Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 11,207 papers

Comparative physiology of oleaginous species from the Yarrowia clade.

  • Stéphanie Michely‎ et al.
  • PloS one‎
  • 2013‎

Yarrowia lipolytica is a genetically tractable yeast species that has become an attractive model for analyses of lipid metabolism, due to its oleaginous nature. We investigated the regulation and evolution of lipid metabolism in non-Saccharomycetaceae yeasts, by carrying out a comparative physiological analysis of eight species recently assigned to the Yarrowia clade: Candida alimentaria, Y. deformans, C. galli, C. hispaniensis, C. hollandica, C. oslonensis, C. phangngensis and Y. yakushimensis. We compared the abilities of type strains of these species to grow on 31 non hydrophobic (sugars and other carbohydrate compounds) and 13 hydrophobic (triglycerides, alkanes and free fatty acids) carbon sources. Limited phenotypic diversity was observed in terms of the range of substrates used and, in the case of short-chain fatty acids, their toxicity. We assessed the oleaginous nature of these species, by evaluating their ability to store and to synthesize lipids. The mean lipid content of cells grown on oleic acid differed considerably between species, ranging from 30% of cell dry weight in C. oslonensis to 67% in C. hispaniensis. Lipid synthesis in cells grown on glucose resulted in the accumulation of C18:1 (n-9) as the major compound in most species, except for C. alimentaria and Y. yakushimensis, which accumulated principally C18:2(n-6), and C. hispaniensis, which accumulated both C16:0 and C18:1(n-9). Thus, all species of the clade were oleaginous, but they presented specific patterns of growth, lipid synthesis and storage, and therefore constitute good models for the comparative analysis of lipid metabolism in this basal yeast clade.


[Comparative physiology and the problems in the evolution of external respiration].

  • K P Ivanov‎
  • Zhurnal evoliutsionnoi biokhimii i fiziologii‎
  • 1993‎

No abstract available


Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics.

  • David Emerson‎ et al.
  • Frontiers in microbiology‎
  • 2013‎

The two microaerophilic, Fe-oxidizing bacteria (FeOB) Sideroxydans ES-1 and Gallionella ES-2 have single circular chromosomes of 3.00 and 3.16 Mb that encode 3049 and 3006 genes, respectively. Multi-locus sequence analysis (MLSA) confirmed the relationship of these two organisms to one another, and indicated they may form a novel order, the Gallionellalaes, within the Betaproteobacteria. Both are adapted for chemolithoautotropy, including pathways for CO2-fixation, and electron transport pathways adapted for growth at low O2-levels, an important adaptation for growing on Fe(II). Both genomes contain Mto-genes implicated in iron-oxidation, as well as other genes that could be involved in Fe-oxidation. Nearly 10% of their genomes are devoted to environmental sensing, signal transduction, and chemotaxis, consistent with their requirement for growing in narrow redox gradients of Fe(II) and O2. There are important differences as well. Sideroxydans ES-1 is more metabolically flexible, and can utilize reduced S-compounds, including thiosulfate, for lithotrophic growth. It has a suite of genes for nitrogen fixation. Gallionella ES-2 contains additional gene clusters for exopolysaccharide production, and has more capacity to resist heavy metals. Both strains contain genes for hemerythrins and globins, but ES-1 has an especially high numbers of these genes that may be involved in oxygen homeostasis, or storage. The two strains share homology with the marine FeOB Mariprofundus ferrooxydans PV-1 in CO2 fixation genes, and respiratory genes. In addition, ES-1 shares a suite of 20 potentially redox active genes with PV-1, as well as a large prophage. Combined these genetic, morphological, and physiological differences indicate that these are two novel species, Sideroxydans lithotrophicus ES-1(T) (ATCC 700298(T); JCM 14762; DSMZ 22444; NCMA B100), and Gallionella capsiferriformans ES-2(T) (ATCC 700299(T); JCM 14763; DSMZ 22445; NCMA B101).


Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance.

  • Elham Faghani‎ et al.
  • Journal of proteomics‎
  • 2015‎

Comparative physiology and proteomic analyses were conducted to monitor the stress response of two wheat genotypes (SERI M 82 (SE) and SW89.5193/kAu2 (SW)) with contrasting responses to drought stress. Under stress condition, the tolerant genotype (SE) produced higher shoot and root biomasses, longer roots and accumulated higher level of ABA in leaves. Physiological measurements suggested that the SE genotype was more efficient in water absorption and could preserve more water presumably by controlling stomata closure. Proteomic analysis showed an increased abundance of proteins related to defense and oxidative stress responses such as GLPs, GST, and SOD, and those related to protein processing such as small HSPs in roots of both genotypes in response to drought stress. Interestingly, the abundance of proteins such as endo-1,3-beta-glucosidase, peroxidase, SAMS, and MDH significantly increased in roots or leaves of the SE genotype and decreased in that of the SW one. In addition, an increased abundance of APX was detected in leaves and roots of the SE genotype and a decreased abundance of 14-3-3 and ribosomal proteins were noted in the SW one in response to drought stress. Our findings led to a better understanding about the integrated physiology and proteome responses of wheat genotypes with nearly contrasting responses to drought stress.


From tissue to silicon to plastic: three-dimensional printing in comparative anatomy and physiology.

  • Henrik Lauridsen‎ et al.
  • Royal Society open science‎
  • 2016‎

Comparative anatomy and physiology are disciplines related to structures and mechanisms in three-dimensional (3D) space. For the past centuries, scientific reports in these fields have relied on written descriptions and two-dimensional (2D) illustrations, but in recent years 3D virtual modelling has entered the scene. However, comprehending complex anatomical structures is hampered by reproduction on flat inherently 2D screens. One way to circumvent this problem is in the production of 3D-printed scale models. We have applied computed tomography and magnetic resonance imaging to produce digital models of animal anatomy well suited to be printed on low-cost 3D printers. In this communication, we report how to apply such technology in comparative anatomy and physiology to aid discovery, description, comprehension and communication, and we seek to inspire fellow researchers in these fields to embrace this emerging technology.


Comparative physiology of canopy tree leaves in evergreen and deciduous forests in lowland Thailand.

  • Atsushi Ishida‎ et al.
  • Scientific data‎
  • 2023‎

The typical seasonally dry forests in Southeast Asia are the mixed deciduous forest (MDF), dry dipterocarp (deciduous) forest (DDF), and dry evergreen forest (DEF). We obtained 21 physiological traits in the top/sunlit leaves of 107, 65 and 51 tree species in MDF, DEF and DDF, respectively. Approximately 70%, 95% and 95% of canopy tree species which consist of MDF, DEF and DDF are sampled, respectively. Light-saturated photosynthetic rates (Asat) exhibit a positive correlation with foliar nitrogen (N) and phosphorus (P) on leaf mass and area bases across tree species. Decreased leaf mass-based P reduces the positive slope of the mass-based N and Asat relationship across species and habitats. The differences in nutrient and water use and leaf habits are well matched to the variation in soil properties among the forest types, highlighting the reliability of this comprehensive database for revealing the mechanism of niche segregation based on edaphic factors.


An integrated comparative physiology and molecular approach pinpoints mediators of breath-hold capacity in dolphins.

  • Ashley M Blawas‎ et al.
  • Evolution, medicine, and public health‎
  • 2021‎

Ischemic events, such as ischemic heart disease and stroke, are the number one cause of death globally. Ischemia prevents blood, carrying essential nutrients and oxygen, from reaching tissues, leading to cell and tissue death, and eventual organ failure. While humans are relatively intolerant to ischemic events, other species, such as marine mammals, have evolved a unique tolerance to chronic ischemia/reperfusion during apneic diving. To identify possible molecular features of an increased tolerance for apnea, we examined changes in gene expression in breath-holding dolphins.


Comparative Physiology and Transcriptome Analysis Provides Insights into the Regulatory Mechanism of Albinotic Bambusa oldhamii.

  • Qixia Qian‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Albinism is a unique problem encountered in tissue culture experiments, but the underlying mechanism remains unclear in most bamboo species. In this study, we identified the putative regulatory genes in an albino mutant of Bambusa oldhamii using comparative physiology and transcriptome analysis. The degeneration of chloroplasts, low chlorophyll (Chl) content and reduced photosynthetic capacity were observed in albinotic B. oldhamii compared to normal lines. A total of 6191 unigenes were identified that were clearly differentially expressed between albino and normal lines by transcriptome sequencing. Most genes related to chloroplast development (such as Psa, Psb) and pigment biosynthesis (such as LHC, GUN4, ZEP) were downregulated significantly in albinotic lines, which might be responsible for the albino phenotype. Moreover, some transcription factors (TFs) such as PIF and GLK1 were identified to be involved in chloroplast development and Chl synthesis, indicating the involvement of putative regulatory pathways PIF-LHC and GLK1-LHC/Psa/Psb in albinotic B. oldhamii. Finally, the downregulation of some stress responsive TFs (like ICE1 and EREB1) suggested a reduction in stress resistance of albinotic B. oldhamii. The above findings provided new insights into the molecular mechanism of albinism in bamboo.


Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin.

  • Guangxi Wu‎ et al.
  • PLoS genetics‎
  • 2015‎

Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin's carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin.


Comparative assessment of coronary physiology using transthoracic pulsed-wave Doppler and myocardial contrast echocardiography in rats.

  • Sebastian Billig‎ et al.
  • European radiology experimental‎
  • 2023‎

Coronary physiology assessment in rodents by ultrasound is an excellent noninvasive and easy to perform technique, including pulsed-wave Doppler (PWD) and myocardial contrast echocardiography (MCE). Both techniques and the corresponding calculated parameters were investigated in this study at rest as well as their response to pharmacologically induced stress.


Rapid Acute Physiology Score versus Rapid Emergency Medicine Score in Trauma Outcome Prediction; a Comparative Study.

  • Babak Nakhjavan-Shahraki‎ et al.
  • Emergency (Tehran, Iran)‎
  • 2017‎

Rapid acute physiology score (RAPS) and rapid emergency medicine score (REMS) are two physiologic models for measuring injury severity in emergency settings. The present study was designed to compare the two models in outcome prediction of trauma patients presenting to emergency department (ED).


Comparative metabolomics of aging in a long-lived bat: Insights into the physiology of extreme longevity.

  • Hope C Ball‎ et al.
  • PloS one‎
  • 2018‎

Vespertilionid bats (Mammalia: Order Chiroptera) live 3-10 times longer than other mammals of an equivalent body size. At present, nothing is known of how bat fecal metabolic profiles shift with age in any taxa. This study established the feasibility of using a non-invasive, fecal metabolomics approach to examine age-related differences in the fecal metabolome of young and elderly adult big brown bats (Eptesicus fuscus) as an initial investigation into using metabolomics for age determination. Samples were collected from captive, known-aged big brown bats (Eptesicus fuscus) from 1 to over 14 years of age: these two ages represent age groups separated by approximately 75% of the known natural lifespan of this taxon. Results showed 41 metabolites differentiated young (n = 22) and elderly (n = 6) Eptesicus. Significant differences in metabolites between young and elderly bats were associated with tryptophan metabolism and incomplete protein digestion. Results support further exploration of the physiological mechanisms bats employ to achieve exceptional longevity.


Comparative evaluation of the effect of L-Arginine and L-Homoarginine supplementation on reproductive physiology in ewes.

  • Vinaya Sree Chetla‎ et al.
  • Research in veterinary science‎
  • 2022‎

L-Arginine (LA) is a well-known amino acid involved in vital physiological processes. However, the physiological function of its methylated form known as L-Homoarginine (LHA), is not well understood. The aim of this study was to study the comparative effects of LA and LHA treatment on selected metabolites and parameters of reproductive physiology in non-pregnant ewes. Twelve Deccani ewes were selected and randomly distributed into 3 groups: Control, LA treated group and LHA group. Blood samples were collected for the evaluation of blood indices and hormone levels. Overall, nitrite, ovary weight, surface follicle number, estrogen, insulin like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF) showed an increase in the LA and LHA treated animals. On the other side, the levels of progesterone, inteleukin-1 beta (IL-1β), IL-6, tumor necrosis factor-alpha (TNF-α) were found to be decreased in LA and LHA group. Ovary size was not affected by LA and LHA treatment groups. In comparison with LA, the ovary weight, surface follicle number, estrogen levels and IL-6 expression were higher in LHA treated animals. The expression of VEGF indicated improved angiogenesis in the treated animals. Further, the expression of heat shock protein-27 (HSP-27) and HSP-70 were differentially modulated by LA and LHA. This data reinforces the beneficial role of LA and its metabolites LHA on the ovarian physiology and functionality and also reveals the potent role of LHA as an alternative to LA treatment in enhancing the reproductive ability in non-pregnant ewes.


Comparative Analysis of Morphology, Photosynthetic Physiology, and Transcriptome Between Diploid and Tetraploid Barley Derived From Microspore Culture.

  • Yunyun Chen‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Polyploids play an important role in the breeding of plant for superior characteristics, and many reports have focused on the effects upon photosynthesis from polyploidization in some plant species recently, yet surprisingly little of this is known for barley. In this study, homozygous diploid and tetraploid plants, derived from microspore culturing of the barley cultivar "H30," were used to assess differences between them in their cellular, photosynthetic, and transcriptomic characteristics. Our results showed that tetraploid barley has the distinct characteristics of polyploids, namely thicker and heavier leaves, enlarged stomata size or stomatal guard cell size, and more photosynthetic pigments and improved photosynthesis (especially under high light intensity). This enhanced photosynthesis of tetraploid barley was confirmed by several photosynthetic parameters, including net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), maximum net photosynthetic rate (Pmax), light saturation point (LSP), maximum RuBP saturated rate carboxylation (Vcmax), and maximum rate of electron transport (Jmax). Transcriptomic analyses revealed that just ~2.3% of all detected genes exhibited differential expression patterns [i.e., differentially expressed genes (DEGs)], and that most of these - 580 of 793 DEGs in total - were upregulated in the tetraploid barley. The follow-up KEGG analysis indicated that the most enriched pathway was related to photosynthesis-antenna proteins, while the downregulation of DEGs was related mainly to the light-harvesting cholorophyII a/b-binding protein (Lhcb1) component, both validated by quantitative PCR (qPCR). Taken together, our integrated analysis of morphology, photosynthetic physiology, and transcriptome provides evidences for understanding of how polyploidization enhances the photosynthetic capacity in tetraploids of barley.


Comparative physiology and transcriptome analysis allows for identification of lncRNAs imparting tolerance to drought stress in autotetraploid cassava.

  • Liang Xiao‎ et al.
  • BMC genomics‎
  • 2019‎

Polyploidization, pervasive among higher plant species, enhances adaptation to water deficit, but the physiological and molecular advantages need to be investigated widely. Long non-coding RNAs (lncRNAs) are involved in drought tolerance in various crops.


Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited tremellomycete: Phaffia rhodozyma.

  • Nicolás Bellora‎ et al.
  • BMC genomics‎
  • 2016‎

The class Tremellomycete (Agaricomycotina) encompasses more than 380 fungi. Although there are a few edible Tremella spp., the only species with current biotechnological use is the astaxanthin-producing yeast Phaffia rhodozyma (Cystofilobasidiales). Besides astaxanthin, a carotenoid pigment with potent antioxidant activity and great value for aquaculture and pharmaceutical industries, P. rhodozyma possesses multiple exceptional traits of fundamental and applied interest. The aim of this study was to obtain, and analyze two new genome sequences of representative strains from the northern (CBS 7918T, the type strain) and southern hemispheres (CRUB 1149) and compre them to a previously published genome sequence (strain CBS 6938). Photoprotection and antioxidant related genes, as well as genes involved in sexual reproduction were analyzed.


Comparative physiology reveals heat stress disrupts acid-base homeostasis independent of symbiotic state in the model cnidarian Exaiptasia diaphana.

  • Luella R Allen-Waller‎ et al.
  • The Journal of experimental biology‎
  • 2024‎

Climate change threatens the survival of symbiotic cnidarians by causing photosymbiosis breakdown in a process known as bleaching. Direct effects of temperature on cnidarian host physiology remain difficult to describe because heatwaves depress symbiont performance, leading to host stress and starvation. The symbiotic sea anemone Exaiptasia diaphana provides an opportune system to disentangle direct versus indirect heat effects on the host, as it can survive indefinitely without symbionts. We tested the hypothesis that heat directly impairs cnidarian physiology by comparing symbiotic and aposymbiotic individuals of two laboratory subpopulations of a commonly used clonal strain of E. diaphana, CC7. We exposed anemones to a range of temperatures (ambient, +2°C, +4°C and +6°C) for 15-18 days, then measured their symbiont population densities, autotrophic carbon assimilation and translocation, photosynthesis, respiration and host intracellular pH (pHi). Symbiotic anemones from the two subpopulations differed in size and symbiont density and exhibited distinct heat stress responses, highlighting the importance of acclimation to different laboratory conditions. Specifically, the cohort with higher initial symbiont densities experienced dose-dependent symbiont loss with increasing temperature and a corresponding decline in host photosynthate accumulation. In contrast, the cohort with lower initial symbiont densities did not lose symbionts or assimilate less photosynthate when heated, similar to the response of aposymbiotic anemones. However, anemone pHi decreased at higher temperatures regardless of cohort, symbiont presence or photosynthate translocation, indicating that heat consistently disrupts cnidarian acid-base homeostasis independent of symbiotic status or mutualism breakdown. Thus, pH regulation may be a critical vulnerability for cnidarians in a changing climate.


Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens.

  • Raju Y Soolanayakanahally‎ et al.
  • Frontiers in plant science‎
  • 2015‎

Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both Populus tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A), whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06). Stomatal conductance (g s) and chlorophyll content index (CCI) follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ(13)C) were observed for both species; but, intrinsic water-use efficiency (WUEi) was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED), which was well approximated by the number of days available for free growth between bud flush and bud set. We highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects.


Comparative eco-physiology revealed extensive enzymatic curtailment, lipases production and strong conidial resilience of the bat pathogenic fungus Pseudogymnoascus destructans.

  • Tereza Veselská‎ et al.
  • Scientific reports‎
  • 2020‎

The genus Pseudogymnoascus encompasses soil psychrophilic fungi living also in caves. Some are opportunistic pathogens; nevertheless, they do not cause outbreaks. Pseudogymnoascus destructans is the causative agent of the white-nose syndrome, which is decimating cave-hibernating bats. We used comparative eco-physiology to contrast the enzymatic potential and conidial resilience of P. destructans with that of phylogenetically diverse cave fungi, including Pseudogymnoascus spp., dermatophytes and outdoor saprotrophs. Enzymatic potential was assessed by Biolog MicroArray and by growth on labelled substrates and conidial viability was detected by flow cytometry. Pseudogymnoascus destructans was specific by extensive losses of metabolic variability and by ability of lipid degradation. We suppose that lipases are important enzymes allowing fungal hyphae to digest and invade the skin. Pseudogymnoascus destructans prefers nitrogenous substrates occurring in bat skin and lipids. Additionally, P. destructans alkalizes growth medium, which points to another possible virulence mechanism. Temperature above 30 °C substantially decreases conidial viability of cave fungi including P. destructans. Nevertheless, survival of P. destructans conidia prolongs by the temperature regime simulating beginning of the flight season, what suggests that conidia could persist on the body surface of bats and contribute to disease spreading during bats active season.


Comparative Genomics of Beggiatoa leptomitoformis Strains D-401 and D-402T with Contrasting Physiology but Extremely High Level of Genomic Identity.

  • Tatyana S Rudenko‎ et al.
  • Microorganisms‎
  • 2020‎

Representatives of filamentous colorless sulfur-oxidizing bacteria often dominate in sulfide biotopes, preventing the diffusion of toxic sulfide into the water column. One of the most intriguing groups is a recently described Beggiatoa leptomitoformis including strains D-401 and D-402T. Both strains have identical genes encoding enzymes which are involved in the oxidation of hydrogen sulfide and thiosulfate. Surprisingly, the B. leptomitoformis strain D-401 is not capable to grow lithotrophically in the presence of reduced sulfur compounds and to accumulate elemental sulfur inside the cells, in contrast to the D-402T strain. In general, genomes of D-401 and D-402T have an extremely high level of identity and only differ in 1 single-letter substitution, 4 single-letter indels, and 16 long inserts. Among long inserts, 14 are transposons. It was shown that in the D-401 strain, a gene coding for a sulfur globule protein was disrupted by one of the mentioned transposons. Based on comparative genomics, RT-qPCR, and HPLC-MS/MS, we can conclude that this gene plays a crucial role in the formation of the sulfur globules inside the cells, and the disruption of its function prevents lithotrophic growth of B. leptomitoformis in the presence of reduced sulfur compounds.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: