Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 4,878 papers

Central and Peripheral Nervous System Complications of Vasculitis Syndromes from Pathology to Bedside: Part 2-Peripheral Nervous System.

  • Gelsomina Mansueto‎ et al.
  • Current neurology and neuroscience reports‎
  • 2023‎

Peripheral nervous system vasculitides (PNSV) are a heterogeneous group of disorders with a clinical subset that may differ in prognosis and therapy. We provide a comprehensive update on the clinical assessment, diagnosis, complications, treatment, and follow-up of PNSV.


Peripheral nervous system origin of phantom limb pain.

  • Apostol Vaso‎ et al.
  • Pain‎
  • 2014‎

Nearly all amputees continue to feel their missing limb as if it still existed, and many experience chronic phantom limb pain (PLP). What is the origin of these sensations? There is currently a broad consensus among investigators that PLP is a top-down phenomenon, triggered by loss of sensory input and caused by maladaptive cortical plasticity. We tested the alternative hypothesis that PLP is primarily a bottom-up process, due not to the loss of input but rather to exaggerated input, generated ectopically in axotomized primary afferent neurons in the dorsal root ganglia (DRGs) that used to innervate the limb. In 31 amputees, the local anesthetic lidocaine was applied intrathecally and/or to the DRG surface (intraforaminal epidural block). This rapidly and reversibly extinguished PLP and also nonpainful phantom limb sensation (npPLS). Control injections were ineffective. For intraforaminal block, the effect was topographically appropriate. The suppression of PLP and npPLS could also be demonstrated using dilute lidocaine concentrations that are sufficient to suppress DRG ectopia but not to block the propagation of impulses generated further distally in the nerve. PLP is driven primarily by activity generated within the DRG. We recommend the DRG as a target for treatment of PLP and perhaps also other types of regional neuropathic pain.


Investigating Primary Cilia during Peripheral Nervous System Formation.

  • Elkhan Yusifov‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The primary cilium plays a pivotal role during the embryonic development of vertebrates. It acts as a somatic signaling hub for specific pathways, such as Sonic Hedgehog signaling. In humans, mutations in genes that cause dysregulation of ciliogenesis or ciliary function lead to severe developmental disorders called ciliopathies. Beyond its role in early morphogenesis, growing evidence points towards an essential function of the primary cilium in neural circuit formation in the central nervous system. However, very little is known about a potential role in the formation of the peripheral nervous system. Here, we investigate the presence of the primary cilium in neural crest cells and their derivatives in the trunk of developing chicken embryos in vivo. We found that neural crest cells, sensory neurons, and boundary cap cells all bear a primary cilium during key stages of early peripheral nervous system formation. Moreover, we describe differences in the ciliation of neuronal cultures of different populations from the peripheral and central nervous systems. Our results offer a framework for further in vivo and in vitro investigations on specific roles that the primary cilium might play during peripheral nervous system formation.


Labeling PIEZO2 activity in the peripheral nervous system.

  • Nicholas W Villarino‎ et al.
  • Neuron‎
  • 2023‎

Sensory neurons detect mechanical forces from both the environment and internal organs to regulate physiology. PIEZO2 is a mechanosensory ion channel critical for touch, proprioception, and bladder stretch sensation, yet its broad expression in sensory neurons suggests it has undiscovered physiological roles. To fully understand mechanosensory physiology, we must know where and when PIEZO2-expressing neurons detect force. The fluorescent styryl dye FM 1-43 was previously shown to label sensory neurons. Surprisingly, we find that the vast majority of FM 1-43 somatosensory neuron labeling in mice in vivo is dependent on PIEZO2 activity within the peripheral nerve endings. We illustrate the potential of FM 1-43 by using it to identify novel PIEZO2-expressing urethral neurons that are engaged by urination. These data reveal that FM 1-43 is a functional probe for mechanosensitivity via PIEZO2 activation in vivo and will facilitate the characterization of known and novel mechanosensory processes in multiple organ systems.


Control of Prosthetic Hands via the Peripheral Nervous System.

  • Anna Lisa Ciancio‎ et al.
  • Frontiers in neuroscience‎
  • 2016‎

This paper intends to provide a critical review of the literature on the technological issues on control and sensorization of hand prostheses interfacing with the Peripheral Nervous System (i.e., PNS), and their experimental validation on amputees. The study opens with an in-depth analysis of control solutions and sensorization features of research and commercially available prosthetic hands. Pros and cons of adopted technologies, signal processing techniques and motion control solutions are investigated. Special emphasis is then dedicated to the recent studies on the restoration of tactile perception in amputees through neural interfaces. The paper finally proposes a number of suggestions for designing the prosthetic system able to re-establish a bidirectional communication with the PNS and foster the prosthesis natural control.


Central nervous system mast cells in peripheral inflammatory nociception.

  • Dimitris N Xanthos‎ et al.
  • Molecular pain‎
  • 2011‎

Functional aspects of mast cell-neuronal interactions remain poorly understood. Mast cell activation and degranulation can result in the release of powerful pro-inflammatory mediators such as histamine and cytokines. Cerebral dural mast cells have been proposed to modulate meningeal nociceptor activity and be involved in migraine pathophysiology. Little is known about the functional role of spinal cord dural mast cells. In this study, we examine their potential involvement in nociception and synaptic plasticity in superficial spinal dorsal horn. Changes of lower spinal cord dura mast cells and their contribution to hyperalgesia are examined in animal models of peripheral neurogenic and non-neurogenic inflammation.


Central and Peripheral Nervous System Complications of Vasculitis Syndromes From Pathology to Bedside: Part 1-Central Nervous System.

  • Gelsomina Mansueto‎ et al.
  • Current neurology and neuroscience reports‎
  • 2022‎

The aim of this review is to provide a comprehensive update on the clinical assessment, diagnosis, complications, and treatment of primary central nervous system vasculitis (PCNSV).


Focus on 1,25-Dihydroxyvitamin D3 in the Peripheral Nervous System.

  • Pierre Antoine Faye‎ et al.
  • Frontiers in neuroscience‎
  • 2019‎

In this review, we draw attention to the roles of calcitriol (1,25-dihydroxyvitamin D3) in the trophicity of the peripheral nervous system. Calcitriol has long been known to be crucial in phosphocalcium homeostasis. However, recent discoveries concerning its involvement in the immune system, anti-cancer defenses, and central nervous system development suggest a more pleiotropic role than previously thought. Several studies have highlighted the impact of calcitriol deficiency as a promoting factor of various central neurological diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Based on these findings and recent publications, a greater role for calcitriol may be envisioned in the peripheral nervous system. Indeed, calcitriol is involved in myelination, axonal homogeneity of peripheral nerves, and neuronal-cell differentiation. This may have useful clinical consequences, as calcitriol supplementation may be a simple means to avoid the onset and/or development of peripheral nervous-system disorders.


Peripheral nervous system involvement accompanies central nervous system involvement in anti-glial fibrillary acidic protein (GFAP) antibody-related disease.

  • Julian Theuriet‎ et al.
  • Journal of neurology‎
  • 2023‎

Glial fibrillary acidic protein (GFAP) is expressed by astrocytes in the central nervous system (CNS), but also by immature and regenerative Schwann cells in the peripheral nervous system (PNS). GFAP antibodies (GFAP-Abs) in cerebrospinal fluid (CSF) have been mainly described in patients with meningoencephalomyelitis. We aimed to study PNS symptoms in patients with CSF GFAP-Abs.


Murine central and peripheral nervous system transcriptomes: comparative gene expression.

  • Mark S LeDoux‎ et al.
  • Brain research‎
  • 2006‎

The central and peripheral nervous systems exhibit significant embryological, morphological, and functional differences. Moreover, the pathology of most acquired and hereditary neurological diseases preferentially targets specific components of the nervous system. In order to test the hypothesis that central and peripheral neural transcriptomes show fundamental quantitative differences, Affymetrix GeneChip expression arrays were used to compare murine lumbar spinal cord (SC) and dorsal root ganglion (DRG) gene expression. As the crucial component of a novel technique to preserve RNA integrity, mice were perfusion-fixed with RNAlater before the SC and DRG were harvested. As per Affymetrix terminology, a total of 111 transcripts were present (P) on all DRG arrays, absent (A) on all SC arrays, and demonstrated at least 10-fold greater expression in DRG than in SC. Conversely, a total of 112 transcripts were present on all SC arrays, absent on all DRG arrays, and showed at least 10-fold greater expression in SC than in DRG. For a subset of transcripts, quantitative real-time RT-PCR was used to corroborate and validate microarray results. Among those genes enriched in DRG, many belonged to a few distinct functional classes: G-protein coupled receptor-protein signaling pathways, potassium transport, sodium transport, sensory perception, and cell-surface receptor-linked signal transduction. In contrast, genes associated with synaptic transmission, organic acid transport, neurotransmitter transport, and circulation were enriched in SC. Notably, the majority of genes causally associated with hereditary neuropathies were highly enriched in DRG. These differential neural gene expression profiles provide a robust framework for future molecular and genetic studies of neuropathy and SC diseases.


Expression of the noradrenaline transporter in the peripheral nervous system.

  • Natalie Morellini‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2019‎

The noradrenaline transporter (NAT) transfers noradrenaline released into the synaptic cleft back into the presynaptic terminal, thus terminating neurotransmission. Although the distribution of NAT within the central nervous system has been well-characterized, less is known about its distribution elsewhere in the peripheral nervous system and in organs such as the skin. To address this in the present study, NAT expression was investigated using immunohistochemistry in the hind paw skin and more proximally in the sciatic nerve, dorsal root ganglia and spinal cord of five male Wistar rats. It was hypothesised that NAT would be expressed exclusively on nerve fibres labelled by dopamine beta hydroxylase (DβH), an enzyme involved in the conversion of dopamine to noradrenaline. NAT co-localised with DβH in neurons in the spinal cord, dorsal root ganglia and sciatic nerve. Unexpectedly, however, NAT-like immunoreactivity was not observed in DβH immuno-reactive fibres that innervated dermal blood vessels, suggesting that a mechanism other than presynaptic re-uptake of noradrenaline through NAT regulates transmission at neurovascular junctions in the skin. Furthermore, a novel association between NAT-like immunoreactivity and the myelin marker myelin basic protein (MBP) was identified in peripheral nerves. Specifically, NAT and MBP appeared to congregate around primary afferent nerve fibres labelled by neurofilament 200, a marker of neurons with medium- and large-diameter axons. NAT-like immunoreactivity was also detected in cultured Schwann cells immunohistochemically and at the mRNA level. Together, these findings imply a hitherto unrecognised role of Schwann cells in clearance of noradrenaline in the peripheral nervous system.


Nervous NDRGs: the N-myc downstream-regulated gene family in the central and peripheral nervous system.

  • Simone L Schonkeren‎ et al.
  • Neurogenetics‎
  • 2019‎

The N-Myc downstream-regulated gene (NDRG) family consists of four members (NDRG1, NDRG2, NDRG3, NDRG4) that are differentially expressed in various organs and function in important processes, like cell proliferation and differentiation. In the last couple of decades, interest in this family has risen due to its connection with several disorders of the nervous system including Charcot-Marie-Tooth disease and dementia, as well as nervous system cancers. By combining a literature review with in silico data analysis of publicly available datasets, such as the Mouse Brain Atlas, BrainSpan, the Genotype-Tissue Expression (GTEx) project, and Gene Expression Omnibus (GEO) datasets, this review summarizes the expression and functions of the NDRG family in the healthy and diseased nervous system. We here show that the NDRGs have a differential, relatively cell type-specific, expression pattern in the nervous system. Even though NDRGs share functionalities, like a role in vesicle trafficking, stress response, and neurite outgrowth, other functionalities seem to be unique to a specific member, e.g., the role of NDRG1 in myelination. Furthermore, mutations, phosphorylation, or changes in expression of NDRGs are related to nervous system diseases, including peripheral neuropathy and different forms of dementia. Moreover, NDRG1, NDRG2, and NDRG4 are all involved in cancers of the nervous system, such as glioma, neuroblastoma, or meningioma. All in all, our review elucidates that although the NDRGs belong to the same gene family and share some functional features, they should be considered unique in their expression patterns and functional importance for nervous system development and neuronal diseases.


Insulin in central nervous system: more than just a peripheral hormone.

  • Ana I Duarte‎ et al.
  • Journal of aging research‎
  • 2012‎

Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with Alzheimer's disease (AD) considered as the "brain-type diabetes." In fact, brain insulin has been shown to regulate both peripheral and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient preventive and therapeutic strategies to overcome age-related diseases and to prolong human "healthy" longevity. Herewith, we aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and AD, both in terms of intracellular signaling and potential therapeutic approach.


Genetic pathways for differentiation of the peripheral nervous system in ascidians.

  • Kana Waki‎ et al.
  • Nature communications‎
  • 2015‎

Ascidians belong to tunicates, the sister group of vertebrates. Peripheral nervous systems (PNSs) including epidermal sensory neurons (ESNs) in the trunk and dorsal tail regions of ascidian larvae are derived from cells adjacent to the neural plate, as in vertebrates. On the other hand, peripheral ESNs in the ventral tail region are derived from the ventral ectoderm under the control of BMP signalling, reminiscent of sensory neurons of amphioxus and protostomes. In this study, we show that two distinct mechanisms activate a common gene circuit consisting of Msx, Ascl.b, Tox, Delta.b and Pou4 in the dorsal and ventral regions to differentiate ESNs. Our results suggest that ventral ESNs of the ascidian larva are not directly homologous to vertebrate PNSs. The dorsal ESNs might have arisen via co-option of the original PNS gene circuit to the neural plate border in an ancestral chordate.


Propionate exerts neuroprotective and neuroregenerative effects in the peripheral nervous system.

  • Thomas Grüter‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

In inflammatory neuropathies, oxidative stress results in neuronal and Schwann cell (SC) death promoting early neurodegeneration and clinical disability. Treatment with the short-chain fatty acid propionate showed a significant immunoregulatory and neuroprotective effect in multiple sclerosis patients. Similar effects have been described for patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Therefore, Schwann cell's survival and dorsal root ganglia (DRG) outgrowth were evaluated in vitro after propionate treatment and application of H2O2 or S-nitroso-N-acetyl-D-L-penicillamine (SNAP) to evaluate neuroprotection. In addition, DRG resistance was evaluated by the application of oxidative stress by SNAP ex vivo after in vivo propionate treatment. Propionate treatment secondary to SNAP application on DRG served as a neuroregeneration model. Histone acetylation as well as expression of the free fatty acid receptor (FFAR) 2 and 3, histone deacetylases, neuroregeneration markers, and antioxidative mediators were investigated. β-hydroxybutyrate was used as a second FFAR3 ligand, and pertussis toxin was used as an FFAR3 antagonist. FFAR3, but not FFAR2, expression was evident on SC and DRG. Propionate-mediated activation of FFAR3 and histone 3 hyperacetylation resulted in increased catalase expression and increased resistance to oxidative stress. In addition, propionate treatment resulted in enhanced neuroregeneration with concomitant growth-associated protein 43 expression. We were able to demonstrate an antioxidative and neuroregenerative effect of propionate on SC and DRG mediated by FFAR3-induced histone acetylases expression. Our results describe a pathway to achieve neuroprotection/neuroregeneration relevant for patients with immune-mediated neuropathies.


DNA methylation temporal profiling following peripheral versus central nervous system axotomy.

  • Ricco Lindner‎ et al.
  • Scientific data‎
  • 2014‎

The regulatory mechanisms responsible for the gene expression pattern associated with axotomy-dependent signaling affecting the neuronal phenotype, including the axonal regenerative program, remain unclear. To further this understanding, we recently performed DNA methylation temporal profiling in lumbar dorsal root ganglia (DRG) after axotomy of the central spinal (non-regenerating) and of the peripheral sciatic nerve (regenerating) axonal branches. DNA methylation microarrays for mouse gene promoters and CpG islands (Roche/NimbleGen) were employed after immunoprecipitation of 5-methylcytosine-DNA. Here we provide a detailed data descriptor of this DNA methylation dataset, which allows in depth evaluation of the experimental design, assessment of data reproducibility and a full interactive operator-based systematic data analysis. In fact, we offer a methylation 'hit' scoring map of the whole microarray data in a workable spreadsheet that allows data sorting by genes, conditions or hits of interests that is ready for functional gene annotation and classification. This dataset allows investigators bioinformatic comparison to other epigenetic and gene expression datasets and further experimental characterization of the role of DNA methylation in axotomy-dependent pathways.


Acetyl-CoA carboxylase and SREBP expression during peripheral nervous system myelination.

  • Jérôme Salles‎ et al.
  • Biochimica et biophysica acta‎
  • 2003‎

The expression of acetyl-CoA carboxylase (ACC) in mouse peripheral nervous system (PNS) was investigated. Both ACC 265 and ACC 280 isoforms were expressed in the sciatic nerve, although ACC 265 was predominant. ACC 265 transcripts originating from promoters P1 and P2 could be detected in the developing nerve, as well as the two splice products, which are characterized by the presence or the absence of a 24-base sequence before the codon serine-1200. The mRNA levels for ACC 265 parallel those of other lipogenic genes whose expression is linked to the myelination process. In addition, ACC 265 mRNA and protein levels in the nerves of the trembler mutant, which is a mouse model of PNS dysmyelination, represented around 30% of the normal values. The expression of the sterol regulatory element-binding proteins (SREBPs) was also studied. SREBP 1 mRNAs were expressed at a constant level during nerve development, and their quantities were normal in trembler. On the contrary, SREBP 2 mRNA quantities varied during the myelination period similarly to the lipogenic gene mRNAs, and the levels measured in trembler represented only 10% of the normal values. Taken together, these results suggest that the coordinate expression of several lipogenic genes, which occurs during PNS myelination, could possibly be regulated by SREBP 2.


Autonomic and peripheral nervous system function in acute tick-borne encephalitis.

  • Bernhard Neumann‎ et al.
  • Brain and behavior‎
  • 2016‎

Tick-borne encephalitis (TBE) is an emerging flaviviral zoonosis in Central and Eastern Europe. TBE can present as meningitis, meningoencephalitis, or meningoencephalomyelitis. Dysfunction of the autonomic (ANS) and peripheral motoric and sensory nervous system (PNS) might contribute to acute and long-term complications. We aimed to examine, whether the ANS and PNS are affected in acute TBE.


Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos.

  • Joshua F Coulcher‎ et al.
  • eLife‎
  • 2020‎

Ascidians with very similar embryos but highly divergent genomes are thought to have undergone extensive developmental system drift. We compared, in four species (Ciona and Phallusia for Phlebobranchia, Molgula and Halocynthia for Stolidobranchia), gene expression and gene regulation for a network of six transcription factors regulating peripheral nervous system (PNS) formation in Ciona. All genes, but one in Molgula, were expressed in the PNS with some differences correlating with phylogenetic distance. Cross-species transgenesis indicated strong levels of conservation, except in Molgula, in gene regulation despite lack of sequence conservation of the enhancers. Developmental system drift in ascidians is thus higher for gene regulation than for gene expression and is impacted not only by phylogenetic distance, but also in a clade-specific manner and unevenly within a network. Finally, considering that Molgula is divergent in our analyses, this suggests deep conservation of developmental mechanisms in ascidians after 390 My of separate evolution.


Extracellular microRNAs as messengers in the central and peripheral nervous system.

  • Hannah Scott‎
  • Neuronal signaling‎
  • 2017‎

MicroRNAs are small post-transcriptional regulators that play an important role in nervous system development, function and disease. More recently, microRNAs have been detected extracellularly and circulating in blood and other body fluids, where they are protected from degradation by encapsulation in vesicles, such as exosomes, or by association with proteins. These microRNAs are thought to be released from cells selectively through active processes and taken up by specific target cells within the same or in remote tissues where they are able to exert their repressive function. These characteristics make extracellular microRNAs ideal candidates for intercellular communication over short and long distances. This review aims to explore the potential mechanisms underlying microRNA communication within the nervous system and between the nervous system and other tissues. The suggested roles of extracellular microRNAs in the healthy and the diseased nervous system will be reviewed.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: