Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis.

  • Zhenlu Zhang‎ et al.
  • PLoS pathogens‎
  • 2018‎

Replication of positive-strand RNA viruses [(+)RNA viruses] takes place in membrane-bound viral replication complexes (VRCs). Formation of VRCs requires virus-mediated manipulation of cellular lipid synthesis. Here, we report significantly enhanced brome mosaic virus (BMV) replication and much improved cell growth in yeast cells lacking PAH1 (pah1Δ), the sole yeast ortholog of human LIPIN genes. PAH1 encodes Pah1p (phosphatidic acid phosphohydrolase), which converts phosphatidate (PA) to diacylglycerol that is subsequently used for the synthesis of the storage lipid triacylglycerol. Inactivation of Pah1p leads to altered lipid composition, including high levels of PA, total phospholipids, ergosterol ester, and free fatty acids, as well as expansion of the nuclear membrane. In pah1Δ cells, BMV replication protein 1a and double-stranded RNA localized to the extended nuclear membrane, there was a significant increase in the number of VRCs formed, and BMV genomic replication increased by 2-fold compared to wild-type cells. In another yeast mutant that lacks both PAH1 and DGK1 (encodes diacylglycerol kinase converting diacylglycerol to PA), which has a normal nuclear membrane but maintains similar lipid compositional changes as in pah1Δ cells, BMV replicated as efficiently as in pah1Δ cells, suggesting that the altered lipid composition was responsible for the enhanced BMV replication. We further showed that increased levels of total phospholipids play an important role because the enhanced BMV replication required active synthesis of phosphatidylcholine, the major membrane phospholipid. Moreover, overexpression of a phosphatidylcholine synthesis gene (CHO2) promoted BMV replication. Conversely, overexpression of PAH1 or plant PAH1 orthologs inhibited BMV replication in yeast or Nicotiana benthamiana plants. Competing with its host for limited resources, BMV inhibited host growth, which was markedly alleviated in pah1Δ cells. Our work suggests that Pah1p promotes storage lipid synthesis and thus represses phospholipid synthesis, which in turn restricts both viral replication and cell growth during viral infection.


Phosphatidate phosphatase Lipin1 involves in diabetic encephalopathy pathogenesis via regulating synaptic mitochondrial dynamics.

  • Xiaolin Han‎ et al.
  • Redox biology‎
  • 2024‎

Diabetic encephalopathy (DE) is a common central nervous system complication of diabetes mellitus without effective therapy currently. Recent studies have highlighted synaptic mitochondrial damages as a possible pathological basis for DE, but the underlying mechanisms remain unclear. Our previous work has revealed that phosphatidate phosphatase Lipin1, a critical enzyme involved with phospholipid synthesis, is closely related to the pathogenesis of DE. Here, we demonstrate that Lipin1 is significantly down-regulated in rat hippocampus of DE. Knock-down of Lipin1 within hippocampus of normal rats induces dysregulation of homeostasis in synaptic mitochondrial dynamics with an increase of mitochondrial fission and a decrease of fusion, then causes synaptic mitochondrial dysfunction, synaptic plasticity deficits as well as cognitive impairments, similar to that observed in response to chronic hyperglycemia exposure. In contrast, an up-regulation of Lipin1 within hippocampus in the DE model ameliorates this cascade of dysfunction. We also find that the effect of Lipin1 that regulating mitochondrial dynamics results from maintaining appropriate phospholipid components in the mitochondrial membrane. In conclusion, alterations in hippocampal Lipin1 contribute to hippocampal synaptic mitochondrial dysfunction and cognitive deficits observed in DE. Targeting Lipin1 might be a potential therapeutic strategy for the clinical treatment of DE.


Mutant phosphatidate phosphatase Pah1-W637A exhibits altered phosphorylation, membrane association, and enzyme function in yeast.

  • Yeonhee Park‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the dephosphorylation of PA to produce diacylglycerol, controls the bifurcation of PA into triacylglycerol synthesis and phospholipid synthesis. Pah1 is inactive in the cytosol as a phosphorylated form and becomes active on the membrane as a dephosphorylated form by the Nem1-Spo7 protein phosphatase. We show that the conserved Trp-637 residue of Pah1, located in the intrinsically disordered region, is required for normal synthesis of membrane phospholipids, sterols, triacylglycerol, and the formation of lipid droplets. Analysis of mutant Pah1-W637A showed that the tryptophan residue is involved in the phosphorylation-mediated/dephosphorylation-mediated membrane association of the enzyme and its catalytic activity. The endogenous phosphorylation of Pah1-W637A was increased at the sites of the N-terminal region but was decreased at the sites of the C-terminal region. The altered phosphorylation correlated with an increase in its membrane association. In addition, membrane-associated PA phosphatase activity in vitro was elevated in cells expressing Pah1-W637A as a result of the increased membrane association of the mutant enzyme. However, the inherent catalytic function of Pah1 was not affected by the W637A mutation. Prediction of Pah1 structure by AlphaFold shows that Trp-637 and the catalytic residues Asp-398 and Asp-400 in the haloacid dehalogenase-like domain almost lie in the same plane, suggesting that these residues are important to properly position the enzyme for substrate recognition at the membrane surface. These findings underscore the importance of Trp-637 in Pah1 regulation by phosphorylation, membrane association of the enzyme, and its function in lipid synthesis.


Novel function of the human presqualene diphosphate phosphatase as a type II phosphatidate phosphatase in phosphatidylcholine and triacylglyceride biosynthesis pathways.

  • Spyros Theofilopoulos‎ et al.
  • Biochimica et biophysica acta‎
  • 2008‎

Phosphatidate phosphatases, PAPs, are key enzymes in lipid biosynthesis and signaling. Type I PAP enzymes participate in de-novo phospholipid biosynthesis, whereas type II PAP enzymes have an established role in lipid signaling. To identify novel human type II PAPs potentially involved in de-novo phospholipid synthesis we used bioinformatics to screen for enzymes with an active site exposed to the cytosolic side of membranes. Two related enzymes, a novel lipid phosphatase related protein (LPRP-A) and a presqualene diphosphate phosphatase (PA-PSP) met this criterion. PA-PSP and LPRP-A have differential tissue and subcellular distribution, and novel yet differential roles in lipid metabolism. Specifically, PA-PSP, but not LPRP-A, was a potent Mg(2+)-independent, NEM-insensitive type II PAP. Subcellular fractionation detection indicated that both proteins were associated with membranes, while immunofluorescent deconvolution imaging revealed that these membranes were exclusively from the nuclear envelope and the endoplasmic reticulum. PA-PSP overexpression, but not LPRP-A, accelerated the synthesis of phosphatidylcholine and caused accumulation of triacylglycerol with concomitant decrease in the rate of phosphatidylinositol synthesis. Coexpression of human CTP:phosphocholine cytidylyltransferase-alpha with PA-PSP enhanced the effect of PA-PSP on phosphatidylcholine levels, yet attenuated its effect on triacylglycerol. Taken together, our studies provide the first evidence that the eukaryotic, ER-resident PA-PSP is a bifunctional enzyme with specific type II PAP activity, and regulates, in addition to type I PAPs, the de-novo biosynthesis of phospholipids and triacylglycerols.


The MoPah1 phosphatidate phosphatase is involved in lipid metabolism, development, and pathogenesis in Magnaporthe oryzae.

  • Juan Zhao‎ et al.
  • Molecular plant pathology‎
  • 2022‎

As with the majority of the hemibiotrophic fungal pathogens, the rice blast fungus Magnaporthe oryzae uses highly specialized infection structures called appressoria for plant penetration. Appressoria differentiated from germ tubes rely on enormous turgor pressure to directly penetrate the plant cell, in which process lipid metabolism plays a critical role. In this study, we characterized the MoPAH1 gene in M. oryzae, encoding a putative highly conserved phosphatidate phosphatase. The expression of MoPAH1 was up-regulated during plant infection. The MoPah1 protein is expressed at all developmental and infection stages, and is localized to the cytoplasm. Disruption of MoPAH1 causes pleiotropic defects in vegetative growth, sporulation, and heat tolerance. The lipid profile is significantly altered in the Mopah1 mutant. Lipidomics assays showed that the level of phosphatidic acid (PA) was increased in the mutant, which had reduced levels of diacylglycerol and triacylglycerol. Using a PA biosensor, we showed that the increased level of PA in the Mopah1 mutant was primarily accumulated in the vacuole. The Mopah1 mutant was blocked in both conidiation and the formation of appressorium-like structures at hyphal tips. It was nonpathogenic and failed to cause any blast lesions on rice and barley seedlings. RNA sequencing analysis revealed that MoPah1 regulates the expression of transcription factors critical for various developmental and infection-related processes. The Mopah1 mutant was reduced in the expression and phosphorylation of Pmk1 MAP kinase and delayed in autophagy. Our study demonstrates that MoPah1 is necessary for lipid metabolism, fungal development, and pathogenicity in M. oryzae.


Molecular Characterization of a Tolerant Saline-Alkali Chlorella Phosphatidate Phosphatase That Confers NaCl and Sorbitol Tolerance.

  • Jingang Wang‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

The gene encoding a putative phosphatidate phosphatase (PAP) from tolerant saline-alkali (TSA) Chlorella, ChPAP, was identified from a yeast cDNA library constructed from TSA Chlorella after a NaCl treatment. ChPAP expressed in yeast enhanced its tolerance to NaCl and sorbitol. The ChPAP protein from a GFP-tagged construct localized to the plasma membrane and the lumen of vacuoles. The relative transcript levels of ChPAP in Chlorella cells were strongly induced by NaCl and sorbitol as assessed by northern blot analyses. Thus, ChPAP may play important roles in promoting Na-ion movement into the cell and maintaining the cytoplasmic ion balance. In addition, ChPAP may catalyze diacylglycerol pyrophosphate to phosphatidate in vacuoles.


Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p.

  • Eleftherios Karanasios‎ et al.
  • Molecular biology of the cell‎
  • 2013‎

Lipins are evolutionarily conserved phosphatidate phosphatases that perform key functions in phospholipid, triglyceride, and membrane biogenesis. Translocation of lipins on membranes requires their dephosphorylation by the Nem1p-Spo7p transmembrane phosphatase complex through a poorly understood mechanism. Here we identify the carboxy-terminal acidic tail of the yeast lipin Pah1p as an important regulator of this step. Deletion or mutations of the tail disrupt binding of Pah1p to the Nem1p-Spo7p complex and Pah1p membrane translocation. Overexpression of Nem1p-Spo7p drives the recruitment of Pah1p in the vicinity of lipid droplets in an acidic tail-dependent manner and induces lipid droplet biogenesis. Genetic analysis shows that the acidic tail is essential for the Nem1p-Spo7p-dependent activation of Pah1p but not for the function of Pah1p itself once it is dephosphorylated. Loss of the tail disrupts nuclear structure, INO1 gene expression, and triglyceride synthesis. Similar acidic sequences are present in the carboxy-terminal ends of all yeast lipin orthologues. We propose that acidic tail-dependent binding and dephosphorylation of Pah1p by the Nem1p-Spo7p complex is an important determinant of its function in lipid and membrane biogenesis.


Identification of propranolol and derivatives that are chemical inhibitors of phosphatidate phosphatase as potential broad-spectrum fungicides.

  • Juan Zhao‎ et al.
  • Plant communications‎
  • 2024‎

Plant diseases cause enormous economic losses in agriculture and threaten global food security, and application of agrochemicals is an important method of crop disease control. Exploration of disease-resistance mechanisms and synthesis of highly bioactive agrochemicals are thus important research objectives. Here, we show that propranolol, a phosphatidate phosphatase (Pah) inhibitor, effectively suppresses fungal growth, sporulation, sexual reproduction, and infection of diverse plants. The MoPah1 enzyme activity of the rice blast fungus Magnaporthe oryzae is inhibited by propranolol. Alterations in lipid metabolism are associated with inhibited hyphal growth and appressorium formation caused by propranolol in M. oryzae. Propranolol inhibits a broad spectrum of 12 plant pathogens, effectively inhibiting infection of barley, wheat, maize, tomato, and pear. To improve antifungal capacity, we synthesized a series of propranolol derivatives, one of which shows a 16-fold increase in antifungal ability and binds directly to MoPah1. Propranolol and its derivatives can also reduce the severity of rice blast and Fusarium head blight of wheat in the field. Taken together, our results demonstrate that propranolol suppresses fungal development and infection through mechanisms involved in lipid metabolism. Propranolol and its derivatives may therefore be promising candidates for fungicide development.


Glycogen synthase kinase homolog Rim11 regulates lipid synthesis through the phosphorylation of Pah1 phosphatidate phosphatase in yeast.

  • Shoily Khondker‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Pah1 phosphatidate (PA) phosphatase plays a major role in triacylglycerol synthesis in Saccharomyces cerevisiae by producing its precursor diacylglycerol and concurrently regulates de novo phospholipid synthesis by consuming its precursor PA. The function of Pah1 requires its membrane localization, which is controlled by its phosphorylation state. Pah1 is dephosphorylated by the Nem1-Spo7 protein phosphatase, whereas its phosphorylation occurs by multiple known and unknown protein kinases. In this work, we show that Rim11, a yeast homolog of mammalian glycogen synthase kinase-3β, is a protein kinase that phosphorylates Pah1 on serine (Ser12, Ser602, and Ser818) and threonine (Thr163, Thr164, Thr522) residues. Enzymological characterization of Rim11 showed that its Km for Pah1 (0.4 μM) is similar to those of other Pah1-phosphorylating protein kinases, but its Km for ATP (30 μM) is significantly higher than those of these same kinases. Furthermore, we demonstrate Rim11 phosphorylation of Pah1 does not require substrate prephosphorylation but was increased ∼2-fold upon its prephosphorylation by the Pho85-Pho80 protein kinase. In addition, we show Rim11-phosphorylated Pah1 was a substrate for dephosphorylation by Nem1-Spo7. Finally, we demonstrate the Rim11 phosphorylation of Pah1 exerted an inhibitory effect on its PA phosphatase activity by reduction of its catalytic efficiency. Mutational analysis of the major phosphorylation sites (Thr163, Thr164, and Ser602) indicated that Rim11-mediated phosphorylation at these sites was required to ensure Nem1-Spo7-dependent localization of the enzyme to the membrane. Overall, these findings advance our understanding of the phosphorylation-mediated regulation of Pah1 function in lipid synthesis.


Phosphatidate phosphatase Pah1 contains a novel RP domain that regulates its phosphorylation and function in yeast lipid synthesis.

  • Geordan J Stukey‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The enzyme controls whether cells utilize PA to produce membrane phospholipids or the major storage lipid triacylglycerol. PA levels, which are regulated by the enzyme reaction, also control the expression of UASINO-containing phospholipid synthesis genes via the Henry (Opi1/Ino2-Ino4) regulatory circuit. Pah1 function is largely controlled by its cellular location, which is mediated by phosphorylation and dephosphorylation. Multiple phosphorylations sequester Pah1 in the cytosol and protect it from 20S proteasome-mediated degradation. The endoplasmic reticulum-associated Nem1-Spo7 phosphatase complex recruits and dephosphorylates Pah1 allowing the enzyme to associate with and dephosphorylate its membrane-bound substrate PA. Pah1 contains domains/regions that include the N-LIP and haloacid dehalogenase-like catalytic domains, N-terminal amphipathic helix for membrane binding, C-terminal acidic tail for Nem1-Spo7 interaction, and a conserved tryptophan within the WRDPLVDID domain required for enzyme function. Through bioinformatics, molecular genetics, and biochemical approaches, we identified a novel RP (regulation of phosphorylation) domain that regulates the phosphorylation state of Pah1. We showed that the ΔRP mutation results in a 57% reduction in the endogenous phosphorylation of the enzyme (primarily at Ser-511, Ser-602, and Ser-773/Ser-774), an increase in membrane association and PA phosphatase activity, but reduced cellular abundance. This work not only identifies a novel regulatory domain within Pah1 but emphasizes the importance of the phosphorylation-based regulation of Pah1 abundance, location, and function in yeast lipid synthesis.


An evolutionarily conserved phosphatidate phosphatase maintains lipid droplet number and endoplasmic reticulum morphology but not nuclear morphology.

  • Anoop Narayana Pillai‎ et al.
  • Biology open‎
  • 2017‎

Phosphatidic acid phosphatases are involved in the biosynthesis of phospholipids and triacylglycerol, and also act as transcriptional regulators. Studies to ascertain their role in lipid metabolism and membrane biogenesis are restricted to Opisthokonta and Archaeplastida. Here, we report the role of phosphatidate phosphatase (PAH) in Tetrahymena thermophila, belonging to the Alveolata clade. We identified two PAH homologs in Tetrahymena, TtPAH1 and TtPAH2 Loss of function of TtPAH1 results in reduced lipid droplet number and an increase in endoplasmic reticulum (ER) content. It also results in more ER sheet structure as compared to wild-type Tetrahymena Surprisingly, we did not observe a visible defect in the nuclear morphology of the ΔTtpah1 mutant. TtPAH1 rescued all known defects in the yeast pah1Δ strain and is conserved functionally between Tetrahymena and yeast. The homologous gene derived from Trypanosoma also rescued the defects of the yeast pah1Δ strain. Our results indicate that PAH, previously known to be conserved among Opisthokonts, is also present in a set of distant lineages. Thus, a phosphatase cascade is evolutionarily conserved and is functionally interchangeable across eukaryotic lineages.


Catalytic core function of yeast Pah1 phosphatidate phosphatase reveals structural insight into its membrane localization and activity control.

  • Gil-Soo Han‎ et al.
  • The Journal of biological chemistry‎
  • 2024‎

The PAH1-encoded phosphatidate (PA) phosphatase is a major source of diacylglycerol for the production of the storage lipid triacylglycerol and a key regulator for the de novo phospholipid synthesis in Saccharomyces cerevisiae. The catalytic function of Pah1 depends on its membrane localization which is mediated through its phosphorylation by multiple protein kinases and dephosphorylation by the Nem1-Spo7 protein phosphatase complex. The full-length Pah1 is composed of a catalytic core (N-LIP and HAD-like domains, amphipathic helix, and the WRDPLVDID domain) and non-catalytic regulatory sequences (intrinsically disordered regions, RP domain, and acidic tail) for phosphorylation and interaction with Nem1-Spo7. How the catalytic core regulates Pah1 localization and cellular function is not clear. In this work, we analyzed a variant of Pah1 (i.e., Pah1-CC (catalytic core)) that is composed only of the catalytic core. Pah1-CC expressed on a low-copy plasmid complemented the pah1Δ mutant phenotypes (e.g., nuclear/ER membrane expansion, reduced levels of triacylglycerol, and lipid droplet formation) without requiring Nem1-Spo7. The cellular function of Pah1-CC was supported by its PA phosphatase activity mostly associated with the membrane fraction. Although functional, Pah1-CC was distinct from Pah1 in the protein and enzymological properties, which include overexpression toxicity, association with heat shock proteins, and significant reduction of the Vmax value. These findings on the Pah1 catalytic core enhance the understanding of its structural requirements for membrane localization and activity control.


NLIP and HAD-like Domains of Pah1 and Lipin 1 Phosphatidate Phosphatases Are Essential for Their Catalytic Activities.

  • Wei-Hsin Hsu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Saccharomyces cerevisiae Pah1 phosphatidate phosphatase (PAP) catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol, controlling phospholipids and triacylglycerol metabolisms. Pah1 and human Lipin 1 are intrinsically disordered proteins with 56% and 43% unfolded regions, respectively. Truncation analysis of the conserved and non-conserved regions showed that N- and C-conserved regions are essential for the catalytic activity of Pah1. PAP activities can be detected in the conserved N-terminal Lipin (NLIP) domain and C-terminal Lipin (CLIP)/haloacid dehalogenase (HAD)-like domain of Pah1 and Lipin 1, suggesting that the evolutionarily conserved domains are essential for the catalytic activity. The removal of disordered hydrophilic regions drastically reduced the protein solubility of Pah1. Thioredoxin is an efficient fusion protein for production of soluble NLIP-HAD recombinant proteins in Escherichia coli.


Distinct roles of the phosphatidate phosphatases lipin 1 and 2 during adipogenesis and lipid droplet biogenesis in 3T3-L1 cells.

  • Hiroshi Sembongi‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

Lipins are evolutionarily conserved Mg(2+)-dependent phosphatidate phosphatase (PAP) enzymes with essential roles in lipid biosynthesis. Mammals express three paralogues: lipins 1, 2, and 3. Loss of lipin 1 in mice inhibits adipogenesis at an early stage of differentiation and results in a lipodystrophic phenotype. The role of lipins at later stages of adipogenesis, when cells initiate the formation of lipid droplets, is less well characterized. We found that depletion of lipin 1, after the initiation of differentiation in 3T3-L1 cells but before the loading of lipid droplets with triacylglycerol, results in a reciprocal increase of lipin 2, but not lipin 3. We generated 3T3-L1 cells where total lipin protein and PAP activity levels are down-regulated by the combined depletion of lipins 1 and 2 at day 4 of differentiation. These cells still accumulated triacylglycerol but displayed a striking fragmentation of lipid droplets without significantly affecting their total volume per cell. This was due to the lack of the PAP activity of lipin 1 in adipocytes after day 4 of differentiation, whereas depletion of lipin 2 led to an increase of lipid droplet volume per cell. We propose that in addition to their roles during early adipogenesis, lipins also have a role in lipid droplet biogenesis.


Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor.

  • Santiago Comba‎ et al.
  • Microbial cell factories‎
  • 2013‎

Phosphatidic acid phosphatase (PAP, EC 3.1.3.4) catalyzes the dephosphorylation of phosphatidate yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. Despite the importance of PAP activity in TAG producing bacteria, studies to establish its role in lipid metabolism have been so far restricted only to eukaryotes. Considering the increasing interest of bacterial TAG as a potential source of raw material for biofuel production, we have focused our studies on the identification and physiological characterization of the putative PAP present in the TAG producing bacterium Streptomyces coelicolor.


Host phosphatidic acid phosphatase lipin1 is rate limiting for functional hepatitis C virus replicase complex formation.

  • Lidia Mingorance‎ et al.
  • PLoS pathogens‎
  • 2018‎

Hepatitis C virus (HCV) infection constitutes a significant health burden worldwide, because it is a major etiologic agent of chronic liver disease, cirrhosis and hepatocellular carcinoma. HCV replication cycle is closely tied to lipid metabolism and infection by this virus causes profound changes in host lipid homeostasis. We focused our attention on a phosphatidate phosphate (PAP) enzyme family (the lipin family), which mediate the conversion of phosphatidate to diacylglycerol in the cytoplasm, playing a key role in triglyceride biosynthesis and in phospholipid homeostasis. Lipins may also translocate to the nucleus to act as transcriptional regulators of genes involved in lipid metabolism. The best-characterized member of this family is lipin1, which cooperates with lipin2 to maintain glycerophospholipid homeostasis in the liver. Lipin1-deficient cell lines were generated by RNAi to study the role of this protein in different steps of HCV replication cycle. Using surrogate models that recapitulate different aspects of HCV infection, we concluded that lipin1 is rate limiting for the generation of functional replicase complexes, in a step downstream primary translation that leads to early HCV RNA replication. Infection studies in lipin1-deficient cells overexpressing wild type or phosphatase-defective lipin1 proteins suggest that lipin1 phosphatase activity is required to support HCV infection. Finally, ultrastructural and biochemical analyses in replication-independent models suggest that lipin1 may facilitate the generation of the membranous compartment that contains functional HCV replicase complexes.


The Saccharomyces cerevisiae Spo7 basic tail is required for Nem1-Spo7/Pah1 phosphatase cascade function in lipid synthesis.

  • Ruta Jog‎ et al.
  • The Journal of biological chemistry‎
  • 2024‎

The Saccharomyces cerevisiae Nem1-Spo7 protein phosphatase complex dephosphorylates and thereby activates Pah1 at the nuclear/endoplasmic reticulum membrane. Pah1, a phosphatidate phosphatase catalyzing the dephosphorylation of phosphatidate to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The diacylglycerol produced in the lipid phosphatase reaction is utilized for the synthesis of triacylglycerol that is stored in lipid droplets. Disruptions of the Nem1-Spo7/Pah1 phosphatase cascade cause a plethora of physiological defects. Spo7, the regulatory subunit of the Nem1-Spo7 complex, is required for the Nem1 catalytic function and interacts with the acidic tail of Pah1. Spo7 contains three conserved homology regions (CR1-3) that are important for the interaction with Nem1, but its region for the interaction with Pah1 is unknown. Here, by deletion and site-specific mutational analyses of Spo7, we revealed that the C-terminal basic tail (residues 240-259) containing five arginine and two lysine residues is important for the Nem1-Spo7 complex-mediated dephosphorylation of Pah1 and its cellular function (triacylglycerol synthesis, lipid droplet formation, maintenance of nuclear/endoplasmic reticulum membrane morphology, and cell growth at elevated temperatures). The glutaraldehyde cross-linking analysis of synthetic peptides indicated that the Spo7 basic tail interacts with the Pah1 acidic tail. This work advances our understanding of the Spo7 function and the Nem1-Spo7/Pah1 phosphatase cascade in yeast lipid synthesis.


Transcription factor Reb1p regulates DGK1-encoded diacylglycerol kinase and lipid metabolism in Saccharomyces cerevisiae.

  • Yixuan Qiu‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

In the yeast Saccharomyces cerevisiae, the DGK1-encoded diacylglycerol kinase catalyzes the CTP-dependent phosphorylation of diacylglycerol to form phosphatidate. This enzyme, in conjunction with PAH1-encoded phosphatidate phosphatase, controls the levels of phosphatidate and diacylglycerol for phospholipid synthesis, membrane growth, and lipid droplet formation. In this work, we showed that a functional level of diacylglycerol kinase is regulated by the Reb1p transcription factor. In the electrophoretic mobility shift assay, purified recombinant Reb1p was shown to specifically bind its consensus recognition sequence (CGGGTAA, -166 to -160) in the DGK1 promoter. Analysis of cells expressing the PDGK1-lacZ reporter gene showed that mutations (GT→TG) in the Reb1p-binding sequence caused an 8.6-fold reduction in β-galactosidase activity. The expression of DGK1(reb1), a DGK1 allele containing the Reb1p-binding site mutation, was greatly lower than that of the wild type allele, as indicated by analyses of DGK1 mRNA, Dgk1p, and diacylglycerol kinase activity. In the presence of cerulenin, an inhibitor of de novo fatty acid synthesis, the dgk1Δ mutant expressing DGK1(reb1) exhibited a significant defect in growth as well as in the synthesis of phospholipids from triacylglycerol mobilization. Unlike DGK1, the DGK1(reb1) expressed in the dgk1Δ pah1Δ mutant did not result in the nuclear/endoplasmic reticulum membrane expansion, which occurs in cells lacking phosphatidate phosphatase activity. Taken together, these results indicate that the Reb1p-mediated regulation of diacylglycerol kinase plays a major role in its in vivo functions in lipid metabolism.


An Advanced Lipid Metabolism System Revealed by Transcriptomic and Lipidomic Analyses Plays a Central Role in Peanut Cold Tolerance.

  • He Zhang‎ et al.
  • Frontiers in plant science‎
  • 2020‎

Cold stress restricts peanut (Arachis hypogaea L.) growth, development, and yield. However, the specific mechanism of cold tolerance in peanut remains unknown. Here, the comparative physiological, transcriptomic, and lipidomic analyses of cold tolerant variety NH5 and cold sensitive variety FH18 at different time points of cold stress were conducted to fill this gap. Transcriptomic analysis revealed lipid metabolism including membrane lipid and fatty acid metabolism may be a significant contributor in peanut cold tolerance, and 59 cold-tolerant genes involved in lipid metabolism were identified. Lipidomic data corroborated the importance of membrane lipid remodeling and fatty acid unsaturation. It indicated that photosynthetic damage, resulted from the alteration in fluidity and integrity of photosynthetic membranes under cold stress, were mainly caused by markedly decreased monogalactosyldiacylglycerol (MGDG) levels and could be relieved by increased digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG) levels. The upregulation of phosphatidate phosphatase (PAP1) and phosphatidate cytidylyltransferase (CDS1) inhibited the excessive accumulation of PA, thus may prevent the peroxidation of membrane lipids. In addition, fatty acid elongation and fatty acid β-oxidation were also worth further studied in peanut cold tolerance. Finally, we constructed a metabolic model for the regulatory mechanism of peanut cold tolerance, in which the advanced lipid metabolism system plays a central role. This study lays the foundation for deeply analyzing the molecular mechanism and realizing the genetic improvement of peanut cold tolerance.


Alteration in Lysophospholipids and Converting Enzymes in Glaucomatous Optic Nerves.

  • Sasha M Milbeck‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2020‎

To determine whether lysophospholipid (LPL) profiles and corresponding conversion enzymes in the LPL pathways are altered in the optic nerve (ON) between human control and glaucoma samples.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: