Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

Imaging cytoplasmic lipid droplets in vivo with fluorescent perilipin 2 and perilipin 3 knock-in zebrafish.

  • Meredith H Wilson‎ et al.
  • eLife‎
  • 2021‎

Cytoplasmic lipid droplets are highly dynamic storage organelles that are critical for cellular lipid homeostasis. While the molecular details of lipid droplet dynamics are a very active area of investigation, this work has been primarily performed in cultured cells. Taking advantage of the powerful transgenic and in vivo imaging opportunities available in zebrafish, we built a suite of tools to study lipid droplets in real time from the subcellular to the whole organism level. Fluorescently tagging the lipid droplet-associated proteins, perilipin 2 and perilipin 3, in the endogenous loci permits visualization of lipid droplets in the intestine, liver, and adipose tissue. Using these tools, we found that perilipin 3 is rapidly loaded on intestinal lipid droplets following a high-fat meal and later replaced by perilipin 2. These powerful new tools will facilitate studies on the role of lipid droplets in different tissues, under different genetic and physiological manipulations, and in a variety of human disease models.


mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3.

  • Maximilian Kleinert‎ et al.
  • Molecular metabolism‎
  • 2016‎

We have recently shown that acute inhibition of both mTOR complexes (mTORC1 and mTORC2) increases whole-body lipid utilization, while mTORC1 inhibition had no effect. Therefore, we tested the hypothesis that mTORC2 regulates lipid metabolism in skeletal muscle.


Structural insights into perilipin 3 membrane association in response to diacylglycerol accumulation.

  • Yong Mi Choi‎ et al.
  • Nature communications‎
  • 2023‎

Lipid droplets (LDs) are dynamic organelles that contain an oil core mainly composed of triglycerides (TAG) that is surrounded by a phospholipid monolayer and LD-associated proteins called perilipins (PLINs). During LD biogenesis, perilipin 3 (PLIN3) is recruited to nascent LDs as they emerge from the endoplasmic reticulum. Here, we analyze how lipid composition affects PLIN3 recruitment to membrane bilayers and LDs, and the structural changes that occur upon membrane binding. We find that the TAG precursors phosphatidic acid and diacylglycerol (DAG) recruit PLIN3 to membrane bilayers and define an expanded Perilipin-ADRP-Tip47 (PAT) domain that preferentially binds DAG-enriched membranes. Membrane binding induces a disorder to order transition of alpha helices within the PAT domain and 11-mer repeats, with intramolecular distance measurements consistent with the expanded PAT domain adopting a folded but dynamic structure upon membrane binding. In cells, PLIN3 is recruited to DAG-enriched ER membranes, and this requires both the PAT domain and 11-mer repeats. This provides molecular details of PLIN3 recruitment to nascent LDs and identifies a function of the PAT domain of PLIN3 in DAG binding.


Lipophagy-Related Protein Perilipin-3 and Resistance of Prostate Cancer to Radiation Therapy.

  • Ioannis Lamprou‎ et al.
  • International journal of radiation oncology, biology, physics‎
  • 2022‎

Radiation therapy is a principal treatment modality for localized and locally advanced prostate cancer (PCa). Metabolic alterations, including lipid metabolism, may reduce treatment efficacy, resulting in tumor relapse and poor therapeutic outcome. In the current study, we investigated the role of the lipophagy-related protein perilipin-3 (PLIN3) and the lysosomal acid lipase (LAL) in PCa response to radiation therapy.


Associations of Perilipin 3 with Insulin Resistance in Arab Adults with Type 2 Diabetes.

  • Amani Alghamdi‎ et al.
  • Disease markers‎
  • 2021‎

The role of lipid metabolism disorders in the pathogenesis of T2DM has been recognized. Lipid droplets (LDs) are dynamic organelles that store lipids. Perilipin 3 (PLIN3) is one of the five LD coat proteins that is relatively understudied as compared to other LDs. This study is aimed at determining levels of PLIN3 among adults with varying levels of obesity and insulin resistance to determine metabolic associations of PLIN3. Methodology. A total of 280 Saudi adults (n = 127 males; n = 153 females) were randomly recruited and divided into three groups according to their body mass index (BMI) and fasting glucose levels: healthy and lean (HL), obese and T2DM (OD), or obese and nondiabetic (OND). Lipid profiles, fasting glucose levels, insulin, and perilipin 3 levels were measured.


Adipophilin and perilipin 3 positively correlate with total lipid content in human breast milk.

  • Tereza Pavlova‎ et al.
  • Scientific reports‎
  • 2020‎

Lipids are secreted into milk as bilayer-coated structures: milk fat globules (MFGs). Adipophilin (ADRP) and perilipin 3 (TIP47) are associated with MFGs in human breast milk; however, the role of these proteins in milk lipid secretion is not fully understood. The study aimed to investigate levels of ADRP, TIP47 and total lipid content in human breast milk, their mutual correlations, and dynamics during lactation. Milk samples from 22 healthy lactating women (Caucasian, Central European) were collected at five time points during lactation (1-3, 12-14, 29-30, 88-90 and 178-180 days postpartum). Mass spectrometry-based method was used for quantification of ADRP and TIP47 in the samples. The gravimetric method was used to determine milk total lipid content. We observed distinctive trends in ADRP, TIP47 levels and lipid content in human breast milk during the first six months of lactation. We also found a significant association between lipid content and ADRP, lipid content and TIP47, and ADRP and TIP47 concentrations in breast milk at all sampling points. A mass spectrometry-based method was developed for quantifying ADRP and TIP47 in human breast milk. Strong mutual correlations were found between ADRP, TIP47 and total lipid content in human breast milk.


The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces.

  • Amber R Titus‎ et al.
  • Membranes‎
  • 2021‎

Lipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize, and bind, to this lipid interface remains poorly understood. Amphipathic α-helix bundles form a common motif that is shared between cytosolic LD binding proteins (e.g., perilipins 2, 3, and 5) and apolipoproteins, such as apoE and apoLp-III, found on lipoprotein particles. Here, we use pendant drop tensiometry to expand our previous work on the C-terminal α-helix bundle of perilipin 3 and the full-length protein. We measure the recruitment and insertion of perilipin 3 at mixed lipid monolayers at an aqueous-phospholipid-oil interface. We find that, compared to its C-terminus alone, the full-length perilipin 3 has a higher affinity for both a neat oil/aqueous interface and a phosphatidylcholine (PC) coated oil/aqueous interface. Both the full-length protein and the C-terminus show significantly more insertion into a fully unsaturated PC monolayer, contrary to our previous results at the air-aqueous interface. Additionally, the C-terminus shows a preference for lipid monolayers containing phosphatidylethanolamine (PE), whereas the full-length protein does not. These results strongly support a model whereby both the N-terminal 11-mer repeat region and C-terminal amphipathic α-helix bundle domains of perilipin 3 have distinct lipid binding, and potentially biological roles.


Skeletal muscle perilipin 3 and coatomer proteins are increased following exercise and are associated with fat oxidation.

  • Jeffrey D Covington‎ et al.
  • PloS one‎
  • 2014‎

Lipid droplet-associated proteins such as perilipin 3 (PLIN3) and coatomer GTPase proteins (GBF1, ARF1, Sec23a, and ARFRP1) are expressed in skeletal muscle but little is known so far as to their regulation of lipolysis. We aimed here to explore the effects of lipolytic stimulation in vitro in primary human myotubes as well as in vivo following an acute exercise bout. In vitro lipolytic stimulation by epinephrine (100 μM) or by a lipolytic cocktail (30 μM palmitate, 4 μM forskolin, and 0.5 μM ionomycin, PFI) resulted in increases in PLIN3 protein content. Coatomer GTPases such as GBF1, ARF1, Sec23a, and ARFRP1 also increased in response to lipolytic stimuli. Furthermore, a long duration endurance exercise bout (20 males; age 24.0 ± 4.5 y; BMI 23.6 ± 1.8 kg/m(2)) increased PLIN3 protein in human skeletal muscle (p = 0.03) in proportion to ex vivo palmitate oxidation (r = 0.45, p = 0.04) and whole body in vivo fat oxidation (r = 0.52, p = 0.03). Protein content of ARF1 was increased (p = 0.04) while mRNA expression was increased for several other coatomers (GBF1, ARF1, and Sec23a, all p<0.05). These data provide novel observational insight into the possible relationships between lipolysis and PLIN3 along with these coatomoer GTPase proteins in human skeletal muscle.


Binding of perilipin 3 to membranes containing diacylglycerol is mediated by conserved residues within its PAT domain.

  • Jiri Stribny‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Perilipins (PLINs) constitute an evolutionarily conserved family of proteins that specifically associate with the surface of lipid droplets (LDs). These proteins function in LD biogenesis and lipolysis and help to stabilize the surface of LDs. PLINs are typically composed of three different protein domains. They share an N-terminal PAT domain of unknown structure and function, a central region containing 11-mer repeats that form amphipathic helices, and a C-terminal domain that adopts a 4-helix bundle structure. How exactly these three distinct domains contribute to PLIN function remains to be determined. Here, we show that the N-terminal PAT domain of PLIN3 binds diacylglycerol (DAG), the precursor to triacylglycerol, a major storage lipid of LDs. PLIN3 and its PAT domain alone bind liposomes with micromolar affinity and PLIN3 binds artificial LDs containing low concentrations of DAG with nanomolar affinity. The PAT domain of PLIN3 is predicted to adopt an amphipathic triangular shaped structure. In silico ligand docking indicates that DAG binds to one of the highly curved regions within this domain. A conserved aspartic acid residue in the PAT domain, E86, is predicted to interact with DAG, and we found that its substitution abrogates high affinity binding of DAG as well as DAG-stimulated association with liposome and artificial LDs. These results indicate that the PAT domain of PLINs harbor specific lipid-binding properties that are important for targeting these proteins to the surface of LDs and to ER membrane domains enriched in DAG to promote LD formation.


Knockdown of hepatocyte Perilipin-3 mitigates hepatic steatosis and steatohepatitis caused by hepatocyte CGI-58 deletion in mice.

  • Xinyu Bao‎ et al.
  • Journal of molecular cell biology‎
  • 2022‎

Comparative gene identification-58 (CGI-58), also known as α/β hydrolase domain containing 5, is the co-activator of adipose triglyceride lipase that hydrolyzes triglycerides stored in the cytosolic lipid droplets. Mutations in CGI-58 gene cause Chanarin-Dorfman syndrome (CDS), an autosomal recessive neutral lipid storage disease with ichthyosis. The liver pathology of CDS manifests as steatosis and steatohepatitis, which currently has no effective treatments. Perilipin-3 (Plin3) is a member of the Perilipin-ADRP-TIP47 protein family that is essential for lipid droplet biogenesis. The objective of this study was to test a hypothesis that deletion of a major lipid droplet protein alleviates fatty liver pathogenesis caused by CGI-58 deficiency in hepatocytes. Adult CGI-58-floxed mice were injected with adeno-associated vectors simultaneously expressing the Cre recombinase and microRNA against Plin3 under the control of a hepatocyte-specific promoter, followed by high-fat diet feeding for 6 weeks. Liver and blood samples were then collected from these animals for histological and biochemical analysis. Plin3 knockdown in hepatocytes prevented steatosis, steatohepatitis, and necroptosis caused by hepatocyte CGI-58 deficiency. Our work is the first to show that inhibiting Plin3 in hepatocytes is sufficient to mitigate hepatocyte CGI-58 deficiency-induced hepatic steatosis and steatohepatitis in mice.


Crucial role of perilipin-3 (TIP47) in formation of lipid droplets and PGE2 production in HL-60-derived neutrophils.

  • Fuyuki Nose‎ et al.
  • PloS one‎
  • 2013‎

Cytosolic lipid droplets (LDs), which are now recognized as multifunctional organelles, accumulate in leukocytes under various inflammatory conditions. However, little is known about the characteristic features of LDs in neutrophils. In this study, we show that perilipin-3 (PLIN3; formerly called TIP47) is involved in LD formation and the inflammatory response in HL-60-derived neutrophils. HL-60, a promyelocytic cell line, was differentiated into neutrophils via treatment with all-trans retinoic acid. After differentiation, cells were stimulated with Porphyromonas gingivalis lipopolysaccharide (P.g-LPS), a major pathogen in adult periodontitis. When HL-60-derived neutrophils were stimulated with P.g-LPS, LDs increased in both number and size. In the differentiated cells, PLIN3 was induced while PLIN1, PLIN2 and PLIN5 were not detected. PGE2 production and the PLIN3 protein level were increased by the P.g-LPS treatment of the cells in a dose-dependent manner. When PLIN3 was down-regulated with siRNA treatment, LDs essentially disappeared and the level of PGE2 secreted in the cell culture medium decreased by 65%. In addition, the suppression of PLIN3 repressed the PGE2 producing enzymes; i.e., microsomal PGE synthase-1, -2 and cyclooxygenase-2. These findings indicate that PLIN3 has a pivotal role in LD-biogenesis in HL-60-derived neutrophils, and that PLIN3 is associated with the synthesis and secretion of PGE2.


Training alters the distribution of perilipin proteins in muscle following acute free fatty acid exposure.

  • S O Shepherd‎ et al.
  • The Journal of physiology‎
  • 2017‎

The lipid droplet (LD)-associated perilipin (PLIN) proteins promote intramuscular triglyceride (IMTG) storage, although whether the abundance and association of the PLIN proteins with LDs is related to the diverse lipid storage in muscle between trained and sedentary individuals is unknown. We show that lipid infusion augments IMTG content in type I fibres of both trained and sedentary individuals. Most importantly, despite there being no change in PLIN protein content, lipid infusion did increase the number of LDs connected with PLIN proteins in trained individuals only. We conclude that trained individuals are able to redistribute the pre-existing pool of PLIN proteins to an expanded LD pool during lipid infusion and, via this adaptation, may support the storage of fatty acids in IMTG.


Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1α/SIRT1-dependent transcriptional regulation of mitochondrial function.

  • Violeta I Gallardo-Montejano‎ et al.
  • Nature communications‎
  • 2016‎

Dysfunctional cellular lipid metabolism contributes to common chronic human diseases, including type 2 diabetes, obesity, fatty liver disease and diabetic cardiomyopathy. How cells balance lipid storage and mitochondrial oxidative capacity is poorly understood. Here we identify the lipid droplet protein Perilipin 5 as a catecholamine-triggered interaction partner of PGC-1α. We report that during catecholamine-stimulated lipolysis, Perilipin 5 is phosphorylated by protein kinase A and forms transcriptional complexes with PGC-1α and SIRT1 in the nucleus. Perilipin 5 promotes PGC-1α co-activator function by disinhibiting SIRT1 deacetylase activity. We show by gain-and-loss of function studies in cells that nuclear Perilipin 5 promotes transcription of genes that mediate mitochondrial biogenesis and oxidative function. We propose that Perilipin 5 is an important molecular link that couples the coordinated catecholamine activation of the PKA pathway and of lipid droplet lipolysis with transcriptional regulation to promote efficient fatty acid catabolism and prevent mitochondrial dysfunction.


Nuclear lipid droplets derive from a lipoprotein precursor and regulate phosphatidylcholine synthesis.

  • Kamil Sołtysik‎ et al.
  • Nature communications‎
  • 2019‎

The origin and physiological significance of lipid droplets (LDs) in the nucleus is not clear. Here we show that nuclear LDs in hepatocytes are derived from apolipoprotein B (ApoB)-free lumenal LDs, a precursor to very low-density lipoproprotein (VLDL) generated in the ER lumen by microsomal triglyceride transfer protein. ApoB-free lumenal LDs accumulate under ER stress, grow within the lumen of the type I nucleoplasmic reticulum, and turn into nucleoplasmic LDs by disintegration of the surrounding inner nuclear membrane. Oleic acid with or without tunicamycin significantly increases the formation of nucleoplasmic LDs, to which CDP-choline diacylglycerol phosphotransferase α (CCTα) is recruited, resulting in activation of phosphatidylcholine (PC) synthesis. Perilipin-3 competes with CCTα in binding to nucleoplasmic LDs, and thus, knockdown and overexpression of perilipin-3 increases and decreases PC synthesis, respectively. The results indicate that nucleoplasmic LDs in hepatocytes constitute a feedback mechanism to regulate PC synthesis in accordance with ER stress.


RalA and PLD1 promote lipid droplet growth in response to nutrient withdrawal.

  • Syed S Hussain‎ et al.
  • Cell reports‎
  • 2021‎

Lipid droplets (LDs) are dynamic organelles that undergo dynamic changes in response to changing cellular conditions. During nutrient depletion, LD numbers increase to protect cells against toxic fatty acids generated through autophagy and provide fuel for beta-oxidation. However, the precise mechanisms through which these changes are regulated have remained unclear. Here, we show that the small GTPase RalA acts downstream of autophagy to directly facilitate LD growth during nutrient depletion. Mechanistically, RalA performs this function through phospholipase D1 (PLD1), an enzyme that converts phosphatidylcholine (PC) to phosphatidic acid (PA) and that is recruited to lysosomes during nutrient stress in a RalA-dependent fashion. RalA inhibition prevents recruitment of the LD-associated protein perilipin 3, which is required for LD growth. Our data support a model in which RalA recruits PLD1 to lysosomes during nutrient deprivation to promote the localized production of PA and the recruitment of perilipin 3 to expanding LDs.


Targeting Multiple Hallmarks of Skin Aging: Preclinical and Clinical Efficacy of a Novel Growth Factor-Based Skin Care Serum.

  • Gail K Naughton‎ et al.
  • Dermatology and therapy‎
  • 2023‎

The aging process involves numerous biological mechanisms that have been characterized and proposed as the "hallmarks of aging." Targeting the processes and pathways related to these hallmarks of aging that cause and promote skin aging could provide anti-aging benefits. A novel topical growth factor-based skin care serum (A+) was developed using human fibroblast conditioned media. This study aimed to assess the effects of A+ on four hallmarks of aging and its clinical efficacy in skin rejuvenation in subjects with moderate to severe overall facial photodamage.


ATGL/CGI-58-Dependent Hydrolysis of a Lipid Storage Pool in Murine Enterocytes.

  • Melanie Korbelius‎ et al.
  • Cell reports‎
  • 2019‎

As circulating lipid levels are balanced by the rate of lipoprotein release and clearance from the plasma, lipid absorption in the small intestine critically contributes to the maintenance of whole-body lipid homeostasis. Within enterocytes, excessive triglycerides are transiently stored as cytosolic lipid droplets (cLDs), and their mobilization sustains lipid supply during interprandial periods. Using mice lacking adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) exclusively in the intestine (intestine-specific double KO [iDKO]), we show that ATGL/CGI-58 are not involved in providing substrates for chylomicron synthesis. Massive intestinal cLD accumulation in iDKO mice independent of dietary lipids together with inefficient lipid incorporation into cLDs in the early absorption phase demonstrate the existence of a secretion/re-uptake cycle, corroborating the availability of two diverse cLD pools. This study identified ATGL/CGI-58 as critical players in the catabolism of basolaterally (blood) derived lipids and highlights the necessity to modify the current model of intestinal lipid metabolism.


Validating an artificial organelle: Studies of lipid droplet-specific proteins on adiposome platform.

  • Xuejing Ma‎ et al.
  • iScience‎
  • 2021‎

New strategies are urgently needed to characterize the functions of the lipid droplet (LD). Here, adiposome, an artificial LD mimetic platform, was validated by comparative in vitro bioassays. Scatchard analysis found that the binding of perilipin 2 (PLIN2) to the adiposome surface was saturable. Phosphatidylinositol (PtdIns) was found to inhibit PLIN2 binding while it did not impede perilipin 3 (PLIN3). Structural analysis combined with mutagenesis revealed that the 73rd glutamic acid of PLIN2 is significant for the effect of PtdIns on the PLIN2 binding. Furthermore, adiposome was also found to be an ideal platform for in situ enzymatic activity measurement of adipose triglyceride lipase (ATGL). The significant serine mutants of ATGL were found to cause the loss of lipase activity. Our study demonstrates the adiposome as a powerful, manipulatable model system that mimics the function of LD for binding and enzymatic activity studies of LD proteins in vitro.


Inulin Improves Postprandial Hypertriglyceridemia by Modulating Gene Expression in the Small Intestine.

  • Sophie Hiel‎ et al.
  • Nutrients‎
  • 2018‎

Postprandial hyperlipidemia is an important risk factor for cardiovascular diseases in the context of obesity. Inulin is a non-digestible carbohydrate, known for its beneficial properties in metabolic disorders. We investigated the impact of inulin on postprandial hypertriglyceridemia and on lipid metabolism in a mouse model of diet-induced obesity. Mice received a control or a western diet for 4 weeks and were further supplemented or not with inulin for 2 weeks (0.2 g/day per mouse). We performed a lipid tolerance test, measured mRNA expression of genes involved in postprandial lipid metabolism, assessed post-heparin plasma and muscle lipoprotein lipase activity and measured lipid accumulation in the enterocytes and fecal lipid excretion. Inulin supplementation in western diet-fed mice decreases postprandial serum triglycerides concentration, decreases the mRNA expression levels of Cd36 (fatty acid receptor involved in lipid uptake and sensing) and apolipoprotein C3 (Apoc3, inhibitor of lipoprotein lipase) in the jejunum and increases fecal lipid excretion. In conclusion, inulin improves postprandial hypertriglyceridemia by targeting intestinal lipid metabolism. This work confirms the interest of using inulin supplementation in the management of dyslipidemia linked to obesity and cardiometabolic risk.


Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis.

  • Susmita Kaushik‎ et al.
  • Nature cell biology‎
  • 2015‎

Chaperone-mediated autophagy (CMA) selectively degrades a subset of cytosolic proteins in lysosomes. A potent physiological activator of CMA is nutrient deprivation, a condition in which intracellular triglyceride stores or lipid droplets (LDs) also undergo hydrolysis (lipolysis) to generate free fatty acids for energetic purposes. Here we report that the LD-associated proteins perilipin 2 (PLIN2) and perilipin 3 (PLIN3) are CMA substrates and their degradation through CMA precedes lipolysis. In vivo studies revealed that CMA degradation of PLIN2 and PLIN3 was enhanced during starvation, concurrent with elevated levels of cytosolic adipose triglyceride lipase (ATGL) and macroautophagy proteins on LDs. CMA blockage both in cultured cells and mouse liver or expression of CMA-resistant PLINs leads to reduced association of ATGL and macrolipophagy-related proteins with LDs and the subsequent decrease in lipid oxidation and accumulation of LDs. We propose a role for CMA in LD biology and in the maintenance of lipid homeostasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: