Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 405 papers

Fasting increases 18:2-containing phosphatidylcholines to complement the decrease in 22:6-containing phosphatidylcholines in mouse skeletal muscle.

  • Nanami Senoo‎ et al.
  • PloS one‎
  • 2021‎

Fasting stimulates catabolic reactions in skeletal muscle to survive nutrient deprivation. Cellular phospholipids have large structural diversity due to various polar-heads and acyl-chains that affect many cellular functions. Skeletal muscle phospholipid profiles have been suggested to be associated with muscle adaptations to nutritional and environmental status. However, the effect of fasting on skeletal muscle phospholipid profiles remains unknown. Here, we analyzed phospholipids using liquid chromatography mass spectrometry. We determined that fasting resulted in a decrease in 22:6-containing phosphatidylcholines (PCs) (22:6-PCs) and an increase in 18:2-containing PCs (18:2-PCs). The fasting-induced increase in 18:2-PCs was sufficient to complement 22:6-PCs loss, resulting in the maintenance of the total amount of polyunsaturated fatty acid (PUFA)-containing PCs. Similar phospholipid alterations occurred in insulin-deficient mice, which indicate that these observed phospholipid perturbations were characteristic of catabolic skeletal muscle. In lysophosphatidic acid acyltransferase 3-knockout muscles that mostly lack 22:6-PCs, other PUFA-containing PCs, mainly 18:2-PCs, accumulated. This suggests a compensatory mechanism for skeletal muscles to maintain PUFA-containing PCs.


Oxidized phosphatidylcholines are produced in renal ischemia reperfusion injury.

  • Zahra Solati‎ et al.
  • PloS one‎
  • 2018‎

The aim of this study was to determine the individual oxidized phosphatidylcholine (OxPC) molecules generated during renal ischemia/ reperfusion (I/R) injury.


Miscibility of Phosphatidylcholines in Bilayers: Effect of Acyl Chain Unsaturation.

  • Agata Żak‎ et al.
  • Membranes‎
  • 2023‎

The miscibility of phospholipids in a hydrated bilayer is an issue of fundamental importance for understanding the organization of biological membranes. Despite research on lipid miscibility, its molecular basis remains poorly understood. In this study, all-atom MD simulations complemented by Langmuir monolayer and DSC experiments have been performed to investigate the molecular organization and properties of lipid bilayers composed of phosphatidylcholines with saturated (palmitoyl, DPPC) and unsaturated (oleoyl, DOPC) acyl chains. The experimental results showed that the DOPC/DPPC bilayers are systems exhibiting a very limited miscibility (strongly positive values of excess free energy of mixing) at temperatures below the DPPC phase transition. The excess free energy of mixing is divided into an entropic component, related to the ordering of the acyl chains, and an enthalpic component, resulting from the mainly electrostatic interactions between the headgroups of lipids. MD simulations showed that the electrostatic interactions for lipid like-pairs are much stronger than that for mixed pairs and temperature has only a slight influence on these interactions. On the contrary, the entropic component increases strongly with increasing temperature, due to the freeing of rotation of acyl chains. Therefore, the miscibility of phospholipids with different saturations of acyl chains is an entropy-driven process.


DL- and PO-phosphatidylcholines as a promising learning and memory enhancer.

  • Tetsu Nagata‎ et al.
  • Lipids in health and disease‎
  • 2011‎

In the water maze test, oral administration with 1,2-dilynoleoyl-sn-glycero-3-phosphocholine (DLPhtCho)(5 mg/kg) alone or DLPhtCho (5 mg/kg) plus 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPhtCho)(5 mg/kg) significantly shortened the prolonged acquisition latency for rats intraperitoneally injected with scopolamine, with more efficient effect than (POPhtCho)(5 mg/kg) alone, arachidonic acid (AA)(5 mg/kg) alone, docosahexaenoic acid (DHA)(5 mg/kg) alone, or 1-palmitoyl-2-linoleil-sn-glycero-3-phosphoserine (PLPhtSer)(5 mg/kg) alone. POPhtCho (5 mg/kg) alone or DLPhtCho (5 mg/kg) plus POPhtCho (5 mg/kg) also significantly shortened the prolonged retention latency for rats intraperitoneally injected with scopolamine, but otherwise no significant effect was obtained with DLPhtCho (5 mg/kg) alone, AA (5 mg/kg) alone, DHA (5 mg/kg) alone, or PLPhtSer (5 mg/kg) alone. Oral co-administration with DLPhtCho (5 mg/kg) and POPhtCho (5 mg/kg) significantly shortened the acquisition latency for rats untreated with scopolamine as compared with the latency for administration with polyethylene glycol (PEG), DLPhtCho alone at doses of 5 and 10 mg/kg, or POPhtCho alone at doses of 5 and 10 mg/kg, while no efficient effect on the retention latency was obtained. To assess the effect of DLPhtCho and POPhtCho on cognitive functions for humans, Mini Mental State Examination (MMSE) test was performed in subjects with cognitive disorders (the average MMSE score, 15). Oral co-intake with DLPhtCho (50 mg) and POPhtCho (45 mg) once after breakfast everyday raised the score to over 20, corresponding to normal cognitive functions, throughout 5 months after intake, and the increase in the score was significantly greater than that for oral intake with DLPhtCho (100 mg/day) alone or POPhtCho (90 mg/kg) alone. Taken together, the results of the present study show that co-intake with DLPhtCho and POPhtCho could enhance learning and memory ability and improve cognitive disorders for both the animals and humans with a promising efficacy.


Phosphatidylcholines from Pieris brassicae eggs activate an immune response in Arabidopsis.

  • Elia Stahl‎ et al.
  • eLife‎
  • 2020‎

Recognition of conserved microbial molecules activates immune responses in plants, a process termed pattern-triggered immunity (PTI). Similarly, insect eggs trigger defenses that impede egg development or attract predators, but information on the nature of egg-associated elicitors is scarce. We performed an unbiased bioactivity-guided fractionation of eggs of the butterfly Pieris brassicae. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry of active fractions led to the identification of phosphatidylcholines (PCs). PCs are released from insect eggs, and they induce salicylic acid and H2O2 accumulation, defense gene expression and cell death in Arabidopsis, all of which constitute a hallmark of PTI. Active PCs contain primarily C16 to C18-fatty acyl chains with various levels of desaturation, suggesting a relatively broad ligand specificity of cell-surface receptor(s). The finding of PCs as egg-associated molecular patterns (EAMPs) illustrates the acute ability of plants to detect conserved immunogenic patterns from their enemies, even from seemingly passive structures such as eggs.


Syntheses and cytotoxicity of phosphatidylcholines containing ibuprofen or naproxen moieties.

  • Marek Kłobucki‎ et al.
  • Scientific reports‎
  • 2019‎

In this study, novel phosphatidylcholines containing ibuprofen or naproxen moieties were synthesized in good yields and high purities. Under the given synthesis conditions, the attached drug moieties racemized, which resulted in the formation of phospholipid diastereomers. The comperative studies of the cytotoxicity of ibuprofen, naproxen and their phosphatidylcholine derivatives against human promyelocytic leukemia HL-60, human colon carcinoma Caco-2, and porcine epithelial intestinal IPEC-J2 cells were carried out. The results of these studies indicated that phospholipids with NSAIDs at both sn-1 and sn-2 positions (15 and 16) were more toxic than ibuprofen or naproxen themselves, whereas 2-lysophosphatidylcholines (7 and 8) were less toxic against all tested cell lines. Phospholipids with NSAIDs at sn-1 and palmitic acid at sn-2 (9 and 10) were also less toxic against Caco-2 and normal cells (IPEC-J2).


High level of phosphatidylcholines/lysophosphatidylcholine ratio in urine is associated with prostate cancer.

  • Xin Li‎ et al.
  • Cancer science‎
  • 2021‎

The altered levels of phospholipids (PLs) and lysophospholipids (LPLs) in prostate cancer (CaP) and benign tissues in our previous findings prompted us to explore PLs and LPLs as potential biomarkers for CaP. Urinary lipidomics has attracted increasing attention in clinical diagnostics and prognostics for CaP. In this study, 31 prostate tissues obtained from radical prostatectomy were assessed using high-resolution matrix-assisted laser desorption/ionization imaging mass spectrometry (HR-MALDI-IMS). Urine samples were collected after digital rectal examination (DRE), and urinary lipids were extracted using the acidified Bligh-Dyer method. The discovery set comprised 75 patients with CaP and 44 with benign prostatic hyperplasia (BPH) at Kyoto University Hospital; the validation set comprised 74 patients with CaP and 59 with BPH at Osaka University Hospital. Urinary lipidomic screening was performed using MALDI time-of-flight MS (MALDI-TOF/MS). The levels of urinary lysophosphatidylcholine (LPC) and phosphatidylcholines (PCs) were compared between the CaP and BPH groups. The (PC [34:2] + PC [34:1])/LPC (16:0) ratio was significantly higher (P < .001) in CaP tissues than in benign epithelial tissues. The urinary PCs/LPC ratio was significantly higher (P < .001) in the CaP group than in the BPH group in the discovery and validation sets.


Platelet and Plasma Phosphatidylcholines as Biomarkers to Diagnose Cerebral Amyloid Angiopathy.

  • Bettina M Foidl‎ et al.
  • Frontiers in neurology‎
  • 2020‎

Alzheimer's disease is a severe neurodegenerative brain disorder and characterized by deposition of extracellular toxic β-amyloid (42) plaques and the formation of intracellular tau neurofibrillary tangles. In addition, β-amyloid peptide deposits are found in the walls of small to medium blood vessels termed cerebral amyloid angiopathy (CAA). However, the pathogenesis of CAA appears to differ from that of senile plaques in several aspects. The aim of the present study was to analyze different lipids [phosphatidylcholines (PCs) and lysoPCs] in platelets and plasma of a novel mouse model of sporadic CAA (1). Our data show that lipids are significantly altered in plasma of the CAA mice. Levels of eight diacyl PCs, two acyl-alkyl PCs, and five lysoPCs were significantly increased. In extracts of mouse blood platelets, four diacyl and two acyl-alkyl PCs (but not lysoPCs) were significantly altered. Our data show that lipids are changed in CAA with a specific pattern, and we provide for the first time evidence that selected platelet and plasma PCs may help to characterize CAA.


Structural library and visualization of endogenously oxidized phosphatidylcholines using mass spectrometry-based techniques.

  • Yuta Matsuoka‎ et al.
  • Nature communications‎
  • 2021‎

Although oxidized phosphatidylcholines (oxPCs) play critical roles in numerous pathological events, the type and production sites of endogenous oxPCs remain unknown because of the lack of structural information and dedicated analytical methods. Herein, a library of 465 oxPCs is constructed using high-resolution mass spectrometry-based non-targeted analytical methods and employed to detect 70 oxPCs in mice with acetaminophen-induced acute liver failure. We show that doubly oxygenated polyunsaturated fatty acid (PUFA)-PCs (PC PUFA;O2), containing epoxy and hydroxide groups, are generated in the early phase of liver injury. Hybridization with in-vivo 18O labeling and matrix-assisted laser desorption/ionization-tandem MS imaging reveals that PC PUFA;O2 are accumulated in cytochrome P450 2E1-expressing and glutathione-depleted hepatocytes, which are the major sites of liver injury. The developed library and visualization methodology should facilitate the characterization of specific lipid peroxidation events and enhance our understanding of their physiological and pathological significance in lipid peroxidation-related diseases.


Lipidomic studies reveal two specific circulating phosphatidylcholines as surrogate biomarkers of the omega-3 index.

  • Ritchie Ly‎ et al.
  • Journal of lipid research‎
  • 2023‎

Optimal dietary intake of omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFAs) is critical to human health across the lifespan. However, omega-3 index (O3I) determination is not routinely assessed due to complicated procedures for n3-LCPUFA analysis from the phospholipid (PL) fraction of erythrocytes. Herein, a high-throughput method for lipidomics based on multisegment injection-nonaqueous capillary electrophoresis-mass spectrometry was applied to identify circulating PLs as surrogate biomarkers of O3I in two randomized placebo-controlled trials. An untargeted lipidomic data workflow using a subgroup analysis of serum extracts from sunflower oil versus high-dose fish oil (FO)-supplemented participants revealed that ingested n3-LCPUFAs were primarily distributed as their phosphatidylcholines (PCs) relative to other PL classes. In both high-dose FO (5.0 g/day) and EPA-only trials (3.0 g/day), PC (16:0_20:5) was the most responsive PL, whereas PC (16:0_22:6) was selective to DHA-only supplementation. We also demonstrated that the sum concentration of both these PCs in fasting serum or plasma samples was positively correlated to the O3I following FO (r = 0.708, P = 1.02 × 10-11, n = 69) and EPA- or DHA-only supplementation (r = 0.768, P = 1.01 × 10-33, n = 167). Overall, DHA was more effective in improving the O3I (ΔO3I = 4.90 ± 1.33%) compared to EPA (ΔO3I = 2.99 ± 1.19%) in young Canadian adults who had a poor nutritional status with an O3I (3.50 ± 0.68%) at baseline. Our method enables the rapid assessment of the O3I by directly measuring two circulating PC species in small volumes of blood, which may facilitate screening applications for population and precision health.


Altered levels of acylcarnitines, phosphatidylcholines, and sphingomyelins in peritoneal fluid from ovarian endometriosis patients.

  • Katja Vouk‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2016‎

Endometriosis is a complex, polygenic, and estrogen-dependent disease that affects 6% to 10% of women of reproductive age, and 30% to 50% of women with infertility and/or pelvic pain. Surgical diagnosis of endometriosis is still the gold standard, as there are currently no diagnostic biomarkers available. Due to the invasive diagnostics, it can take up to 11 years before affected women are diagnosed and receive the appropriate treatment. We performed a targeted metabolomics study to search for potential semi-invasive biomarkers in peritoneal fluid from endometriosis patients. Our case-control study comprised 29 ovarian endometriosis patients and 36 healthy control women. The 148 metabolites included acylcarnitines, glycerophospholipids, and sphingolipids, which were quantified by electrospray ionization tandem mass spectrometry. The strength of association between the metabolites and the metabolite ratios and disease was assessed using crude and adjusted odds ratios. The best combination of biomarkers was then selected by performing step-wise logistic regression. Our analysis reveals significantly decreased concentrations of 10 metabolites, of carnitine and acylcarnitines (C0, C8:1, C6C4:1 DC, C10:1), phosphatidylcholines (PC aa C38:3, PC aa C38:4, PC aa C40:4, PC aa C40:5), and sphingomyelins (SM C16:1, SM C18:1), and 125 significantly altered metabolite ratios in patients versus control women. The best model includes two ratios: a carnitine to a phosphatidylcholine (C0/PC ae C36:0); and between two phosphatidylcholines (PC aa C30:0/PC ae C32:2). When adjusted for age, this provides sensitivity of 82.8% and specificity of 94.4%, with AUC of 0.944. Our study supports the importance of carnitine, phosphatidylcholine, and sphingomyelin metabolites in the pathophysiology of endometriosis, and confirms the potential for the combination of individual metabolite ratios to provide biomarkers for semi-invasive diagnostics.


Structure and Interdigitation of Chain-Asymmetric Phosphatidylcholines and Milk Sphingomyelin in the Fluid Phase.

  • Moritz P K Frewein‎ et al.
  • Symmetry‎
  • 2021‎

We addressed the frequent occurrence of mixed-chain lipids in biological membranes and their impact on membrane structure by studying several chain-asymmetric phosphatidylcholines and the highly asymmetric milk sphingomyelin. Specifically, we report trans-membrane structures of the corresponding fluid lamellar phases using small-angle X-ray and neutron scattering, which were jointly analyzed in terms of a membrane composition-specific model, including a headgroup hydration shell. Focusing on terminal methyl groups at the bilayer center, we found a linear relation between hydrocarbon chain length mismatch and the methyl-overlap for phosphatidylcholines, and a non-negligible impact of the glycerol backbone-tilting, letting the sn1-chain penetrate deeper into the opposing leaflet by half a CH2 group. That is, penetration-depth differences due to the ester-linked hydrocarbons at the glycerol backbone, previously reported for gel phase structures, also extend to the more relevant physiological fluid phase, but are significantly reduced. Moreover, milk sphingomyelin was found to follow the same linear relationship suggesting a similar tilt of the sphingosine backbone. Complementarily performed molecular dynamics simulations revealed that there is always a part of the lipid tails bending back, even if there is a high interdigitation with the opposing chains. The extent of this back-bending was similar to that in chain symmetric bilayers. For both cases of adaptation to chain length mismatch, chain-asymmetry has a large impact on hydrocarbon chain ordering, inducing disorder in the longer of the two hydrocarbons.


LC-MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma.

  • Sartaj Ahmad Mir‎ et al.
  • Journal of proteomics‎
  • 2015‎

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers with poor prognosis. Here, we carried out liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS)-based untargeted metabolomic analysis of ESCC serum samples. Statistical analysis resulted in the identification of 652 significantly dysregulated molecular features in serum from ESCC patients as compared to the healthy subjects. Phosphatidylcholines were identified as a major class of dysregulated metabolites in this study suggesting potential perturbation of phosphocholine metabolism in ESCC. By using a targeted MS/MS approach both in positive and negative mode, we were able to characterize and confirm the structure of seven metabolites. Our study describes a quantitative LC-MS approach for characterizing dysregulated lipid metabolism in ESCC.


Association between Plasma Ceramides and Phosphatidylcholines and Hippocampal Brain Volume in Late Onset Alzheimer's Disease.

  • Min Kim‎ et al.
  • Journal of Alzheimer's disease : JAD‎
  • 2017‎

Lipids such as ceramides and phosphatidylcholines (PC) have been found altered in the plasma of Alzheimer's disease (AD) patients in a number of discovery studies. For this reason, the levels of 6 ceramides and 3 PCs, with different fatty acid length and saturation levels, were measured in the plasma from 412 participants (AD n = 205, Control n = 207) using mass spectrometry coupled with ultra-performance liquid chromatography. After this, associations with AD status, brain atrophy, and age-related effects were studied. In the plasma of AD participants, cross-sectional analysis revealed elevated levels of three ceramides (Cer16:0 p < 0.01, Cer18:0 p < 0.01, Cer24:1 p < 0.05). In addition, two PCs in AD plasma (PC36:5 p < 0.05, PC38:6 p < 0.05) were found to be depleted compared to the control group, with PC36:5 also associating with hippocampal atrophy (p < 0.01). Age-specific analysis further revealed that levels of Cer16:0, Cer18:0, and Cer20:0 were associated with hippocampal atrophy only in younger participants (age < 75, p < 0.05), while all 3 PCs did so in the older participants (age > 75, p < 0.05). PC36:5 was associated with AD status in the younger group (p < 0.01), while PC38:6 and 40:6 did so in the older group (p < 0.05). In this study, elevated ceramides and depleted PCs were found in the plasma from 205 AD volunteers. Our findings also suggest that dysregulation in PC and ceramide metabolism could be occurring in different stages of AD progression.


Analysis of fragmented oxidized phosphatidylcholines in human plasma using mass spectrometry: Comparison with immune assays.

  • Maria Philippova‎ et al.
  • Free radical biology & medicine‎
  • 2019‎

Circulating oxidized phospholipids are increasingly recognized as biomarkers of atherosclerosis. Clinical association studies have been mainly performed using an immune assay based on monoclonal antibody E06, which recognizes a variety of molecular species of oxidized phosphatidylcholine (OxPC) in lipoproteins, cell membranes or covalently bound to plasma proteins. Accumulating evidence shows that individual molecular species of OxPC demonstrate different biological activities and have different half-life times. Therefore, it is likely that certain molecular species can be associated with pathology more strongly than others. This hypothesis can only be tested using LC-MS/MS allowing quantification of individual molecular species of OxPCs. In order to ensure that laborious LC-MS/MS methods do not simply replicate the results of a technically simpler E06-OxPCs assay, we have performed relative quantification of 8 truncated molecular species of OxPCs in plasma of 132 probands and compared the data with the results of the E06-OxPCs and OxLDL assays. We have found a strong correlation between individual molecular species of OxPCs but only a weak correlation of LC-MS/MS-OxPCs data with the E06-OxPCs assay and no correlation with the OxLDL assay. Furthermore, in contrast to the results of E06-OxPCs or OxLDL assays, 7 out of 8 OxPC species were associated with hypertension. The data suggest that the results of the LC-MS/MS-OxPCs assay do not replicate the results of two ELISA-based lipid oxidation tests and therefore may produce additional diagnostic information. These findings necessitate development of simplified mass spectrometric procedures for high-throughput and affordable analysis of selected molecular species of OxPCs.


FACS-assisted single-cell lipidome analysis of phosphatidylcholines and sphingomyelins in cells of different lineages.

  • Sarah E Hancock‎ et al.
  • Journal of lipid research‎
  • 2023‎

Recent advances in single-cell genomics and transcriptomics technologies have transformed our understanding of cellular heterogeneity in growth, development, ageing, and disease; however, methods for single-cell lipidomics have comparatively lagged behind in development. We have developed a method for the detection and quantification of a wide range of phosphatidylcholine and sphingomyelin species from single cells that combines fluorescence-assisted cell sorting with automated chip-based nanoESI and shotgun lipidomics. We show herein that our method is capable of quantifying more than 50 different phosphatidylcholine and sphingomyelin species from single cells and can easily distinguish between cells of different lineages or cells treated with exogenous fatty acids. Moreover, our method can detect more subtle differences in the lipidome between cell lines of the same cancer type. Our approach can be run in parallel with other single-cell technologies to deliver near-complete, high-throughput multi-omics data on cells with a similar phenotype and has the capacity to significantly advance our current knowledge on cellular heterogeneity.


An increase of phosphatidylcholines in follicular fluid implies attenuation of embryo quality on day 3 post-fertilization.

  • Ju Wang‎ et al.
  • BMC biology‎
  • 2021‎

Although oocyte quality is the dominant factor determining embryo quality, few studies have been conducted to evaluate embryo quality based on the metabolites related to the oocyte. With quantification of the follicular fluid (FF) metabolites, in assisted reproductive technology (ART), this study sought to evaluate the embryo or oocyte quality through an informative approach.


Slow relaxation process in the main transition of phosphatidylcholines studied with heat capacity spectroscopy. I. Multilamellar vesicles.

  • H Yao‎ et al.
  • Biochimica et biophysica acta‎
  • 1994‎

Extremely slow relaxation processes have been examined near the main transition of multilamellar vesicle samples of dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) with a heat capacity spectroscopic technique. The dynamic heat capacity showed a significant frequency dependence in the studied frequency region of 0.5 mHz to 50 mHz. The relaxation observed here has been analyzed with the Cole-Cole equation. The mean relaxation times were 120 s in DMPC, and 260 s in DPPC. The relaxation showed a polydispersive character. The parameter beta was around 0.5 in both DMPC and DPPC.


Plasma phosphatidylcholines and vitamin B12/folate levels are possible prognostic biomarkers for progression of Alzheimer's disease.

  • Imrich Blasko‎ et al.
  • Experimental gerontology‎
  • 2021‎

In clinical practice it is important to identify patients suffering from mild cognitive impairment (MCI) who will progress to Alzheimer's disease (AD). The purpose of this study is to investigate whether lipid metabolites and vitamin B12 and folate levels are effective biomarker for an accurate prediction of MCI-to-AD conversion.


Synthesis and biological evaluation of phosphatidylcholines with cinnamic and 3-methoxycinnamic acids with potent antiproliferative activity.

  • Marta Czarnecka‎ et al.
  • RSC advances‎
  • 2018‎

A series of eight novel phosphatidylcholines containing cinnamic or 3-methoxycinnamic acids (3a-b, 5a-b, 9a-b, 10a-b) at sn-1 and/or sn-2 positions were synthesized and tested for their antiproliferative activity in an in vitro model against representative six human cancer cell lines (MV4-11, A549, MCF-7, LoVo, LoVo/DX, HepG2) and a normal cell line BALB/3T3. The structures of the new compounds were confirmed by spectral analysis. Biological evaluation revealed that all the tested conjugates exhibited higher antitumor activity than the corresponding free aromatic acids. Compounds 3b and 9b turned out to be the most active, with IC50 values of 32.1 and 30.5 μM against the LoVo/DX and MV4-11 cell lines, respectively. Studies of the mechanism of the antitumor action were carried out for 1-palmitoyl-2-cinnamoyl-sn-glycero-3-phosphocholine (5a), and it was shown to be active toward almost all the tested types of cancer cells, showing that this compound could effectively arrest the cell cycle in G2/M and decrease the mitochondrial membrane potential of leukemia MV4-11 cells. The obtained results proved that the strategy of the incorporation of cinnamic and 3-methoxycinnamic acids into phospholipids could expand their potential application in industry, as well as could improve their antiproliferative activity and selectivity toward cancer cell lines.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: