Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34,914 papers

Simultaneous Determination of Manganese Peroxidase and Lignin Peroxidase by Capillary Electrophoresis Enzyme Assays.

  • Sumire Kudo‎ et al.
  • ACS omega‎
  • 2017‎

Here, we developed an enzyme assay of manganese peroxidase (MnP) by capillary electrophoresis using an in-capillary reaction and applied it to a simultaneous assay of MnP and lignin peroxidase (LiP). The enzyme activity of MnP was determined from the peak area corresponding to Mn(III)-malonate produced by the plug-plug reaction between MnP and Mn(II) in a separation capillary. A background electrolyte containing 250 mM malonate buffer (pH 4.5) and 5 mM cetyltrimethylammonium bromide was employed for the separation of Mn(III)-malonate from MnP at -10 kV after a plug-plug reaction for 5 min. Although the assay permitted the determination of purified MnP, we found that both LiP and MnP have similar activities against their substrates, that is, LiP catalyzed the oxidation reaction of Mn(II) as well as MnP, whereas MnP catalyzed the oxidation reaction of veratryl alcohol which was the substrate used in the LiP assay developed previously. Thus, we proposed a method to discriminate MnP from LiP based on the difference in the activities of these enzymes to each substrate. Amounts of MnP and LiP in a mixture were successfully evaluated by the proposed method.


Functional switching of ascorbate peroxidase 2 of rice (OsAPX2) between peroxidase and molecular chaperone.

  • Sung Hyun Hong‎ et al.
  • Scientific reports‎
  • 2018‎

Ascorbate peroxidase (APX) is a class I haem-containing peroxidase, which catalyses the conversion of H2O2 to H2O and O2 using ascorbate as the specific electron donor. APX plays a central role in the elimination of intracellular reactive oxygen species (ROS) and protects plants from the oxidative damage that can occur as a result of biotic and abiotic stresses. At present, the only known function of APX is as a peroxidase. However, in this study, we demonstrate that Oryza sativa APX2 also operates as a molecular chaperone in rice. The different functions of OsAPX2 correlate strongly with its structural conformation. The high-molecular-weight (HMW) complexes had chaperone activity, whereas the low-molecular-weight (LMW) forms displayed predominantly APX activity. The APX activity was effectively inhibited by sodium azide, which is an inhibitor of haem-containing enzymes, but this did not affect the protein's activity as a chaperone. Additionally, the OsAPX2 conformational changes could be regulated by salt and heat stresses and these stimulated OsAPX2 dissociation and association, respectively. Our results provide new insight into the roles of APXs.


Structural and functional characterization of the glutathione peroxidase-like thioredoxin peroxidase from the fungus Trichoderma reesei.

  • Patricia P Adriani‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Glutathione peroxidases (GPx) are a family of enzymes with the ability to reduce organic and inorganic hydroperoxides to the corresponding alcohols using glutathione or thioredoxin as an electron donor. Here, we report the functional and structural characterization of a GPx identified in Trichoderma reesei (TrGPx). TrGPx was recombinantly expressed in a bacterial host and purified using affinity. Using a thioredoxin coupled assay, TrGPx exhibited activity of 28 U and 12.5 U in the presence of the substrates H2O2 and t-BOOH, respectively, and no activity was observed when glutathione was used. These results indicated that TrGPx is a thioredoxin peroxidase and hydrolyses H2O2 better than t-BOOH. TrGPx kinetic parameters using a pyrogallol assay resulted at Kmapp = 11.7 mM, Vmaxapp = 10.9 IU/μg TrGPx, kcat = 19 s-1 and a catalytic efficiency of 1.6 mM-1 s-1 to H2O2 as substrate. Besides that, TrGPx demonstrated an optimum pH ranging from 9.0-12.0 and a half-life of 36 min at 80 °C. TrGPx 3D-structure was obtained in a reduced state and non-catalytic conformation. The overall fold is similar to the other phospholipid-hydroperoxide glutathione peroxidases. These data contribute to understand the antioxidant mechanism in fungi and provide information for using antioxidant enzymes in biotechnological applications.


Methylglyoxal-Scavenging Enzyme Activities Trigger Erythroascorbate Peroxidase and Cytochrome c Peroxidase in Glutathione-Depleted Candida albicans.

  • Sa-Ouk Kang‎ et al.
  • Journal of microbiology and biotechnology‎
  • 2021‎

γ-Glutamylcysteine synthetase (Gcs1) and glutathione reductase (Glr1) activity maintains minimal levels of cellular methylglyoxal in Candida albicans. In glutathione-depleted Δgcs1, we previously saw that NAD(H)-linked methylglyoxal oxidoreductase (Mgd1) and alcohol dehydrogenase (Adh1) are the most active methylglyoxal scavengers. With methylglyoxal accumulation, disruptants lacking MGD1 or ADH1 exhibit a poor redox state. However, there is little convincing evidence for a reciprocal relationship between methylglyoxal scavenger genes-disrupted mutants and changes in glutathione-(in)dependent redox regulation. Herein, we attempt to demonstrate a functional role for methylglyoxal scavengers, modeled on a triple disruptant (Δmgd1/Δadh1/Δgcs1), to link between antioxidative enzyme activities and their metabolites in glutathione-depleted conditions. Despite seeing elevated methylglyoxal in all of the disruptants, the result saw a decrease in pyruvate content in Δmgd1/Δadh1/Δgcs1 which was not observed in double gene-disrupted strains such as Δmgd1/Δgcs1 and Δadh1/Δgcs1. Interestingly, Δmgd1/Δadh1/Δgcs1 exhibited a significantly decrease in H2O2 and superoxide which was also unobserved in Δmgd1/Δgcs1 and Δadh1/Δgcs1. The activities of the antioxidative enzymes erythroascorbate peroxidase and cytochrome c peroxidase were noticeably higher in Δmgd1/Δadh1/Δgcs1 than in the other disruptants. Meanwhile, Glr1 activity severely diminished in Δmgd1/Δadh1/Δgcs1. Monitoring complementary gene transcripts between double gene-disrupted Δmgd1/Δgcs1 and Δadh1/Δgcs1 supported the concept of an unbalanced redox state independent of the Glr1 activity for Δmgd1/Δadh1/Δgcs1. Our data demonstrate the reciprocal use of Eapx1 and Ccp1 in the absence of both methylglyoxal scavengers; that being pivotal for viability in non-filamentous budding yeast.


Induction of Laccase, Lignin Peroxidase and Manganese Peroxidase Activities in White-Rot Fungi Using Copper Complexes.

  • Martina Vrsanska‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

Ligninolytic enzymes, such as laccase, lignin peroxidase and manganese peroxidase, are biotechnologically-important enzymes. The ability of five white-rot fungal strains Daedaleopsis confragosa, Fomes fomentarius, Trametes gibbosa, Trametes suaveolens and Trametes versicolor to produce these enzymes has been studied. Three different copper(II) complexes have been prepared ((Him)[Cu(im)₄(H₂O)₂](btc)·3H₂O, where im = imidazole, H₃btc = 1,3,5-benzenetricarboxylic acid, [Cu₃(pmdien)₃(btc)](ClO₄)₃·6H₂O) and [Cu₃(mdpta)₃(btc)](ClO₄)₃·4H₂O, where pmdien = N,N,N',N'',N''-pentamethyl-diethylenetriamine and mdpta = N,N-bis-(3-aminopropyl)methyl- amine), and their potential application for laccase and peroxidases induction have been tested. The enzyme-inducing activities of the complexes were compared with that of copper sulfate, and it has been found that all of the complexes are suitable for the induction of laccase and peroxidase activities in white-rot fungi; however, the newly-synthesized complex M1 showed the greatest potential for the induction. With respect to the different copper inducers, this parameter seems to be important for enzyme activity, which depends also on the fungal strains.


An efficient methodology for the purification of date palm peroxidase: Stability comparison with horseradish peroxidase (HRP).

  • Moneera Saud Al-Bagmi‎ et al.
  • Saudi journal of biological sciences‎
  • 2019‎

In the present study, Peroxidase from date palm (Phoenix dactylifera) leaves was purified to homogeneity by three-step procedure including aqueous two-phase system, hydrophobic and Ion-exchange chromatography. The enzyme migrated as single band on SDS-PAGE giving molecular weight of 68 ± 3 kDa. The purification factor for purified date palm peroxidase was 68 with high 41% yield. Enzymatic assays together with far-UV circular dichroism (CD), intrinsic and extrinsic fluorescence studies were carried out to monitor the structural stability of date palm and horseradish peroxidase (HRP) against various pH and temperatures. Activity measurements illustrated different pH stability for date palm and HRP. Both peroxidases are more susceptible to extreme acidic conditions as suggested by 4 & 15 nm red shift in date palm and HRP, respectively. Secondary structure analysis using far UV-CD exhibited predominance of α-helical (43.8%) structure. Also, pH induces loss in the secondary structure of date palm peroxidase. Thermal stability analysis revealed date palm peroxidase is more stable in comparison to HRP. In summary, date palm peroxidases could be promising enzymes for various applications where extreme pH and temperature is required.


A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily.

  • Edwin van Bloois‎ et al.
  • Applied microbiology and biotechnology‎
  • 2010‎

DyP-type peroxidases comprise a novel superfamily of heme-containing peroxidases which is unrelated to the superfamilies of known peroxidases and of which only a few members have been characterized in some detail. Here, we report the identification and characterization of a DyP-type peroxidase (TfuDyP) from the thermophilic actinomycete Thermobifida fusca. Biochemical characterization of the recombinant enzyme showed that it is a monomeric, heme-containing, thermostable, and Tat-dependently exported peroxidase. TfuDyP is not only active as dye-decolorizing peroxidase as it also accepts phenolic compounds and aromatic sulfides. In fact, it is able to catalyze enantioselective sulfoxidations, a type of reaction that has not been reported before for DyP-type peroxidases. Site-directed mutagenesis was used to determine the role of two conserved residues. D242 is crucial for catalysis while H338 represents the proximal heme ligand and is essential for heme incorporation. A genome database analysis revealed that DyP-type peroxidases are frequently found in bacterial genomes while they are extremely rare in other organisms. Most of the bacterial homologs are potential cytosolic enzymes, suggesting metabolic roles different from dye degradation. In conclusion, the detailed biochemical characterization reported here contributes significantly to our understanding of these enzymes and further emphasizes their biotechnological potential.


Lignin peroxidase functionalities and prospective applications.

  • Ayodeji O Falade‎ et al.
  • MicrobiologyOpen‎
  • 2017‎

Ligninolytic extracellular enzymes, including lignin peroxidase, are topical owing to their high redox potential and prospective industrial applications. The prospective applications of lignin peroxidase span through sectors such as biorefinery, textile, energy, bioremediation, cosmetology, and dermatology industries. The litany of potentials attributed to lignin peroxidase is occasioned by its versatility in the degradation of xenobiotics and compounds with both phenolic and non-phenolic constituents. Over the years, ligninolytic enzymes have been studied however; research on lignin peroxidase seems to have been lagging when compared to other ligninolytic enzymes which are extracellular in nature including laccase and manganese peroxidase. This assertion becomes more pronounced when the application of lignin peroxidase is put into perspective. Consequently, a succinct documentation of the contemporary functionalities of lignin peroxidase and, some prospective applications of futuristic relevance has been advanced in this review. Some articulated applications include delignification of feedstock for ethanol production, textile effluent treatment and dye decolourization, coal depolymerization, treatment of hyperpigmentation, and skin-lightening through melanin oxidation. Prospective application of lignin peroxidase in skin-lightening functions through novel mechanisms, hence, it holds high value for the cosmetics sector where it may serve as suitable alternative to hydroquinone; a potent skin-lightening agent whose safety has generated lots of controversy and concern.


Selenium-dependent glutathione peroxidase-GI is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine.

  • R S Esworthy‎ et al.
  • Biochimica et biophysica acta‎
  • 1998‎

Gpx2 mRNA, encoding a selenium-dependent glutathione peroxidase (GPX-GI), has been found to be highly expressed in the gastrointestinal tract (GI) mucosal epithelium. In this study, we show that GPX-GI is produced in the mucosal epithelium of the adult rat GI tract and that the activity levels are comparable to that from GPX-1. Post-mitochondrial supernatant GPX activity from the mucosal epithelium of the complete length of the small intestine was partially purified. A sample enriched for putative GPX-GI was fractionated by SDS-polyacrylamide gel electrophoresis. Polypeptides of 21 kDa and 22 kDa were digested with trypsin. After resolving the tryptic peptides by high pressure liquid chromatography (HPLC), the major peaks were analyzed for their amino acid sequence by Microflow-HPLC-Tandem Mass Spectrometry and automated Edman degradation sequencing. Both methods revealed that the 21-kDa sample contained rat GPX-GI determined by the sequence homology with the deduced mouse GPX-GI polypeptide sequence. Rat GPX-1 was also detected in the samples. AntiGPX-GI and antiGPX-1 antibodies were used to determine the distribution of the respective isoenzyme activities along the length of the intestine and with respect to the crypt to villus axis in rats. GPX-GI and GPX-1 activities were uniformly distributed in the middle and lower GI tract and with respect to the crypt to villus axis. GPX-GI activity accounted nearly the same percentage of the total GPX activity as GPX-1 in all of the these compartments. Studies on the distal ileum segment of wildtype and Gpx1 gene knockout mice showed that GPX-GI activity was also at parity with GPX-1 in the mucosal epithelium of this segment.


Improving the pH-stability of Versatile Peroxidase by Comparative Structural Analysis with a Naturally-Stable Manganese Peroxidase.

  • Verónica Sáez-Jiménez‎ et al.
  • PloS one‎
  • 2015‎

Versatile peroxidase (VP) from the white-rot fungus Pleurotus eryngii is a high redox potential peroxidase of biotechnological interest able to oxidize a wide range of recalcitrant substrates including lignin, phenolic and non-phenolic aromatic compounds and dyes. However, the relatively low stability towards pH of this and other fungal peroxidases is a drawback for their industrial application. A strategy based on the comparative analysis of the crystal structures of VP and the highly pH-stable manganese peroxidase (MnP4) from Pleurotus ostreatus was followed to improve the VP pH stability. Several interactions, including hydrogen bonds and salt bridges, and charged residues exposed to the solvent were identified as putatively contributing to the pH stability of MnP4. The eight amino acid residues responsible for these interactions and seven surface basic residues were introduced into VP by directed mutagenesis. Furthermore, two cysteines were also included to explore the effect of an extra disulfide bond stabilizing the distal Ca2+ region. Three of the four designed variants were crystallized and new interactions were confirmed, being correlated with the observed improvement in pH stability. The extra hydrogen bonds and salt bridges stabilized the heme pocket at acidic and neutral pH as revealed by UV-visible spectroscopy. They led to a VP variant that retained a significant percentage of the initial activity at both pH 3.5 (61% after 24 h) and pH 7 (55% after 120 h) compared with the native enzyme, which was almost completely inactivated. The introduction of extra solvent-exposed basic residues and an additional disulfide bond into the above variant further improved the stability at acidic pH (85% residual activity at pH 3.5 after 24 h when introduced separately, and 64% at pH 3 when introduced together). The analysis of the results provides a rational explanation to the pH stability improvement achieved.


The conserved Cys76 plays a crucial role for the conformation of reduced glutathione peroxidase-type tryparedoxin peroxidase.

  • Claudia Muhle-Goll‎ et al.
  • FEBS letters‎
  • 2010‎

The crystal structure of reduced tryparedoxin peroxidase shows Cys47 close to Gln82 and Trp137 and helix formation of residues 87 to 97 whereas the NMR structure of the reduced C76S mutant adopts a different conformation similar to the oxidized protein. Circular dichroism (CD), fluorescence and NMR spectroscopy reveal that the fully active C76S mutant differs from the wildtype (WT) enzyme mainly in its reduced form both in secondary structure content and Trp137 environment. This implies that Cys76 plays a critical role for the reduced enzyme assuming different conformational states and that the catalytic triad may only be necessary as short-lived intermediate during catalysis.


Intrinsic Peroxidase-like Activity of Ficin.

  • Yufang Yang‎ et al.
  • Scientific reports‎
  • 2017‎

Ficin is classified as a sulfhydryl protease isolated from the latex of fig trees. In most cases, a particular enzyme fits a few types of substrate and catalyzes one type of reaction. In this investigation, we found sufficient proofs for the intrinsic peroxidase-like activity of ficin and designed experiments to examine its effectiveness in a variety of scenarios. Ficin can transform peroxidase substrates to colored products in the existence of H2O2. Our results also indicate that the active sites of peroxidase-like activity of ficin are different from that of protease, which reveals that one enzyme may catalyze more than one kind of substrate to perform different types of reactions. On the basis of these findings, H2O2 releasing from MCF-7 cells was detected successfully. Our findings support a wider application of ficin in biochemistry and open up the possibility of utilizing ficin as enzymatic mimics in biotechnology and environmental monitoring.


Association between polymorphisms in glutathione peroxidase and selenoprotein P genes, glutathione peroxidase activity, HRT use and breast cancer risk.

  • Catherine Méplan‎ et al.
  • PloS one‎
  • 2013‎

Breast cancer (BC) is one of the most common cancers in women. Evidence suggests that genetic variation in antioxidant enzymes could influence BC risk, but to date the relationship between selenoproteins and BC risk remains unclear. In this report, a study population including 975 Danish cases and 975 controls matched for age and hormone replacement therapy (HRT) use was genotyped for five functional single nucleotide polymorphisms (SNPs) in SEPP1, GPX1, GPX4 and the antioxidant enzyme SOD2 genes. The influence of genetic polymorphisms on breast cancer risk was assessed using conditional logistic regression. Additionally pre-diagnosis erythrocyte GPx (eGPx) activity was measured in a sub-group of the population. A 60% reduction in risk of developing overall BC and ductal BC was observed in women who were homozygous Thr carriers for SEPP1 rs3877899. Additionally, Leu carriers for GPX1 Pro198Leu polymorphism (rs1050450) were at ∼2 fold increased risk of developing a non-ductal BC. Pre-diagnosis eGPx activity was found to depend on genotype for rs713041 (GPX4), rs3877899 (SEPP1), and rs1050450 (GPX1) and on HRT use. Moreover, depending on genotype and HRT use, eGPx activity was significantly lower in women who developed BC later in life compared with controls. Furthermore, GPx1 protein levels increased in human breast adenocarcinoma MCF7 cells exposed to β-estradiol and sodium selenite.In conclusion, our data provide evidence that SNPs in SEPP1 and GPX1 modulate risk of BC and that eGPx activity is modified by SNPs in SEPP1, GPX4 and GPX1 and by estrogens. Our data thus suggest a role of selenoproteins in BC development.


Efficient Degradation of Zearalenone by Dye-Decolorizing Peroxidase from Streptomyces thermocarboxydus Combining Catalytic Properties of Manganese Peroxidase and Laccase.

  • Xing Qin‎ et al.
  • Toxins‎
  • 2021‎

Ligninolytic enzymes, including laccase, manganese peroxidase, and dye-decolorizing peroxidase (DyP), have attracted much attention in the degradation of mycotoxins. Among these enzymes, the possible degradation pathway of mycotoxins catalyzed by DyP is not yet clear. Herein, a DyP-encoding gene, StDyP, from Streptomyces thermocarboxydus 41291 was identified, cloned, and expressed in Escherichia coli BL21/pG-Tf2. The recombinant StDyP was capable of catalyzing the oxidation of the peroxidase substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), phenolic lignin compounds 2,6-dimethylphenol, and guaiacol, non-phenolic lignin compound veratryl alcohol, Mn2+, as well as anthraquinone dye reactive blue 19. Moreover, StDyP was able to slightly degrade zearalenone (ZEN). Most importantly, we found that StDyP combined the catalytic properties of manganese peroxidase and laccase, and could significantly accelerate the enzymatic degradation of ZEN in the presence of their corresponding substrates Mn2+ and 1-hydroxybenzotriazole. Furthermore, the biological toxicities of the main degradation products 15-OH-ZEN and 13-OH-ZEN-quinone might be remarkably removed. These findings suggested that DyP might be a promising candidate for the efficient degradation of mycotoxins in food and feed.


Peroxidase gene discovery from the horseradish transcriptome.

  • Laura Näätsaari‎ et al.
  • BMC genomics‎
  • 2014‎

Horseradish peroxidases (HRPs) from Armoracia rusticana have long been utilized as reporters in various diagnostic assays and histochemical stainings. Regardless of their increasing importance in the field of life sciences and suggested uses in medical applications, chemical synthesis and other industrial applications, the HRP isoenzymes, their substrate specificities and enzymatic properties are poorly characterized. Due to lacking sequence information of natural isoenzymes and the low levels of HRP expression in heterologous hosts, commercially available HRP is still extracted as a mixture of isoenzymes from the roots of A. rusticana.


Arthromyces ramosus peroxidase produces two chlorinating species.

  • Liusheng Huang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

We previously reported that the hemes of horseradish peroxidase (HRP) and Arthromyces ramosus peroxidase (ARP) undergo vinyl and meso-carbon modifications when the enzymes oxidize chloride ion. Here we demonstrate for ARP that, although both modifications exhibit the same pH profile with an optimum at approximately pH 4.0, monochlorodimedone suppresses the vinyl but not meso-carbon modifications. Furthermore, meso-chlorination occurs when ARP reacts with exogenous HOCl, implicating an Fe(III)-O-Cl intermediate in the reaction. These results establish that (a) the chloro species involved in meso-modification differs from that which reacts with the vinyl groups, (b) equilibration of the vinyl modifying species (HOCl) into the medium occurs more rapidly than vinyl group modification, and (c) the oxidation of chloride by ARP produces two reactive species: HOCl, which adds to the heme vinyl but not meso-positions, and a distinct second species that adds to the meso-carbon.


Catalase and Ascorbate Peroxidase in Euglenozoan Protists.

  • Ingrid Škodová-Sveráková‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2020‎

In this work, we studied the biochemical properties and evolutionary histories of catalase (CAT) and ascorbate peroxidase (APX), two central enzymes of reactive oxygen species detoxification, across the highly diverse clade Eugenozoa. This clade encompasses free-living phototrophic and heterotrophic flagellates, as well as obligate parasites of insects, vertebrates, and plants. We present evidence of several independent acquisitions of CAT by horizontal gene transfers and evolutionary novelties associated with the APX presence. We posit that Euglenozoa recruit these detoxifying enzymes for specific molecular tasks, such as photosynthesis in euglenids and membrane-bound peroxidase activity in kinetoplastids and some diplonemids.


The activation mechanism of peroxidase by ultrasound.

  • Fengmao Li‎ et al.
  • Ultrasonics sonochemistry‎
  • 2021‎

The activation mechanism of peroxidase by ultrasound was investigated. The catalysis performance of peroxidase with ultrasound treatment was prior to the controls determined by UV-visible spectra and Fourier transform infrared spectra. The transformation of tryptophan residues in peroxidase led to the increase of a-helix and anti-parallel content in the secondary structure, and the content of p-sheet, p-turn and random coil in the secondary structure. In addition, under the atomic force microscope, under ultrasonic treatment, the large molecular clusters of tyrosinase are broken down into small molecular clusters. The current results showed that the activity of peroxidase is activated under ultrasonic treatment, which is mainly caused by ultrasound without conformational change, the catalytic center is exposed, and the affinity with the substrate is stronger.


Zo-peroxidase: Crystal structure and sequence of a highly-glycosylated peroxidase resistant to high concentrations of H2O2 from Japanese radish.

  • Nizaá Jiménez-Arroyo‎ et al.
  • Biochemistry and biophysics reports‎
  • 2018‎

Understanding Peroxidase (PRXs) enzymatic diversity and functional significance from a three-dimensional point of view is a key point for structural and mechanistic studies. In this context, Zo-peroxidase (ZoPrx) a member of the class III peroxidases and secreted by plants, differs from all previously described PRXs because of its remarkable catalytic stability in the presence of hydrogen peroxide. In this work, we present the crystallographic structure of ZoPrx isolated from Japanese radish, at 2.05 Å resolution. The mature enzyme consists of a single monomer of 308 residues exhibiting the same fold as all previously described members of the plant PRXs superfamily. Furthermore, the enzyme contains a heme b group as the prosthetic group and two Ca2+ binding sites. Moreover, seven N-glycosylation sites were found in the structure, and 49 glycans bound to the two ZoPrx molecules found in the asymmetric unit are clearly visible in the electron density map. The comparison of ZoPrx coordinates with homologous enzymes revealed minor structural changes, in which the residue 177 appears to be responsible for enlarging the access to the heme cavity, the only structural finding which may be related to the H2O2 tolerance of ZoPrx and detected by X-ray crystallography. Because of its characteristics, ZoPrx has a broad range of potential applications from chemical synthesis to environmental biocatalysis, thus its aminoacidic sequence, partially completed using the electron density, and the three-dimensional structure itself, become a possible starting point to engineering heme-peroxidases to enhance oxidative stability.


Identification and Comparative Analysis of H2O2-Scavenging Enzymes (Ascorbate Peroxidase and Glutathione Peroxidase) in Selected Plants Employing Bioinformatics Approaches.

  • Ibrahim I Ozyigit‎ et al.
  • Frontiers in plant science‎
  • 2016‎

Among major reactive oxygen species (ROS), hydrogen peroxide (H2O2) exhibits dual roles in plant metabolism. Low levels of H2O2 modulate many biological/physiological processes in plants; whereas, its high level can cause damage to cell structures, having severe consequences. Thus, steady-state level of cellular H2O2 must be tightly regulated. Glutathione peroxidases (GPX) and ascorbate peroxidase (APX) are two major ROS-scavenging enzymes which catalyze the reduction of H2O2 in order to prevent potential H2O2-derived cellular damage. Employing bioinformatics approaches, this study presents a comparative evaluation of both GPX and APX in 18 different plant species, and provides valuable insights into the nature and complex regulation of these enzymes. Herein, (a) potential GPX and APX genes/proteins from 18 different plant species were identified, (b) their exon/intron organization were analyzed, (c) detailed information about their physicochemical properties were provided, (d) conserved motif signatures of GPX and APX were identified, (e) their phylogenetic trees and 3D models were constructed, (f) protein-protein interaction networks were generated, and finally (g) GPX and APX gene expression profiles were analyzed. Study outcomes enlightened GPX and APX as major H2O2-scavenging enzymes at their structural and functional levels, which could be used in future studies in the current direction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: