Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30,127 papers

Failure of phylogeny inferred from multilocus sequence typing to represent bacterial phylogeny.

  • Alan K L Tsang‎ et al.
  • Scientific reports‎
  • 2017‎

Although multilocus sequence typing (MLST) is highly discriminatory and useful for outbreak investigations and epidemiological surveillance, it has always been controversial whether clustering and phylogeny inferred from the MLST gene loci can represent the real phylogeny of bacterial strains. In this study, we compare the phylogenetic trees constructed using three approaches, (1) concatenated blocks of homologous sequence shared between the bacterial genomes, (2) genome single-nucleotide polymorphisms (SNP) profile and (3) concatenated nucleotide sequences of gene loci in the corresponding MLST schemes, for 10 bacterial species with >30 complete genome sequences available. Major differences in strain clustering at more than one position were observed between the phylogeny inferred using genome/SNP data and MLST for all 10 bacterial species. Shimodaira-Hasegawa test revealed significant difference between the topologies of the genome and MLST trees for nine of the 10 bacterial species, and significant difference between the topologies of the SNP and MLST trees were present for all 10 bacterial species. Matching Clusters and R-F Clusters metrics showed that the distances between the genome/SNP and MLST trees were larger than those between the SNP and genome trees. Phylogeny inferred from MLST failed to represent genome phylogeny with the same bacterial species.


Next-Generation Anchor Based Phylogeny (NexABP): constructing phylogeny from next-generation sequencing data.

  • Tanmoy Roychowdhury‎ et al.
  • Scientific reports‎
  • 2013‎

Whole genome sequences are ideally suited for deriving evolutionary relationship among organisms. With the availability of Next Generation sequencing (NGS) datasets in an unprecedented scale, it will be highly desirable if phylogenetic analysis can be carried out using short read NGS data. We described here an anchor based approach NexABP for phylogenetic construction of closely related strains/isolates from NGS data. This approach can be used even in the absence of a fully assembled reference genome and works by reducing the complexity of the datasets without compromising results. NexABP was used for constructing phylogeny of different strains of some of the common pathogens, such as Mycobacterium tuberculosis, Vibrio cholera and Escherichia coli. In addition to classification into distinct lineages, NexABP could resolve inner branches and also allow statistical testing using bootstrap analysis. We believe that there are some clear advantages of using NexABP based phylogenetic analysis as compared to other methods.


Phylogeny of Cirsium spp. in North America: Host Specificity Does Not Follow Phylogeny.

  • Tracey A Bodo Slotta‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2012‎

Weedy invasive Cirsium spp. are widespread in temperate regions of North America and some of their biological control agents have attacked native Cirsium spp. A phylogenetic tree was developed from DNA sequences for the internal transcribed spacer and external transcribed spacer regions from native and non-native Great Plains Cirsium spp. and other thistles to determine if host specificity follows phylogeny. The monophyly of Cirsium spp. and Carduus within the tribe Cardinae was confirmed with native North American and European lineages of the Cirsium spp. examined. We did not detect interspecific hybridization between the introduced invasive and the native North American Cirsium spp. Selected host-biological control agent interactions were mapped onto the phylogenic tree derived by maximum likelihood analysis to examine the co-occurrence of known hosts with biological control agents. Within Cirsium-Cardueae, the insect biological control agents do not associate with host phylogenetic lines. Thus, more comprehensive testing of species in host-specificity trials, rather than relying on a single representative of a given clade may be necessary; because the assumption that host-specificity follows phylogeny does not necessarily hold. Since the assumption does not always hold, it will also be important to evaluate ecological factors to provide better cues for host specificity.


Phylogeny of Echinoderm Hemoglobins.

  • Ana B Christensen‎ et al.
  • PloS one‎
  • 2015‎

Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.


Phylogeny of Sarocladium (Hypocreales).

  • A Giraldo‎ et al.
  • Persoonia‎
  • 2015‎

The circumscription of the genus Acremonium (Hypocreales) was recently reviewed on the basis of a DNA phylogenetic study. Several species were subsequently transferred to Sarocladium, but the relationships between both genera remained unresolved. Based on multilocus phylogenetic inferences combined with phenotypic data, we have revised the species concepts within Sarocladium and some genetically related species of Acremonium. As a result of these studies, six species are described as new, viz. S. bifurcatum, S. gamsii, S. hominis, S. pseudostrictum, S. subulatum and S. summerbellii. In addition, the new combinations S. implicatum and S. terricola are proposed for A. implicatum and A. terricola, respectively. Sarocladium attenuatum is confirmed as synonym of the type species of the genus, S. oryzae. An epitype and neotype are also introduced for S. oryzae and S. implicatum, respectively. Although Sarocladium species have traditionally been considered as important phytopathogens, the genus also contains opportunistic human pathogens. This study extends the spectrum of clinical species that could be diagnosed as causal agents of human infections.


HPC: Hierarchical phylogeny construction.

  • Anindya Das‎ et al.
  • PloS one‎
  • 2019‎

Rapid improvements in DNA sequencing technology have resulted in long genome sequences for a large number of similar isolates with a wide range of single nucleotide polymorphism (SNP) rates, where some isolates can have thousands of times lower SNP rates than others. Genome sequences of this kind are a challenge to existing methods for construction of phylogenetic trees. We address the issues by developing a hierarchical approach to phylogeny construction. In this method, the construction is performed at multiple levels, where at each level, groups of isolates with similar levels of similarity are identified and their phylogenetic trees are constructed. Time savings are achieved by using a sufficiently large number of columns from the input alignment, instead of all its columns. Our results show that the new approach is 20-60 times more efficient than existing programs and more accurate in situations where highly similar isolates have a wide range of SNP rates.


RNA-Seq based phylogeny recapitulates previous phylogeny of the genus Flaveria (Asteraceae) with some modifications.

  • Ming-Ju Amy Lyu‎ et al.
  • BMC evolutionary biology‎
  • 2015‎

The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the genus Flaveria contains 21 of the 23 known Flaveria species and has been previously constructed using a combination of morphological data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnL-F).


Treelength optimization for phylogeny estimation.

  • Kevin Liu‎ et al.
  • PloS one‎
  • 2012‎

The standard approach to phylogeny estimation uses two phases, in which the first phase produces an alignment on a set of homologous sequences, and the second phase estimates a tree on the multiple sequence alignment. POY, a method which seeks a tree/alignment pair minimizing the total treelength, is the most widely used alternative to this two-phase approach. The topological accuracy of trees computed under treelength optimization is, however, controversial. In particular, one study showed that treelength optimization using simple gap penalties produced poor trees and alignments, and suggested the possibility that if POY were used with an affine gap penalty, it might be able to be competitive with the best two-phase methods. In this paper we report on a study addressing this possibility. We present a new heuristic for treelength, called BeeTLe (Better Treelength), that is guaranteed to produce trees at least as short as POY. We then use this heuristic to analyze a large number of simulated and biological datasets, and compare the resultant trees and alignments to those produced using POY and also maximum likelihood (ML) and maximum parsimony (MP) trees computed on a number of alignments. In general, we find that trees produced by BeeTLe are shorter and more topologically accurate than POY trees, but that neither POY nor BeeTLe produces trees as topologically accurate as ML trees produced on standard alignments. These findings, taken as a whole, suggest that treelength optimization is not as good an approach to phylogenetic tree estimation as maximum likelihood based upon good alignment methods.


Phytopythium: molecular phylogeny and systematics.

  • A W A M de Cock‎ et al.
  • Persoonia‎
  • 2015‎

The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and Bayesian phylogenetic analysis of the nuclear ribosomal DNA (LSU and SSU) and mitochondrial DNA cytochrome oxidase subunit 1 (COI) as well as statistical analyses of pairwise distances strongly support the status of Phytopythium as a separate phylogenetic entity. Phytopythium is morphologically intermediate between the genera Phytophthora and Pythium. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. The formal transfer of clade K species to Phytopythium and a comparison with morphologically similar species of the genera Pythium and Phytophthora is presented. A new species is described, Phytopythium mirpurense.


Eumetazoan cryptochrome phylogeny and evolution.

  • Marion F Haug‎ et al.
  • Genome biology and evolution‎
  • 2015‎

Cryptochromes (Crys) are light sensing receptors that are present in all eukaryotes. They mainly absorb light in the UV/blue spectrum. The extant Crys consist of two subfamilies, which are descendants of photolyases but are now involved in the regulation of circadian rhythms. So far, knowledge about the evolution, phylogeny, and expression of cry genes is still scarce. The inclusion of cry sequences from a wide range of bilaterian species allowed us to analyze their phylogeny in detail, identifying six major Cry subgroups. Selective gene inactivations and stabilizations in multiple chordate as well as arthropod lineages suggest several sub- and/or neofunctionalization events. An expression study performed in zebrafish, the model organism harboring the largest amount of crys, showed indeed only partially overlapping expression of paralogous mRNA, supporting gene sub- and/or neofunctionalization. Moreover, the daily cry expression in the adult zebrafish retina indicated varying oscillation patterns in different cell types. Our extensive phylogenetic analysis provides for the first time an overview of cry evolutionary history. Although several, especially parasitic or blind species, have lost all cry genes, crustaceans have retained up to three crys, teleosts possess up to seven, and tetrapods up to four crys. The broad and cyclic expression pattern of all cry transcripts in zebrafish retinal layers implies an involvement in retinal circadian processes and supports the hypothesis of several autonomous circadian clocks present in the vertebrate retina.


Neopterygian phylogeny: the merger assay.

  • Adriana López-Arbarello‎ et al.
  • Royal Society open science‎
  • 2018‎

The phylogenetic relationships of the recently described genus †Ticinolepis from the Middle Triassic of the Monte San Giorgio are explored through cladistic analyses of the so far largest morphological dataset for fossil actinopterygians, including representatives of the crown-neopterygian clades Halecomorphi, Ginglymodi and Teleostei, and merging the characters from previously published systematic studies together with newly proposed characters. †Ticinolepis is retrieved as the most basal Ginglymodi and our results support the monophyly of Teleostei and Holostei, as well as Halecomorphi and Ginglymodi within the latter clade. The patterns of relationships within these clades mostly agree with those of previous studies, although a few important differences require future research. According to our results, ionoscopiforms are not monophyletic, caturids are not amiiforms and leptolepids and luisiellids form a monophyletic clade. Our phylogenetic hypothesis confirms the rapid radiation of the holostean clades Halecomorphi and Ginglymodi during the Early and Middle Triassic and the radiation of pholidophoriform teleosts during the Late Triassic. Crown-group Halecomorphi have an enormous ghost lineage throughout half of the Mesozoic, but ginglymodians and teleosts show a second radiation during the Early Jurassic. The crown-groups of Halecomorphi, Ginglymodi and Teleostei originated within parallel events of radiation during the Late Jurassic.


ESTimating plant phylogeny: lessons from partitioning.

  • Jose E B de la Torre‎ et al.
  • BMC evolutionary biology‎
  • 2006‎

While Expressed Sequence Tags (ESTs) have proven a viable and efficient way to sample genomes, particularly those for which whole-genome sequencing is impractical, phylogenetic analysis using ESTs remains difficult. Sequencing errors and orthology determination are the major problems when using ESTs as a source of characters for systematics. Here we develop methods to incorporate EST sequence information in a simultaneous analysis framework to address controversial phylogenetic questions regarding the relationships among the major groups of seed plants. We use an automated, phylogenetically derived approach to orthology determination called OrthologID generate a phylogeny based on 43 process partitions, many of which are derived from ESTs, and examine several measures of support to assess the utility of EST data for phylogenies.


A mitogenomic phylogeny of living primates.

  • Knut Finstermeier‎ et al.
  • PloS one‎
  • 2013‎

Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels.


Phylogeny based discovery of regulatory elements.

  • Jason Gertz‎ et al.
  • BMC bioinformatics‎
  • 2006‎

Algorithms that locate evolutionarily conserved sequences have become powerful tools for finding functional DNA elements, including transcription factor binding sites; however, most methods do not take advantage of an explicit model for the constrained evolution of functional DNA sequences.


The phylogeny of fossil whip spiders.

  • Russell J Garwood‎ et al.
  • BMC evolutionary biology‎
  • 2017‎

Arachnids are a highly successful group of land-dwelling arthropods. They are major contributors to modern terrestrial ecosystems, and have a deep evolutionary history. Whip spiders (Arachnida, Amblypygi), are one of the smaller arachnid orders with ca. 190 living species. Here we restudy one of the oldest fossil representatives of the group, Graeophonus anglicus Pocock, 1911 from the Late Carboniferous (Duckmantian, ca. 315 Ma) British Middle Coal Measures of the West Midlands, UK. Using X-ray microtomography, our principal aim was to resolve details of the limbs and mouthparts which would allow us to test whether this fossil belongs in the extant, relict family Paracharontidae; represented today by a single, blind species Paracharon caecus Hansen, 1921.


The molecular phylogeny of freshwater Dothideomycetes.

  • C A Shearer‎ et al.
  • Studies in mycology‎
  • 2009‎

The freshwater Dothideomycetes species are an ecological rather than taxonomic group and comprise approximately 178 meiosporic and mitosporic species. Due to convergent or parallel morphological adaptations to aquatic habitats, it is difficult to determine phylogenetic relationships among freshwater taxa and among freshwater, marine and terrestrial taxa based solely on morphology. We conducted molecular sequence-based phylogenetic analyses using nuclear ribosomal sequences (SSU and/or LSU) for 84 isolates of described and undescribed freshwater Dothideomycetes and 85 additional taxa representative of the major orders and families of Dothideomycetes. Results indicated that this ecological group is not monophyletic and all the freshwater taxa, except three aeroaquatic Tubeufiaceae, occur in Pleosporomycetidae as opposed to Dothideomycetidae. Four clades comprised of only freshwater taxa were recovered. The largest of these is the Jahnulales clade consisting of 13 species, two of which are the anamorphs Brachiosphaera tropicalis and Xylomyces chlamydosporus. The second most speciose clade is the Lindgomycetaceae clade consisting of nine taxa including the anamorph Taeniolella typhoides. The Lindgomycetaceae clade consists of taxa formerly described in Massarina, Lophiostoma, and Massariosphaeriae.g.,Massarina ingoldiana, Lophiostoma breviappendiculatum, and Massariosphaeria typhicola and several newly described and undescribed taxa. The aquatic family Amniculicolaceae, including three species of Amniculicola, Semimassariosphaeria typhicola and the anamorph, Anguillospora longissima, was well supported. A fourth clade of freshwater species consisting of Tingoldiago graminicola,Lentithecium aquaticum,L. arundinaceum and undescribed taxon A-369-2b was not well supported with maximum likelihood bootstrap and Bayesian posterior probability. Eight freshwater taxa occurred along with terrestrial species in the Lophiostoma clades 1 and 2. Two taxa lacking statistical support for their placement with any taxa included in this study are considered singletons within Pleosporomycetidae. These singletons, Ocala scalariformis, and Lepidopterella palustris, are morphologically distinct from other taxa in Pleosporomycetidae. This study suggests that freshwater Dothideomycetes are related to terrestrial taxa and have adapted to freshwater habitats numerous times. In some cases (Jahnulales and Lindgomycetaceae), species radiation appears to have occurred. Additional collections and molecular study are required to further clarify the phylogeny of this interesting ecological group.


Time-calibrated molecular phylogeny of pteropods.

  • Alice K Burridge‎ et al.
  • PloS one‎
  • 2017‎

Pteropods are a widespread group of holoplanktonic gastropod molluscs and are uniquely suitable for study of long-term evolutionary processes in the open ocean because they are the only living metazoan plankton with a good fossil record. Pteropods have been proposed as bioindicators to monitor the impacts of ocean acidification and in consequence have attracted considerable research interest, however, a robust evolutionary framework for the group is still lacking. Here we reconstruct their phylogenetic relationships and examine the evolutionary history of pteropods based on combined analyses of Cytochrome Oxidase I, 28S, and 18S ribosomal rRNA sequences and a molecular clock calibrated using fossils and the estimated timing of the formation of the Isthmus of Panama. Euthecosomes with uncoiled shells were monophyletic with Creseis as the earliest diverging lineage, estimated at 41-38 million years ago (mya). The coiled euthecosomes (Limacina, Heliconoides, Thielea) were not monophyletic contrary to the accepted morphology-based taxonomy; however, due to their high rate heterogeneity no firm conclusions can be drawn. We found strong support for monophyly of most euthecosome genera, but Clio appeared as a polyphyletic group, and Diacavolinia grouped within Cavolinia, making the latter genus paraphyletic. The highest evolutionary rates were observed in Heliconoides inflatus and Limacina bulimoides for both 28S and 18S partitions. Using a fossil-calibrated phylogeny that sets the first occurrence of coiled euthecosomes at 79-66 mya, we estimate that uncoiled euthecosomes evolved 51-42 mya and that most extant uncoiled genera originated 40-15 mya. These findings are congruent with a molecular clock analysis using the Isthmus of Panama formation as an independent calibration. Although not all phylogenetic relationships could be resolved based on three molecular markers, this study provides a useful resource to study pteropod diversity and provides general insight into the processes that generate and maintain their diversity in the open ocean.


Phylogeny Estimation Given Sequence Length Heterogeneity.

  • Vladimir Smirnov‎ et al.
  • Systematic biology‎
  • 2021‎

Phylogeny estimation is a major step in many biological studies, and has many well known challenges. With the dropping cost of sequencing technologies, biologists now have increasingly large datasets available for use in phylogeny estimation. Here we address the challenge of estimating a tree given large datasets with a combination of full-length sequences and fragmentary sequences, which can arise due to a variety of reasons, including sample collection, sequencing technologies, and analytical pipelines. We compare two basic approaches: (1) computing an alignment on the full dataset and then computing a maximum likelihood tree on the alignment, or (2) constructing an alignment and tree on the full length sequences and then using phylogenetic placement to add the remaining sequences (which will generally be fragmentary) into the tree. We explore these two approaches on a range of simulated datasets, each with 1000 sequences and varying in rates of evolution, and two biological datasets. Our study shows some striking performance differences between methods, especially when there is substantial sequence length heterogeneity and high rates of evolution. We find in particular that using UPP to align sequences and RAxML to compute a tree on the alignment provides the best accuracy, substantially outperforming trees computed using phylogenetic placement methods. We also find that FastTree has poor accuracy on alignments containing fragmentary sequences. Overall, our study provides insights into the literature comparing different methods and pipelines for phylogenetic estimation, and suggests directions for future method development. [Phylogeny estimation, sequence length heterogeneity, phylogenetic placement.].


Phylogeny and evolution of porcine parvovirus.

  • Xiaofeng Ren‎ et al.
  • Virus research‎
  • 2013‎

Porcine parvovirus (PPV), a member of the genus Parvovirus, family Parvoviridae, is a significant causative agent in porcine reproductive failure, causing serious economic losses in the swine industry. Previous phylogenetic studies based on the NS1 or VP2 genes indicated that current PPV strains diverged 30 years ago and that VP2 was under neutral or positive selection. Our analysis of NS1, VP2 and complete ORFs indicated that the most recent common ancestor of PPV strains existed about 250 years ago and that the 127-nt repeat in the 3'NTR was present in viruses of some subclades that evolved about 80 years ago. Nucleotide substitution rates of NS1 and VP2 genes were 3.03 × 10(-5) and 1.07 × 10(-4), respectively. Both the NS1 and VP2 proteins were under purifying selection and recombination did not contribute to the genetic diversity of PPV. As expected, surface amino acids are hydrophilic and make up the majority of mutations in the VP2 protein; residues in VP2 interfaces were substituted gradually, often in conjunction with complementary substitutions in the neighboring VP2.


Partitional Classification: A Complement to Phylogeny.

  • Marc Salomon‎ et al.
  • Evolutionary bioinformatics online‎
  • 2016‎

The tree of life is currently an active object of research, though next to vertical gene transmission non vertical gene transfers proved to play a significant role in the evolutionary process. To overcome this difficulty, trees of life are now constructed from genes hypothesized vital, on the assumption that these are all transmitted vertically. This view has been challenged. As a frame for this discussion, we developed a partitional taxonomical system clustering taxa at a high taxonomical rank. Our analysis (1) selects RNase P RNA sequences of bacterial, archaeal, and eucaryal genera from genetic databases, (2) submits the sequences, aligned, to k-medoid analysis to obtain clusters, (3) establishes the correspondence between clusters and taxa, (4) constructs from the taxa a new type of taxon, the genetic community (GC), and (5) classifies the GCs: Archaea-Eukaryotes contrastingly different from the six others, all bacterial. The GCs would be the broadest frame to carry out the phylogenies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: