Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 352 papers

Photolysis of Dissolved Organic Matter over Hematite Nanoplatelets.

  • Xiaopeng Huang‎ et al.
  • Environmental science & technology‎
  • 2024‎

Solar photoexcitation of chromophoric groups in dissolved organic matter (DOM), when coupled to photoreduction of ubiquitous Fe(III)-oxide nanoparticles, can significantly accelerate DOM degradation in near-surface terrestrial systems, but the mechanisms of these reactions remain elusive. We examined the photolysis of chromophoric soil DOM coated onto hematite nanoplatelets featuring (001) exposed facets using a combination of molecular spectroscopies and density functional theory (DFT) computations. Reactive oxygen species (ROS) probed by electron paramagnetic resonance (EPR) spectroscopy revealed that both singlet oxygen and superoxide are the predominant ROS responsible for DOM degradation. DFT calculations confirmed that Fe(II) on the hematite (001) surface, created by interfacial electron transfer from photoexcited chromophores in DOM, can reduce dioxygen molecules to superoxide radicals (•O2-) through a one-electron transfer process. 1H nuclear magnetic resonance (NMR) and electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) spectroscopies show that the association of DOM with hematite enhances the cleavage of aromatic groups during photodegradation. The findings point to a pivotal role for organic matter at the interface that guides specific ROS generation and the subsequent photodegradation process, as well as the prospect of using ROS signatures as a forensic tool to help interpret more complicated field-relevant systems.


Long wavelength single photon like driven photolysis via triplet triplet annihilation.

  • Ling Huang‎ et al.
  • Nature communications‎
  • 2021‎

Photolysis has enabled the occurrence of numerous discoveries in chemistry, drug discovery and biology. However, there is a dearth of efficient long wavelength light mediated photolysis. Here, we report general and efficient long wavelength single photon method for a wide array of photolytic molecules via triplet-triplet annihilation photolysis. This method is versatile and "LEGO"-like. The light partners (the photosensitizers and the photolytic molecules) can be energetically matched to adapt to an extensive range of electromagnetic spectrum wavelengths and the diversified chemical structures of photoremovable protecting groups, photolabile linkages, as well as a broad array of targeted molecules. Compared to the existing photolysis methods, our strategy of triplet-triplet annihilation photolysis not only exhibits superior reaction yields, but also resolves the photodamage problem, regardless of whether they are single photon or multiple photon associated. Furthermore, the biological promise of this "LEGO" system was illustrated via developing ambient air-stable nanoparticles capable of triplet-triplet annihilation photolysis.


Photolysis of the Insensitive Explosive 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB).

  • Annamaria Halasz‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

The explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is of particular interest due to its extreme insensitivity to impact, shock and heat, while providing a good detonation velocity. To determine its fate under environmental conditions, TATB powder was irradiated with simulated sunlight and, in water, under UV light at 254 nm. The hydrolysis of particles submerged in neutral and alkaline solutions was also examined. We found that, by changing experimental conditions (e.g., light source, and mass and physical state of TATB), the intermediates and final products were slightly different. Mono-benzofurazan was the major transformation product in both irradiation systems. Two minor transformation products, the aci-nitro form of TATB and 3,5-diamino-2,4,6-trinitrophenol, were detected under solar light, while 1,3,5-triamino-2-nitroso-4,6-dinitrobenzene, 1,3,5-triamino-2,4-dinitrobenzene and mono-benzofuroxan were produced under UV light. The product identified as 3,5-diamino-2,4,6-trinitrophenol was identical to the one formed in the dark under alkaline conditions (pH 13) and in water incubated at either 50 °C or aged at ambient conditions. Interestingly, when only a few milligrams of TATB were irradiated with simulated sunlight, the aci-isomer and mono-benzofurazan derivative were detected; however, the hydrolysis product 3,5-diamino-2,4,6-trinitrophenol formed only much later in the absence of light. This suggests that the water released from TATB to form mono-benzofurazan was trapped in the interstitial space between the TATB layers and slowly hydrolyzed the relatively stable aci-nitro intermediate to 3,5-diamino-2,4,6-trinitrophenol. This environmentally relevant discovery provides data on the fate of TATB in surface environments exposed to sunlight, which can transform the insoluble substrate into more soluble and corrosive derivatives, such as 3,5-diamino-2,4,6-trinitrophenol, and that some hydrolytic transformation can continue even without light.


Ultraviolet photolysis of chlorpyrifos: developmental neurotoxicity modeled in PC12 cells.

  • Theodore A Slotkin‎ et al.
  • Environmental health perspectives‎
  • 2009‎

Ultraviolet photodegradation products from pesticides form both in the field and during water treatment.


Holographic photolysis for multiple cell stimulation in mouse hippocampal slices.

  • Morad Zahid‎ et al.
  • PloS one‎
  • 2010‎

Advanced light microscopy offers sensitive and non-invasive means to image neural activity and to control signaling with photolysable molecules and, recently, light-gated channels. These approaches require precise and yet flexible light excitation patterns. For synchronous stimulation of subsets of cells, they also require large excitation areas with millisecond and micrometric resolution. We have recently developed a new method for such optical control using a phase holographic modulation of optical wave-fronts, which minimizes power loss, enables rapid switching between excitation patterns, and allows a true 3D sculpting of the excitation volumes. In previous studies we have used holographic photololysis to control glutamate uncaging on single neuronal cells. Here, we extend the use of holographic photolysis for the excitation of multiple neurons and of glial cells.


Near-infrared light-triggered prodrug photolysis by one-step energy transfer.

  • Kaiqi Long‎ et al.
  • Nature communications‎
  • 2023‎

Prodrug photolysis enables spatiotemporal control of drug release at the desired lesions. For photoactivated therapy, near-infrared (NIR) light is preferable due to its deep tissue penetration and low phototoxicity. However, most of the photocleavable groups cannot be directly activated by NIR light. Here, we report a upconversion-like process via only one step of energy transfer for NIR light-triggered prodrug photolysis. We utilize a photosensitizer (PS) that can be activated via singlet-triplet (S-T) absorption and achieve photolysis of boron-dipyrromethene (BODIPY)-based prodrugs via triplet-triplet energy transfer. Using the strategy, NIR light can achieve green light-responsive photolysis with a single-photon process. A wide range of drugs and bioactive molecules are designed and demonstrated to be released under low-irradiance NIR light (100 mW/cm2, 5 min) with high yields (up to 87%). Moreover, a micellar nanosystem encapsulating both PS and prodrug is developed to demonstrate the practicality of our strategy in normoxia aqueous environment for cancer therapy. This study may advance the development of photocleavable prodrugs and photoresponsive drug delivery systems for photo-activated therapy.


A novel Doxorubicin prodrug with controllable photolysis activation for cancer chemotherapy.

  • Stuart Ibsen‎ et al.
  • Pharmaceutical research‎
  • 2010‎

Doxorubicin (DOX) is a very effective anticancer agent. However, in its pure form, its application is limited by significant cardiotoxic side effects. The purpose of this study was to develop a controllably activatable chemotherapy prodrug of DOX created by blocking its free amine group with a biotinylated photocleavable blocking group (PCB).


Photolysis of caged calcium in femtoliter volumes using two-photon excitation.

  • E B Brown‎ et al.
  • Biophysical journal‎
  • 1999‎

A new technique for the determination of the two-photon uncaging action cross section (deltau) of photolyzable calcium cages is described. This technique is potentially applicable to other caged species that can be chelated by a fluorescent indicator dye, as well as caged fluorescent compounds. The two-photon action cross sections of three calcium cages, DM-nitrophen, NP-EGTA, and azid-1, are studied in the range of excitation wavelengths between 700 and 800 nm. Azid-1 has a maximum deltau of approximately 1.4 GM at 700 nm, DM-nitrophen has a maximum deltau of approximately 0.013 GM at 730 nm, and NP-EGTA has no measurable uncaging yield. The equations necessary to predict the amount of cage photolyzed and the temporal behavior of the liberated calcium distribution under a variety of conditions are derived. These equations predict that by using 700-nm light from a Ti:sapphire laser focused with a 1.3-NA objective, essentially all of the azid-1 within the two-photon focal volume would be photolyzed with a 10-micros pulse train of approximately 7 mW average power. The initially localized distributions of free calcium will dissipate rapidly because of diffusion of free calcium and uptake by buffers. In buffer-free cytoplasm, the elevation of the calcium concentration at the center of the focal volume is expected to last for approximately 165 micros.


Bis-Rhodamines Bridged with a Diazoketone Linker: Synthesis, Structure, and Photolysis.

  • Heydar Shojaei‎ et al.
  • The Journal of organic chemistry‎
  • 2022‎

Two fluorophores bound with a short photoreactive bridge are fascinating structures and remained unexplored. To investigate the synthesis and photolysis of such dyes, we linked two rhodamine dyes via a diazoketone bridge (-COCN2-) attached to position 5' or 6' of the pendant phenyl rings. For that, the mixture of 5'- or 6'-bromo derivatives of the parent dye was prepared, transformed into 1,2-diarylacetylenes, hydrated to 1,2-diarylethanones, and converted to diazoketones Ar1COCN2Ar2. The high performance liquid chromatography (HPLC) separation gave four individual regioisomers of Ar1COCN2Ar2. Photolysis of the model compound─C6H5COCN2C6H5─in aqueous acetonitrile at pH 7.3 and under irradiation with 365 nm light provided diphenylacetic acid amide (Wolff rearrangement). However, under the same conditions, Ar1COCN2Ar2 gave mainly α-diketones Ar1COCOAr2. The migration ability of the very bulky dye residues was low, and the Wolff rearrangement did not occur. We observed only moderate fluorescence increase, which may be explained by the insufficient quenching ability of diazoketone bridge (-COCN2-) and its transformation into another (weaker) quencher, 1,2-diarylethane-1,2-dione.


Acetylacetone Photolysis at 280 nm Studied by Velocity-Map Ion Imaging.

  • Johanna E Rinaman‎ et al.
  • The journal of physical chemistry. A‎
  • 2023‎

The photolysis of acetylacetone (AcAc) has been studied using velocity-map ion imaging with pulsed nanosecond lasers. The enolone tautomer of AcAc (CH3C(O)CH═C(OH)CH3) was excited in the strong UV absorption band by UV pulses at 280 nm, preparing the S2(ππ*) state, and products were probed after a short time delay by single-photon VUV ionization at 118.2 nm. Two-color UV + VUV time-of-flight mass spectra show enhancement of fragments at m/z = 15, 42, 43, 58, and 85 at the lowest UV pulse energies and depletion of the parent ion at m/z = 100. Ion images of the five major fragments are all isotropic, indicating dissociation lifetimes that are long on the timescale of molecular rotation but shorter than the laser pulse duration (<6 ns). The m/z = 15 and 85 fragments have identical momentum distributions with moderate translational energy release, suggesting that they are formed as a neutral product pair and likely via a Norrish type I dissociation of the enolone to form CH3 + C(O)CH═C(OH)CH3 over a barrier on a triplet surface. The m/z = 43 fragment may be tentatively assigned to the alternative Norrish type I pathway that produces CH3CO + CH2C(O)CH3 on S0 following phototautomerization to the diketone, although alternative mechanisms involving dissociative ionization of a larger primary photoproduct cannot be conclusively ruled out. The m/z = 42 and 58 fragments are not momentum-matched and consequently are not formed as a neutral pair via a unimolecular dissociation pathway on S0. They also likely originate from the dissociative ionization of primary photofragments. RRKM calculations suggest that unimolecular dissociation pathways that lead to molecular products on S0 are generally slow, implying an upper-limit lifetime of <46 ns after excitation at 280 nm. Time-dependent measurements suggest that the observed photofragments likely do not arise from dissociative ionization of energized AcAc S0*.


New insights into mechanism of direct UV photolysis of p-arsanilic acid.

  • Yuliya E Tyutereva‎ et al.
  • Chemosphere‎
  • 2019‎

The mechanism of direct UV photolysis of p-arsanilic acid (p-ASA), a widely used veterinary drug, was revised by means of laser flash photolysis coupled with high resolution liquid chromatography - mass spectrometry (LC-MS). None of p-ASA triplet state or singlet oxygen was found to directly participate in the photodegradation of p-ASA as it was assumed in previous works. Here we demonstrate that the main primary photoprocess is a monophotonic ionization (ϕion266nm = 0.032) leading to the formation of hydrated electron and corresponding anilinyl cation radical. These primary species react with dissolved oxygen yielding secondary reactive oxygen species. The final organic photoproducts, such as aminophenol and different dimeric products, originate from various reactions between these secondary species. The generation of inorganic arsenic, both As(V) and As(III), was also observed in agreement with previous works. For the first time we report the quantum yield of p-ASA photodegradation, which decreases from 0.058 to 0.035 with the excitation wavelength from 222 to 308 nm.


Dimerization and oxidation of tryptophan in UV-A photolysis sensitized by kynurenic acid.

  • Ekaterina D Sormacheva‎ et al.
  • Free radical biology & medicine‎
  • 2017‎

Photoinduced generation of radicals in the eye lens may play an important role in the modification of proteins leading to their coloration, aggregation, and insolubilization. The radicals can be formed via the reactions of photoexcited endogenous chromophores of the human lens with lens proteins, in particular with tryptophan residues. In the present work we studied the reactions induced by UV-A (315-400nm) light between kynurenic acid (KNA), an effective photosensitizer present in the human lens, and N-acetyl-L-tryptophan (NTrpH) under aerobic and anaerobic conditions. Our results show that the reaction mechanism strongly depends on the presence of oxygen in solution. Under aerobic conditions, the generation of singlet oxygen is the major channel of the effective NTrpH oxidation. In argon-bubbled solutions, the quenching of triplet KNA by NTrpH results in the formation of KNA•- and NTrp• radicals. Under laser pulse irradiation, when the radical concentration is high, the main pathway of the radical decay is the back electron transfer with the restoration of initial reagents. Other reactions include (i) the radical combination yielding NTrp dimers and (ii) the oxygen atom transfer from KNA•- to NTrp• with the formation of oxidized NTrp species and deoxygenated KNA products. In continuous-wave photolysis, even trace amounts of molecular oxygen are sufficient to oxidize the majority of KNA•- radicals with the rate constant of (2.0 ± 0.2) × 109M-1s-1, leading to the restoration of KNA and the formation of superoxide radical O2•-. The latter reacts with NTrp• via either the radical combination to form oxidized NTrp (minor pathway), or the electron transfer to restore NTrpH in the ground state (major pathway). As the result, the quantum yields of the starting compound decomposition under continuous-wave anaerobic photolysis are rather low: 1.6% for NTrpH and 0.02% for KNA. The photolysis of KNA with alpha-crystallin yields the same deoxygenated KNA products as the photolysis of KNA with NTrpH, indicating the similarity of the photolysis mechanisms. Thus, inside the eye lens KNA can sensitize both protein photooxidation and protein covalent cross-linking with the minor self-degradation. This may play an important role in the lens protein modifications during the normal aging and cataract development.


Extensive field evidence for the release of HONO from the photolysis of nitrate aerosols.

  • Simone T Andersen‎ et al.
  • Science advances‎
  • 2023‎

Particulate nitrate ([Formula: see text]) has long been considered a permanent sink for NOx (NO and NO2), removing a gaseous pollutant that is central to air quality and that influences the global self-cleansing capacity of the atmosphere. Evidence is emerging that photolysis of [Formula: see text] can recycle HONO and NOx back to the gas phase with potentially important implications for tropospheric ozone and OH budgets; however, there are substantial discrepancies in "renoxification" photolysis rate constants. Using aircraft and ground-based HONO observations in the remote Atlantic troposphere, we show evidence for renoxification occurring on mixed marine aerosols with an efficiency that increases with relative humidity and decreases with the concentration of [Formula: see text], thus largely reconciling the very large discrepancies in renoxification photolysis rate constants found across multiple laboratory and field studies. Active release of HONO from aerosol has important implications for atmospheric oxidants such as OH and O3 in both polluted and clean environments.


Photoaged polystyrene microplastics serve as photosensitizers that enhance cimetidine photolysis in an aqueous environment.

  • Hui-Ju Wang‎ et al.
  • Chemosphere‎
  • 2022‎

Microplastics (MPs) have received much attention in recent years because of their continuous photoaging process in aquatic environments. However, little research has been conducted on the photochemistry of aged microplastics and the associated effects on coexisting pharmaceuticals. This study investigated the photodegradation of cimetidine via aged polystyrene microplastics (PS-MPs) with different aging times (0-7 d) under simulated sunlight irradiation (700 W/m2). PS-MPs with 5 d of aging time resulted in much faster cimetidine degradation (>99%) after 2 h of irradiation than pristine PS-MPs (<8%). The enhanced photodegradation of cimetidine by aged PS-MPs was related to the increase in chromophoric oxygenated groups (CO, C-O) followed by redshifted absorbance through the photoaging process, which induced the formation of the environmentally persistent free radicals (EPFRs) OH, 1O2 and 3PS*. However, only 1O2 and 3PS* contributed to enhanced cimetidine photodegradation, with 1O2 playing a more important role in our case. This work also demonstrated that other compounds that are susceptible to indirect photolysis, such as codeine and morphine, are likewise significantly degraded under irradiation in the presence of aged PS-MPs. Although previous studies have reported how MPs can increase the persistence of contaminants, this study demonstrates that MPs can serve as photosensitizers and alter the fate of coexisting pharmaceuticals in aquatic environments.


High-spin intermediates of the photolysis of 2,4,6-triazido-3-chloro-5-fluoropyridine.

  • Sergei V Chapyshev‎ et al.
  • Beilstein journal of organic chemistry‎
  • 2013‎

In contrast to theoretical expectations, the photolysis of 2,4,6-triazido-3-chloro-5-fluoropyridine in argon at 5 K gives rise to EPR peaks of just two triplet mononitrenes, two quintet dinitrenes, and a septet trinitrene. EPR spectral simulations in combination with DFT calculations show that observable nitrenes can be assigned to triplet 2,4-diazido-3-chloro-5-fluoropyridyl-6-nitrene (D T = 1.026 cm(-1), E T = 0), triplet 2,6-diazido-3-chloro-5-fluoropyridyl-4-nitrene (D T = 1.122 cm(-1), E T = 0.0018 cm(-1)), quintet 4-azido-3-chloro-5-fluoropyridyl-2,6-dinitrene (D Q = 0.215 cm(-1), E Q = 0.0545 cm(-1)), quintet 2-azido-3-chloro-5-fluoropyridyl-4,6-dinitrene (D Q = 0.209 cm(-1), E Q = 0.039 cm(-1)) and septet 3-chloro-5-fluoropyridyl-2,4,6-trinitrene (D S = -0.1021 cm(-1), E S = -0.0034 cm(-1)). Preferential photodissociation of the azido groups located in ortho-positions to the fluorine atom of pyridines is associated with strong π-conjugation of these groups with the pyridine ring. On photoexcitation, such azido groups are more efficiently involved in reorganization of the molecular electronic system and more easily adopt geometries of the locally excited predissociation states.


NO3- photolysis-induced advanced reduction process removes NO3- and 2, 4, 6-tribromophenol.

  • Yawei Xie‎ et al.
  • Chemosphere‎
  • 2022‎

Reductive processes are an important type of pollutant removal technology, particularly for organic halogens. NO3- is an anion and pollutant that is commonly present in wastewater. In this study, a novel advanced reduction process (ARP) induced by NO3- photolysis was developed to remove 2,4,6-tribromophenol (TBP) and NO3-. The UV/NO3-/formate acid (FA) process achieved NO3- removal and improved the debromination of TBP (initial TBP concentration = 0.1 mM) (up to 97.8%), however, their coexistence adversely affected the reductive removal of each component. Acidic conditions (pH 3 in this study) benefited the removal of NO3- and the debromination of TBP. Cl- promoted NO3- removal in UV/NO3-/FA, however, it decreased the debromination effect of TBP by 27.8%. Humic acid, a typical dissolved organic matter, suppressed NO3- removal, TBP degradation and debromination under all experimental conditions. Methyl viologen significantly inhibited the performance of ARP, and this verified the role of CO2•- in this ARP. Insufficient reduction and over-reduction of NO3- were observed under different conditions and a greater amount of NH4+ was formed under the influence of TBP. The data also indicated that as much as 80% of the removed NO3- was converted to NO2-, and this is noteworthy. Due to the reductive radicals generated from the oxidation of FA, both oxidative and reductive products of TBP were detected in the effluent. The results of this study provide a potential technology for the reductive removal of organic halogens from NO3--rich wastewater.


Photolysis of Caged-GABA Rapidly Terminates Seizures In Vivo: Concentration and Light Intensity Dependence.

  • Dan Wang‎ et al.
  • Frontiers in neurology‎
  • 2017‎

The therapy of focal epilepsy remains unsatisfactory for as many as 25% of patients. The photolysis of caged-γ-aminobutyric acid (caged-GABA) represents a novel and alternative option for the treatment of intractable epilepsy. Our previous experimental results have demonstrated that the use of blue light produced by light-emitting diode to uncage ruthenium-bipyridine-triphenylphosphine-c-GABA (RuBi-GABA) can rapidly terminate paroxysmal seizure activity both in vitro and in vivo. However, the optimal concentration of RuBi-GABA, and the intensity of illumination to abort seizures, remains unknown. The aim of this study was to explore the optimal anti-seizure effects of RuBi-GABA by using implantable fibers to introduce blue light into the neocortex of a 4-aminopyridine-induced acute seizure model in rats. We then investigated the effects of different combinations of RuBi-GABA concentrations and light intensity upon seizure. Our results show that the anti-seizure effect of RuBi-GABA has obvious concentration and light intensity dependence. This is the first example of using an implantable device for the photolysis of RuBi-GABA in the therapy of neocortical seizure, and an optimal combination of RuBi-GABA concentration and light intensity was explored. These results provide important experimental data for future clinical translational studies.


How to measure quantum yield of hydroxyl radical during photolysis of natural Fe(III) carboxylates?

  • Yuliya E Tyutereva‎ et al.
  • Chemosphere‎
  • 2022‎

The efficiency of oxidative species generation is one of the crucial parameters for the application of any system based on advanced oxidation processes (AOPs). This paper presents an approach to the correct determination of quantum yields of the hydroxyl radical upon UV photolysis of natural Fe(III) carboxylates, which are widely used in the works devoted to Environmental Chemistry and Water Treatment. The approach is based on the use of [FeOH]2+ hydroxocomplex as a reference system with the well-known quantum yield of hydroxyl radical and benzene as a selective trap for the •OH radical. For the first time, the quantum yields of the •OH radical have been determined for the most popular Fe(III) oxalate photosystem in the wide range of initial parameters (pH, excitation wavelength, concentration of oxalate and Fe(III) ions). Also the oxidation potential of Fe(III) oxalate photosystem was tested on a set of persistent organic herbicides, and quantum yields of the photodegradation of herbicides were compared with the quantum yield of the •OH radical. The Fe(III) oxalate photosystem is recommended as a suitable system for the generation of •OH radical at neutral pH under UV radiation.


Investigation of the solvent-dependent photolysis of a nonnucleoside reverse-transcriptase inhibitor, antiviral agent efavirenz.

  • Maryam A Jordaan‎ et al.
  • Antiviral chemistry & chemotherapy‎
  • 2017‎

This study sought to investigate the solvent-dependency on the photolysis of efavirenz to gain insight into the photoprocesses involved. The primary mechanisms were firstly the excited-state intramolecular proton transfer (i.e. phototautomerization), which generated the imidic acid phototautomer observed as [M-H]- quasimolecular ion at m/z 314.0070 in the high-performance liquid chromatography-electrospray ionization-time-of-flight mass spectrometry in the negative mode. Secondly, the photoinduced α-cleavage with the loss of a carbonyl group occurred (i.e. photodecarbonylation) to form the photoproduct at m/z 286.0395. The ultraviolet-visible spectra illustrated a large, hyperchromic, and slight bathochromic effect in both the π→π* and n→π* electronic transitions. The largest bathochromic effect was prevalent in the chloroform solvent, i.e. chloroform (π* = 0.58; β = 0.00; α = 0.44) > methanol (π* = 0.60; β = 0.66; α = 0.98) > acetonitrile (π* = 0.75; β = 0.40; α = 0.19). This is due to the significant interaction of the amino group with the excited carbonyl moiety which is attributed to intramolecular phototautomerization resulting in a larger energy shift of the electronic state. A plausible explanation is due to the hydrogen bond donor ability of the polar methanol and nonpolar chloroform solvents, which stabilized the polarized imidic acid phototautomer by means of hydrogen bonding interactions, as opposed to the aprotic acetonitrile which exhibits no hydrogen bonding interactions. The study would form the basis for further photolytic analyses and syntheses to generate a plethora of novel photoproducts with anti-HIV activity based on the biologically active benzoxazinone framework of efavirenz.


Inhibition of tooth demineralization caused by Streptococcus mutans biofilm via antimicrobial treatment using hydrogen peroxide photolysis.

  • Midori Shirato‎ et al.
  • Clinical oral investigations‎
  • 2023‎

An antimicrobial technique utilizing hydroxyl radicals generated by the photolysis of 3% H2O2 has been developed recently. The present study aimed to evaluate the effect of H2O2 photolysis treatment on tooth demineralization caused by Streptococcus mutans biofilm.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: