Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 832 papers

Peroxisome proliferator-activated receptors in HCV-related infection.

  • Sébastien Dharancy‎ et al.
  • PPAR research‎
  • 2009‎

The topic of peroxisome proliferator-activated receptors has been developed in the field of hepatology allowing envisaging therapeutic strategies for the most frequent chronic liver diseases such as chronic infection with hepatitis C virus (HCV). PPARs contribute to wide physiological processes within the liver such as lipid/glucid metabolisms, inflammatory response, cell differentiation, and cell cycle. In vitro experiments and animal studies showed that PPARα discloses anti-inflammatory property, and PPARγ discloses anti-inflammatory, antifibrogenic, and antiproliferative properties in the liver. Experimental and human studies showed impaired PPARs expression and function during HCV infection. The available nonhepatotoxic agonists of PPARs may constitute a progress in the therapeutic management of patients chronically infected with HCV.


Transcriptional regulation of peroxisome proliferator-activated receptors and liver X receptors.

  • Luis Villacorta‎ et al.
  • Current atherosclerosis reports‎
  • 2007‎

Peroxisome proliferator-activated receptors (PPAR) and liver X receptors (LXR) regulate a plethora of biologic processes and key metabolic and physiologic events. Deregulation of their transcription and activity is commonly associated with dyslipidemic disorders, diabetes, cancer, and cardiovascular disease. This review addresses recent advances in our understanding of the molecular mechanisms regulating transcription of these nuclear receptors. The heterogeneity of factors regulating their transcription and activity suggests intricate regulatory networks that determine their tissue expression pattern and their responses to pharmacologic agents. Understanding such mechanisms will facilitate unraveling their protective effects in disease as well as the design of effective targeted therapies.


Regulation of peroxisome proliferator-activated receptors by e6-associated protein.

  • Lakshmi Gopinathan‎ et al.
  • PPAR research‎
  • 2008‎

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors (NRs) that regulate genes involved in lipid and glucose metabolism. PPAR activity is regulated by interactions with cofactors and of interest are cofactors with ubiquitin ligase activity. The E6-associated protein (E6-AP) is an E3 ubiquitin ligase that affects the activity of other NRs, although its effects on PPARs have not been examined. E6-AP inhibited the ligand-independent transcriptional activity of PPARalpha and PPARbeta, with marginal effects on PPARgamma, and decreased basal mRNA levels of PPARalpha target genes. Inhibition of PPARalpha activity required the ubiquitin ligase function of E6-AP, but occurred in a proteasome-independent manner. PPARalpha interacted with E6-AP, and in mice treated with PPARalpha agonist clofibrate, mRNA and protein levels of E6-AP were increased in wildtype, but not in PPARalpha null mice, indicating a PPARalpha-dependent regulation. These studies suggest coordinate regulation of E6-AP and PPARalpha, and contribute to our understanding of the role of PPARs in cellular metabolism.


The Role of Peroxisome Proliferator-Activated Receptors in Polycystic Ovary Syndrome.

  • Iason Psilopatis‎ et al.
  • Journal of clinical medicine‎
  • 2023‎

Polycystic ovary syndrome (PCOS) constitutes the most common endocrine disorder in women of reproductive age. Patients usually suffer from severe menstrual irregularities, skin conditions, and insulin resistance-associated health conditions. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor proteins that regulate gene expression. In order to investigate the role of PPARs in the pathophysiology of PCOS, we conducted a literature review using the MEDLINE and LIVIVO databases and were able to identify 74 relevant studies published between 2003 and 2023. Different study groups reached contradictory conclusions in terms of PPAR expression in PCOS. Interestingly, numerous natural agents were found to represent a novel, potent anti-PCOS treatment alternatives. In conclusion, PPARs seem to play a significant role in PCOS.


Crosstalk between Peroxisome Proliferator-Activated Receptors and Toll-Like Receptors: A Systematic Review.

  • Nasim Dana‎ et al.
  • Advanced pharmaceutical bulletin‎
  • 2019‎

As one of the four major families of pattern recognition receptors (PRRs), toll like receptors (TLRs) are crucial and important components of the innate immune system. Peroxisome proliferatoractivated receptors (PPARs) with three isoforms are transcription factors classified as a subfamily of nuclear receptor proteins, and are of significant regulatory activity in cellular differentiation, development, metabolism, and tumorigenesis. It is well established that PPARs agonists display anti-inflammatory effects through inhibition of the nuclear factor-kappa B (NF-κB) pathway, a key regulator of immune and inflammatory responses, in a sense that TLRs signaling pathways are mainly toward activation of NF-κB. Through a systematic review of previous studies, we aimed to address and clarify the reciprocal interaction between TLRs and PPARs in hope to find alternative therapeutic approaches for inflammatory diseases. Among the available scientific database, 31 articles were selected for this review. A comprehensive review of this database confirms the presence of a cross-talk between PPARs and TLRs, indicating that not only PPARs stimulation may affect the expression level of TLRs via several mechanisms leading to modulating TLRs activities, but also TLRs have the potential to moderate the expression of PPARs. We, therefore, conclude that, as a key regulator of the innate immune system, the interaction between PPARs and TLRs is a potential therapeutic target in disease treatment.


Regulation of ENaC-Mediated Sodium Reabsorption by Peroxisome Proliferator-Activated Receptors.

  • Tengis S Pavlov‎ et al.
  • PPAR research‎
  • 2010‎

Peroxisome proliferator-activated receptors (PPARs) are members of a steroid hormone receptor superfamily that responds to changes in lipid and glucose homeostasis. Peroxisomal proliferator-activated receptor subtype gamma (PPARgamma) has received much attention as the target for antidiabetic drugs, as well as its role in responding to endogenous compounds such as prostaglandin J(2). However, thiazolidinediones (TZDs), the synthetic agonists of the PPARgamma are tightly associated with fluid retention and edema, as potentially serious side effects. The epithelial sodium channel (ENaC) represents the rate limiting step for sodium absorption in the renal collecting duct. Consequently, ENaC is a central effector impacting systemic blood volume and pressure. The role of PPARgamma agonists on ENaC activity remains controversial. While PPARgamma agonists were shown to stimulate ENaC-mediated renal salt absorption, probably via Serum- and Glucocorticoid-Regulated Kinase 1 (SGK1), other studies reported that PPARgamma agonist-induced fluid retention is independent of ENaC activity. The current paper provides new insights into the control and function of ENaC and ENaC-mediated sodium transport as well as several other epithelial channels/transporters by PPARs and particularly PPARgamma. The potential contribution of arachidonic acid (AA) metabolites in PPAR-dependent mechanisms is also discussed.


Meta-analysis of primary target genes of peroxisome proliferator-activated receptors.

  • Merja Heinäniemi‎ et al.
  • Genome biology‎
  • 2007‎

Peroxisome proliferator-activated receptors (PPARs) are known for their critical role in the development of diseases, such as obesity, cardiovascular disease, type 2 diabetes and cancer. Here, an in silico screening method is presented, which incorporates experiment- and informatics-derived evidence, such as DNA-binding data of PPAR subtypes to a panel of PPAR response elements (PPREs), PPRE location relative to the transcription start site (TSS) and PPRE conservation across multiple species, for more reliable prediction of PPREs.


The Role of Peroxisome Proliferator-Activated Receptors (PPARs) in Pan-Cancer.

  • Runzhi Huang‎ et al.
  • PPAR research‎
  • 2020‎

Peroxisome proliferator-activated receptors (PPARs) are members of nuclear transcription factors. The functions of the PPAR family (PPARA, PPARD, and PPARG) and their coactivators (PPARGC1A and PPARGC1B) in maintenance of lipid and glucose homeostasis have been unveiled. However, the roles of PPARs in cancer development remain elusive. In this work, we made use of 11,057 samples across 33 TCGA tumor types to analyze the relationship between PPAR transcriptional expression and tumorigenesis as well as drug sensitivity. We performed multidimensional analyses on PPARA, PPARG, PPARD, PPARGC1A, and PPARGC1B, including differential expression analysis in pan-cancer, immune subtype analysis, clinical analysis, tumor purity analysis, stemness correlation analysis, and drug responses. PPARs and their coactivators expressed differently in different types of cancers, in different immune subtypes. This analysis reveals various expression patterns of the PPAR family at a level of pan-cancer and provides new clues for the therapeutic strategies of cancer.


Activating effect of benzbromarone, a uricosuric drug, on peroxisome proliferator-activated receptors.

  • Chiyoko Kunishima‎ et al.
  • PPAR research‎
  • 2007‎

Benzbromarone, a uricosuric drug, reportedly causes hepatic hypertrophy accompanied by proliferation of peroxisomes in rats. To elucidate the mechanisms underlying induction of peroxisome proliferation by benzbromarone, we examined binding affinity for peroxisome proliferator-activated receptor alpha (PPARalpha) and gamma (PPARgamma), and effects on the binding activity of PPARs with peroxisome proliferation-responsive element (PPRE) and expression of the PPARs target protein. Binding affinity of benzbromarone for PPARalpha and PPARgamma was examined by reporter gene assay. Binding activity of PPARs with PPRE was determined by electric mobility shift assay, and expression of lipoprotein lipase (LPL) and acyl-CoA synthetase (ACS) by Western blot method. Benzbromarone displayed affinity for PPARalpha and PPARgamma, and promoted binding of PPARs to PPRE. Furthermore, cultured cells with benzbromarone added showed upregulated expression of LPL and ACS. These results suggest that benzbromarone induces peroxisome proliferation in hepatocytes by binding to PPARs, and controls expression of proteins related to lipid metabolism.


Phthalate monoesters act through peroxisome proliferator-activated receptors in the mouse ovary.

  • Daryl D Meling‎ et al.
  • Reproductive toxicology (Elmsford, N.Y.)‎
  • 2022‎

Widespread use of phthalates as solvents and plasticizers leads to everyday human exposure. The mechanisms by which phthalate metabolites act as ovarian toxicants are not fully understood. Thus, this study tested the hypothesis that the phthalate metabolites monononyl phthalate (MNP), monoisononyl phthalate (MiNP), mono(2-ethylhexyl) phthalate (MEHP), monobenzyl phthalate (MBzP), monobutyl phthalate (MBP), monoisobutyl phthalate (MiBP), and monoethyl phthalate (MEP) act through peroxisome proliferator-activated receptors (PPARs) in mouse granulosa cells. Primary granulosa cells were isolated from CD-1 mice and cultured with vehicle control (dimethyl sulfoxide) or MNP, MiNP, MEHP, MBzP, MBP, MiBP, or MEP (0.4-400 μM) for 24 h. Following culture, qPCR was performed for known PPAR targets, Fabp4 and Cd36. Treatment with the phthalate metabolites led to significant changes in Fabp4 and Cd36 expression relative to control in dose-dependent or nonmonotonic fashion. Primary granulosa cell cultures were also transfected with a DNA plasmid containing luciferase expressed under the control of a consensus PPAR response element. MNP, MiNP, MEHP, and MBzP caused dose-dependent changes in expression of luciferase, indicating the presence of functional endogenous PPAR receptors in the granulosa cells that respond to phthalate metabolites. The effects of phthalate metabolites on PPAR target genes were inhibited in most of the cultures by co-treatment with the PPAR-γ inhibitor, T0070907, or with the PPAR-α inhibitor, GW6471. Collectively, these data suggest that some phthalate metabolites may act through endogenous PPAR nuclear receptors in the ovary and that the differing structures of the phthalates result in different levels of activity.


Expression of the Peroxisome Proliferator-Activated Receptors (PPARs) in the Hepatic Stellate Cells.

  • Takeya Sato‎ et al.
  • Comparative hepatology‎
  • 2004‎

No abstract available


Glycogen synthase 2 is a novel target gene of peroxisome proliferator-activated receptors.

  • S Mandard‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2007‎

Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2 mRNA and protein expression in mouse 3T3-L1 adipocytes. In liver, PPARalpha deletion leads to decreased glycogen levels in the refed state, which is paralleled by decreased expression of Gys-2 in fasted and refed state. Two putative PPAR response elements (PPREs) were identified in the mouse Gys-2 gene: one in the upstream promoter (DR-1prom) and one in intron 1 (DR-1int). It is shown that DR-1int is the response element for PPARs, while DR-1prom is the response element for Hepatic Nuclear Factor 4 alpha (HNF4alpha). In adipose tissue, which does not express HNF4alpha, DR-1prom is occupied by PPARbeta/delta and PPARgamma, yet binding does not translate into transcriptional activation of Gys-2. Overall, we conclude that mouse Gys-2 is a novel PPAR target gene and that transactivation by PPARs and HNF4alpha is mediated by two distinct response elements.


Eicosapentaenoic acid (EPA) induces peroxisome proliferator-activated receptors and ameliorates experimental autoimmune encephalomyelitis.

  • Kiichi Unoda‎ et al.
  • Journal of neuroimmunology‎
  • 2013‎

Eicosapentaenoic acid (EPA), one of the n-3 polyunsaturated fatty acids, is a neuroprotective lipid with anti-inflammatory properties. We investigated the possible therapeutic effect of EPA on experimental autoimmune encephalomyelitis (EAE). EAE mice were fed a diet with or without EPA. The clinical EAE scores of the EPA-fed mice were significantly lower than those of the non-EPA mice. In the EPA-treated mice, IFN-γ and IL-17 productions were remarkably inhibited and the expression levels of peroxisome proliferator-activated receptors were significantly enhanced in the CNS-infiltrating CD4T cells. Thus EPA shows promise as a potential new therapeutic agent against multiple sclerosis.


The peroxisome proliferator-activated receptors in cardiovascular diseases: experimental benefits and clinical challenges.

  • Wai San Cheang‎ et al.
  • British journal of pharmacology‎
  • 2015‎

The peroxisome proliferator-activated receptors, PPARα, PPARβ/δ and PPARγ, are ligand-activated transcriptional factors belonging to the nuclear receptors superfamily and they are known to play important roles in glucose and lipid metabolism. Experimental studies in animal models of metabolic diseases have also revealed that activation of PPARs protects against the vascular complications of diabetes, hypertension, atherosclerosis, myocardial infarction and stroke, through exerting their anti-inflammatory, anti-atherogenic and antioxidant effects. In clinical trials and post-market surveillance, agonists of PPARs have been shown to effectively prevent cardiovascular events. However, adverse effects, particularly for PPARγ agonists, are also observed with the use of investigational PPAR agonists and even some approved drugs. Further exploration of underlying mechanisms is needed to develop novel ways of PPAR activation without causing serious side effects. This article reviews the cardiovascular effects of PPARs, with emphasis on the therapeutic potential of PPAR agonists in combating metabolic vascular diseases.


Peroxisome proliferator-activated receptors alpha and gamma down-regulate allergic inflammation and eosinophil activation.

  • Gaetane Woerly‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Allergic asthma is characterized by airway hyperresponsiveness, eosinophilia, and mucus accumulation and is associated with increased IgE concentrations. We demonstrate here that peroxisome proliferator-activated receptors (PPARs), PPAR-alpha and PPAR-gamma, which have been shown recently to be involved in the regulation of various cell types within the immune system, decrease antigen-induced airway hyperresponsiveness, lung inflammation, eosinophilia, cytokine production, and GATA-3 expression as well as serum levels of antigen-specific IgE in a murine model of human asthma. In addition, we demonstrate that PPAR-alpha and -gamma are expressed in eosinophils and their activation inhibits in vitro chemotaxis and antibody-dependent cellular cytotoxicity. Thus, PPAR-alpha and -gamma (co)agonists might be of therapeutic interest for the regulation of allergic or inflammatory reactions by targeting both regulatory and effector cells involved in the immune response.


Ligand-dependent transcriptional activities of four torafugu pufferfish Takifugu rubripes peroxisome proliferator-activated receptors.

  • Hidehiro Kondo‎ et al.
  • General and comparative endocrinology‎
  • 2007‎

Structural and functional properties were investigated for four peroxisome proliferator-activated receptors (PPARs), PPARalpha1, PPARalpha2, PPARbeta, and PPARgamma, from torafugu pufferfish Takifugu rubripes and determined for their transcriptional activity by the reporter assay using reporter plasmids containing three copies of the acyl-CoA oxidase PPAR response element. Although torafugu PPARs showed a high similarity in the primary structure to other vertebrate counterparts, torafugu PPARalpha2 and gamma contained additional sequences of 21 and 28 amino acids, respectively, as in the case of other teleost fish species when compared with African clawed frog counterparts. The transcriptional activity of torafugu PPARalpha1 was enhanced 4.5- and 11.5-fold by Wy-14643 and 5,8,11,14-eicosatetraynoic acid (ETYA) each at 10 microM, respectively, whereas that of PPARalpha2, 4.5- and 7.3-fold at the same concentration of the respective ligands, respectively. The activities of torafugu PPARalpha1 and alpha2 were also enhanced 5.6- and 6.3-fold by ETYA at 1 microM, respectively, but not by Wy-14643 at this concentration. Furthermore, the activities of the two torafugu PPARalphas were enhanced 4.3- and 7.6-fold by arachidonic acid, 4.4- and 5.2-fold by docosahexaenoic acid, and 6.7- and 8.0-fold by eicosapentaenoic acid each at 50 microM, respectively. On the other hand, the activities of torafugu PPARbeta and gamma were not changed by Wy-14643, ETYA, rosiglitazone, nor PUFAs. These results suggest that the activities of torafugu PPARbeta and gamma require undefined ligands. Alternatively, the molecular mechanisms involved in their activation are different from those of other vertebrates.


Involvement of peroxisome proliferator-activated receptors in the estradiol production of ovine Sertoli cells.

  • Hossein Hassanpour‎ et al.
  • Veterinary research forum : an international quarterly journal‎
  • 2017‎

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors of transcription factors composed of three family members: PPARα, PPARβ/δ and PPARγ. This study was aimed to evaluate the role of PPARs in the estradiol production via follicle stimulating hormone (FSH) in the ovine Sertoli cells. At the first step, transcripts of PPARα, PPARβ /δ and PPARγ were evaluated by quantitative real time PCR (qRT-PCR) in the ovine Sertoli cells in vitro after FSH treatment. PPARγ transcript was increased in FSH-treated cells while PPARα and PPAR β /δ transcripts were unchanged. At the second step, Pioglitazone as PPARγ agonist and 2-chloro-5-nitrobenzanilide (GW9662) as PPARγ antagonist were used in the FSH-treated Sertoli cells and then, the estradiol production and aromatase transcript were evaluated. Aromatase transcript was increased by pioglitazone in the FSH-treated Sertoli cells while GW9662 did not change its transcript. The estradiol production was increased by low concentrations of pioglitazone in FSH-treated Sertoli cells while the production of this hormone was decreased by the high concentration of Pioglitazone. The GW9662 did not change the production of estradiol in FSH-treated Sertoli cells. It is concluded that FSH regulates the estradiol production and aromatase expression in a way independently of PPARβ/δ and PPARα activation, although FSH increases the transcript of PPARγ and in this way, it could affect (mostly increase) aromatase transcript and estradiol production. Probably, this effect of FSH in the estradiol production via PPARγ is only a servo-assist mechanism which if it was inhibited, the estradiol production was not considerably affected.


Bladder-cancer-associated mutations in RXRA activate peroxisome proliferator-activated receptors to drive urothelial proliferation.

  • Angela M Halstead‎ et al.
  • eLife‎
  • 2017‎

RXRA regulates transcription as part of a heterodimer with 14 other nuclear receptors, including the peroxisome proliferator-activated receptors (PPARs). Analysis from TCGA raised the possibility that hyperactive PPAR signaling, either due to PPAR gamma gene amplification or RXRA hot-spot mutation (S427F/Y) drives 20-25% of human bladder cancers. Here, we characterize mutant RXRA, demonstrating it induces enhancer/promoter activity in the context of RXRA/PPAR heterodimers in human bladder cancer cells. Structure-function studies indicate that the RXRA substitution allosterically regulates the PPAR AF2 domain via an aromatic interaction with the terminal tyrosine found in PPARs. In mouse urothelial organoids, PPAR agonism is sufficient to drive growth-factor-independent growth in the context of concurrent tumor suppressor loss. Similarly, mutant RXRA stimulates growth-factor-independent growth of Trp53/Kdm6a null bladder organoids. Mutant RXRA-driven growth of urothelium is reversible by PPAR inhibition, supporting PPARs as targetable drivers of bladder cancer.


Sexually dimorphic adaptation of cardiac function: roles of epoxyeicosatrienoic acid and peroxisome proliferator-activated receptors.

  • Jun Qin‎ et al.
  • Physiological reports‎
  • 2016‎

Epoxyeicosatrienoic acids (EETs) are cardioprotective mediators metabolized by soluble epoxide hydrolase (sEH) to form corresponding diols (DHETs). As a sex-susceptible target, sEH is involved in the sexually dimorphic regulation of cardiovascular function. Thus, we hypothesized that the female sex favors EET-mediated potentiation of cardiac function via downregulation of sEH expression, followed by upregulation of peroxisome proliferator-activated receptors (PPARs). Hearts were isolated from male (M) and female (F) wild-type (WT) and sEH-KO mice, and perfused with constant flow at different preloads. Basal coronary flow required to maintain the perfusion pressure at 100 mmHg was significantly greater in females than males, and sEH-KO than WT mice. All hearts displayed a dose-dependent decrease in coronary resistance and increase in cardiac contractility, represented as developed tension in response to increases in preload. These responses were also significantly greater in females than males, and sEH-KO than WT 14,15-EEZE abolished the sex-induced (F vs. M) and transgenic model-dependent (KO vs. WT) differences in the cardiac contractility, confirming an EET-driven response. Compared with M-WT controls, F-WT hearts expressed downregulation of sEH, associated with increased EETs and reduced DHETs, a pattern comparable to that observed in sEH-KO hearts. Coincidentally, F-WT and sEH-KO hearts exhibited increased PPARα expression, but comparable expression of eNOS, PPARβ, and EET synthases. In conclusion, female-specific downregulation of sEH initiates an EET-dependent adaptation of cardiac function, characterized by increased coronary flow via reduction in vascular resistance, and promotion of cardiac contractility, a response that could be further intensified by PPARα.


Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors.

  • Itsuo Murakami‎ et al.
  • Lipids in health and disease‎
  • 2011‎

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that regulate lipid and glucose metabolism. PPARα is highly expressed in the liver and controls genes involved in lipid catabolism. We previously reported that synthetic sphingolipid analogs, part of which contains shorter-length fatty acid chains than natural sphingolipids, stimulated the transcriptional activities of PPARs. Sphingosine and dihydrosphingosine (DHS) are abundant sphingoid bases, and ceramide and dihydroceramide are major ceramide species in mammals. In contrast, phytosphingosine (PHS) and DHS are the main sphingoid bases in fungi. PHS and phytoceramide exist in particular tissues such as the epidermis in mammals, and involvement of ceramide species in PPARβ activation in cultured keratinocytes has been reported. The purpose of the present study is to investigate whether natural sphingolipids with C18 fatty acid and yeast-derived sphingoid bases activate PPARs as PPAR agonists.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: