend on the proper positioning of their organelles, suggesting that active manipulation of organelle positions can be used to explore spatial cell biology and to restore cellular defects caused by organelle misplacement. Recently, blue-light dependent recruitment of specific motors to selected organelles has been shown to alter organelle motility and positioning, but these approaches lack rapid and active reversibility. The light-dependent interaction of phytochrome B with its interacting factors has been shown to function as a photoswitch, dimerizing under red light and dissociating under far-red light. Here we engineer phytochrome domains into photoswitches for intracellular transport that enable the reversible interaction between organelles and motor proteins. Using patterned illumination and live-cell imaging, we demonstrate that this system provides unprecedented spatiotemporal control. We also demonstrate that it can be used in combination with a blue-light dependent system to independently control the positioning of two different organelles. Precise optogenetic control of organelle motility and positioning will provide a better understanding of and control over the spatial biology of cells.


Two-photon conversion of a bacterial phytochrome.

  • Serge G Sokolovski‎ et al.
  • Biophysical journal‎
  • 2021‎

In nature, sensory photoreceptors underlie diverse spatiotemporally precise and generally reversible biological responses to light. Photoreceptors also serve as genetically encoded agents in optogenetics to control by light organismal state and behavior. Phytochromes represent a superfamily of photoreceptors that transition between states absorbing red light (Pr) and far-red light (Pfr), thus expanding the spectral range of optogenetics to the near-infrared range. Although light of these colors exhibits superior penetration of soft tissue, the transmission through bone and skull is poor. To overcome this fundamental challenge, we explore the activation of a bacterial phytochrome by a femtosecond laser emitting in the 1 μm wavelength range. Quantum chemical calculations predict that bacterial phytochromes possess substantial two-photon absorption cross sections. In line with this notion, we demonstrate that the photoreversible Pr ↔ Pfr conversion is driven by two-photon absorption at wavelengths between 1170 and 1450 nm. The Pfr yield was highest for wavelengths between 1170 and 1280 nm and rapidly plummeted beyond 1300 nm. By combining two-photon activation with bacterial phytochromes, we lay the foundation for enhanced spatial resolution in optogenetics and unprecedented penetration through bone, skull, and soft tissue.


Phytochrome B Negatively Affects Cold Tolerance by Regulating OsDREB1 Gene Expression through Phytochrome Interacting Factor-Like Protein OsPIL16 in Rice.

  • Yanan He‎ et al.
  • Frontiers in plant science‎
  • 2016‎

Cross talk between light signaling and cold signaling has been elucidated in the model plant Arabidopsis and tomato, but little is known about their relationship in rice. Here, we report that phytochrome B (phyB) mutants exhibit improved cold tolerance compared with wild type (WT) rice (Oryza sativa L. cv. Nipponbare). The phyB mutants had a lower electrolyte leakage index and malondialdehyde concentration than the WT, suggesting that they had greater cell membrane integrity and less lipid peroxidation. Real-time PCR analysis revealed that the expression levels of dehydration-responsive element binding protein 1 (OsDREB1) family genes, which functions in the cold stress response in rice, were increased in the phyB mutant under normal and cold stress conditions. PIFs are central players in phytochrome-mediated light signaling networks. To explore the relationship between rice PIFs and OsDREB1 gene expression, we produced overexpression lines of rice PIF genes. OsDREB1 family genes were up-regulated in OsPIL16-overexpression lines, which had improved cold tolerance relative to the WT. Chromatin immunoprecipitation (ChIP)-qPCR assay revealed that OsPIL16 can bind to the N-box region of OsDREB1B promoter. Expression pattern analyses revealed that OsPIL16 transcripts were induced by cold stress and was significantly higher in the phyB mutant than in the WT. Moreover, yeast two-hybrid assay showed that OsPIL16 can bind to rice PHYB. Based on these results, we propose that phyB deficiency positively regulates OsDREB1 expression through OsPIL16 to enhance cell membrane integrity and to reduce the malondialdehyde concentration, resulting in the improved cold tolerance of the phyB mutants.


Phytochrome interacting factor proteins regulate cytokinesis in Arabidopsis.

  • Yuanyuan Zhang‎ et al.
  • Cell reports‎
  • 2021‎

Dicotyledonous plants form an apical hook to protect the fragile apical meristem during upward protrusion from the soil. Etiolated pifq (pif1 pif3 pif4 pif5) seedlings display constitutive apical hook opening. Here, we show that PIF proteins control apical hook opening by regulating the expression of Budding Uninhibited by Benzimidazole 3.1 (BUB3.1) and affecting cytokinesis. Consistent with the major function of BUB3.1 in the organization of phragmoplasts during cytokinesis, the phragmoplasts are well formed in dark-grown pifq but not in wild type. DNA staining and flow cytometry analysis further demonstrate that cellular endoreduplication levels are dramatically reduced in pifq. Chemical treatment with caffeine, an inhibitor of phragmoplast-based cytokinesis, shows that cytokinesis is involved in the apical hook opening. Genetically, BUB3.1 is epistatic to PIFq in the regulation of cytokinesis. Our findings reveal an organ-specific role of PIF proteins in regulating cytokinesis by BUB3.1 during apical hook development.


Ultrafast Photoconversion Dynamics of the Knotless Phytochrome SynCph2.

  • Tobias Fischer‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The family of phytochrome photoreceptors contains proteins with different domain architectures and spectral properties. Knotless phytochromes are one of the three main subgroups classified by their distinct lack of the PAS domain in their photosensory core module, which is in contrast to the canonical PAS-GAF-PHY array. Despite intensive research on the ultrafast photodynamics of phytochromes, little is known about the primary kinetics in knotless phytochromes. Here, we present the ultrafast Pr ⇆ Pfr photodynamics of SynCph2, the best-known knotless phytochrome. Our results show that the excited state lifetime of Pr* (~200 ps) is similar to bacteriophytochromes, but much longer than in most canonical phytochromes. We assign the slow Pr* kinetics to relaxation processes of the chromophore-binding pocket that controls the bilin chromophore's isomerization step. The Pfr photoconversion dynamics starts with a faster excited state relaxation than in canonical phytochromes, but, despite the differences in the respective domain architectures, proceeds via similar ground state intermediate steps up to Meta-F. Based on our observations, we propose that the kinetic features and overall dynamics of the ultrafast photoreaction are determined to a great extent by the geometrical context (i.e., available space and flexibility) within the binding pocket, while the general reaction steps following the photoexcitation are most likely conserved among the red/far-red phytochromes.


Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors.

  • Kazumasa Nito‎ et al.
  • Cell reports‎
  • 2013‎

Phytochromes are red/far-red light receptors that function in photomorphogenesis of plants. Photoisomerization of phytochrome by red light leads to its translocation to the nucleus, where it regulates gene expression. We examined whether phytochrome is phosphorylated in response to light, and we report that phytochrome B (phyB)'s N terminus contains a region with a number of phosphoserines, threonines, and tyrosines. The light-dependent phosphorylation of tyrosine 104 (Y104) appears to play a negative role in phyB's activity, because a phosphomimic mutant, phyBY104E, is unable to complement any phyB-related phenotype, is defective in binding to its signaling partner PIF3, and fails to form stable nuclear bodies even though it retains normal photochemistry in vitro. In contrast, plants stably expressing a nonphosphorylatable mutant, phyBY104F, are hypersensitive to light. The proper response to changes in the light environment is crucial for plant survival, and our study brings tyrosine phosphorylation to the forefront of light-signaling mechanisms.


Phytochrome B regulates resource allocation in Brassica rapa.

  • Andrej A Arsovski‎ et al.
  • Journal of experimental botany‎
  • 2018‎

Crop biomass and yield are tightly linked to how the light signaling network translates information about the environment into allocation of resources, including photosynthates. Once activated, the phytochrome (phy) class of photoreceptors signal and re-deploy carbon resources to alter growth, plant architecture, and reproductive timing. Most of the previous characterization of the light-modulated growth program has been performed in the reference plant Arabidopsis thaliana. Here, we use Brassica rapa as a crop model to test for conservation of the phytochrome-carbon network. In response to elevated levels of CO2, B. rapa seedlings showed increases in hypocotyl length, shoot and root fresh weight, and the number of lateral roots. All of these responses were dependent on nitrogen and polar auxin transport. In addition, we identified putative B. rapa orthologs of PhyB and isolated two nonsense alleles. BrphyB mutants had significantly decreased or absent CO2-stimulated growth responses. Mutant seedlings also showed misregulation of auxin-dependent genes and genes involved in chloroplast development. Adult mutant plants had reduced chlorophyll levels, photosynthetic rate, stomatal index, and seed yield. These findings support a recently proposed holistic role for phytochromes in regulating resource allocation, biomass production, and metabolic state in the developing plant.


Physicochemical modeling of the phytochrome-mediated photothermal sensing.

  • Young-Joon Park‎ et al.
  • Scientific reports‎
  • 2019‎

Light and temperature cues share many common signaling events towards plant photothermal morphogenesis. Particularly, the red (R)/far-red (FR)-absorbing phytochrome photoreceptors also function as temperature sensors, suggesting that light and temperature responses are intimately associated with each other. Here, we present data from physicochemical modeling of temperature sensing and thermomorphogenic patterning of hypocotyl growth, which illustrate that the two seemingly distinct stimulating cues are tightly coupled through physicochemical principles and temperature effects can be described as a function of infra-red (IR) thermal radiation. It is possible that the dark reversion from the FR-absorbing Pfr to the R-absorbing Pr phytochromes is essentially an IR-mediated thermal conversion. We propose that the phytochromes modulate photothermal responses by monitoring R:IR ratios, as they sense R:FR ratios during photomorphogenesis.


Structural photoactivation of a full-length bacterial phytochrome.

  • Alexander Björling‎ et al.
  • Science advances‎
  • 2016‎

Phytochromes are light sensor proteins found in plants, bacteria, and fungi. They function by converting a photon absorption event into a conformational signal that propagates from the chromophore through the entire protein. However, the structure of the photoactivated state and the conformational changes that lead to it are not known. We report time-resolved x-ray scattering of the full-length phytochrome from Deinococcus radiodurans on micro- and millisecond time scales. We identify a twist of the histidine kinase output domains with respect to the chromophore-binding domains as the dominant change between the photoactivated and resting states. The time-resolved data further show that the structural changes up to the microsecond time scales are small and localized in the chromophore-binding domains. The global structural change occurs within a few milliseconds, coinciding with the formation of the spectroscopic meta-Rc state. Our findings establish key elements of the signaling mechanism of full-length bacterial phytochromes.


Near-infrared STED nanoscopy with an engineered bacterial phytochrome.

  • Maria Kamper‎ et al.
  • Nature communications‎
  • 2018‎

The near infrared (NIR) optical window between the cutoff for hemoglobin absorption at 650 nm and the onset of increased water absorption at 900 nm is an attractive, yet largely unexplored, spectral regime for diffraction-unlimited super-resolution fluorescence microscopy (nanoscopy). We developed the NIR fluorescent protein SNIFP, a bright and photostable bacteriophytochrome, and demonstrate its use as a fusion tag in live-cell microscopy and STED nanoscopy. We further demonstrate dual color red-confocal/NIR-STED imaging by co-expressing SNIFP with a conventional red fluorescent protein.


Phytochrome-interacting factors regulate seedling growth through ABA signaling.

  • Shan Liang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

There is a growing body of evidence that abscisic acid (ABA) and the phytochrome-interacting factor (PIF) family of transcription factors interact in light signaling, the regulation of plant growth development, and adaptation to environmental stimuli. In this study, we investigate the role that PIFs play in the regulation of ABA signaling in Arabidopsis thaliana seedlings grown under long-day conditions. We showed that PIFs positively regulate ABA signaling in post-germination seedling growth. We analyzed the DNA-binding sites for PIF3 and PIF5 by DNA-affinity purification sequencing (DAP-seq) genome-wide. The DAP-seq data showed that G-box motif is the direct binding site of PIF3 and PIF5, and a number of ABA responsive genes are potential targets of PIFs, including PYL3, PYL6, PYL12, SnRK2.2, CPK4, CPK6, ABI5, ABF3, and KIN1. Our results provide a basis for understanding the mechanism for PIFs in regulating ABA signal transduction.


Dynamic inhomogeneity in the photodynamics of cyanobacterial phytochrome Cph1.

  • Peter W Kim‎ et al.
  • Biochemistry‎
  • 2014‎

Phytochromes are widespread red/far-red photosensory proteins well known as critical regulators of photomorphogenesis in plants. It is often assumed that natural selection would have optimized the light sensing efficiency of phytochromes to minimize nonproductive photochemical deexcitation pathways. Surprisingly, the quantum efficiency for the forward Pr-to-Pfr photoconversion of phytochromes seldom exceeds 15%, a value very much lower than that of animal rhodopsins. Exploiting ultrafast excitation wavelength- and temperature-dependent transient absorption spectroscopy, we resolve multiple pathways within the ultrafast photodynamics of the N-terminal PAS-GAF-PHY photosensory core module of cyanobacterial phytochrome Cph1 (termed Cph1Δ) that are primarily responsible for the overall low quantum efficiency. This inhomogeneity primarily reflects a long-lived fluorescent subpopulation that exists in equilibrium with a spectrally distinct, photoactive subpopulation. The fluorescent subpopulation is favored at elevated temperatures, resulting in anomalous excited-state dynamics (slower kinetics at higher temperatures). The spectral and kinetic behavior of the fluorescent subpopulation strongly resembles that of the photochemically compromised and highly fluorescent Y176H variant of Cph1Δ. We present an integrated, heterogeneous model for Cph1Δ that is based on the observed transient and static spectroscopic signals. Understanding the molecular basis for this dynamic inhomogeneity holds potential for rational design of efficient phytochrome-based fluorescent and photoswitchable probes.


Phytochrome-regulated repression of gene expression requires calcium and cGMP.

  • G Neuhaus‎ et al.
  • The EMBO journal‎
  • 1997‎

The plant photoreceptor phytochrome A utilizes three signal transduction pathways, dependent upon calcium and/or cGMP, to activate genes in the light. In this report, we have studied the phytochrome A regulation of a gene that is down-regulated by light, asparagine synthetase (AS1). We show that AS1 is expressed in the dark and repressed in the light. Repression of AS1 in the light is likely controlled by the same calcium/cGMP-dependent pathway that is used to activate other light responses. The use of the same signal transduction pathway for both activating and repressing different responses provides an interesting mechanism for phytochrome action. Using complementary loss- and gain-of-function experiments we have identified a 17 bp cis-element within the AS1 promoter that is both necessary and sufficient for this regulation. This sequence is likely to be the target for a highly conserved phytochrome-generated repressor whose activity is regulated by both calcium and cGMP.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: