Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Effect of Substitution at Amine Functionality of 2,6-Diaminopyridine-Coupled Rhodamine on Metal-Ion Interaction and Self-Assembly.

  • Santanu Panja‎ et al.
  • ACS omega‎
  • 2020‎

2,6-Diaminopyridine-coupled rhodamines 1 and 2 have been synthesized, and the effect of substitution on amine functionality toward metal-ion interactions and self-assembly is thoroughly investigated. Both the compounds effectively recognize different metal ions of biological significance fluorimetrically and colorimetrically with a high degree of selectivity and sensitivities. While compound 1 is sensitive to Fe3+ ions, compound 2 is responsive to both Fe3+ and Al3+ ions in aqueous CH3CN (4/1, v/v; 10 mM tris HCl buffer, pH 6.8). The sensing mechanism involves the metal-ion chelation-induced spirolactam ring opening of the rhodamine scaffold that results in both color and fluorescence changes, while the extent of interactions with the metal ions is truly governed by the chemical structure of the compounds. Both 1 and 2 are proficient in detecting Fe3+ and Al3+ ions in human lung cancer cells (A549). As new findings, unlike 1, compound 2 formed a faint pink gel in the toluene-hexane mixture solvent (1:1, v/v), and the gel state of 2 selectively recognizes Ag+ ions by exhibiting a phase change from gel to purple sol. Experimental findings establish the role of the formamide moiety in forming the self-assembly.


Transcriptional response to prolonged perchlorate exposure in the methanogen Methanosarcina barkeri and implications for Martian habitability.

  • Rachel L Harris‎ et al.
  • Scientific reports‎
  • 2021‎

Observations of trace methane (CH4) in the Martian atmosphere are significant to the astrobiology community given the overwhelming contribution of biological methanogenesis to atmospheric CH4 on Earth. Previous studies have shown that methanogenic Archaea can generate CH4 when incubated with perchlorates, highly oxidizing chaotropic salts which have been found across the Martian surface. However, the regulatory mechanisms behind this remain completely unexplored. In this study we performed comparative transcriptomics on the methanogen Methanosarcina barkeri, which was incubated at 30˚C and 0˚C with 10-20 mM calcium-, magnesium-, or sodium perchlorate. Consistent with prior studies, we observed decreased CH4 production and apparent perchlorate reduction, with the latter process proceeding by heretofore essentially unknown mechanisms. Transcriptomic responses of M. barkeri to perchlorates include up-regulation of osmoprotectant transporters and selection against redox-sensitive amino acids. Increased expression of methylamine methanogenesis genes suggest competition for H2 with perchlorate reduction, which we propose is catalyzed by up-regulated molybdenum-containing enzymes and maintained by siphoning diffused H2 from energy-conserving hydrogenases. Methanogenesis regulatory patterns suggest Mars' freezing temperatures alone pose greater constraints to CH4 production than perchlorates. These findings increase our understanding of methanogen survival in extreme environments and confers continued consideration of a potential biological contribution to Martian CH4.


Alterations of urinary perchlorate levels in euthyroid postpubertal children with autism spectrum disorder.

  • Anna Błażewicz‎ et al.
  • Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS)‎
  • 2021‎

Perchlorates ClO4(-) are known environmental and food contaminants that act as inhibitors of iodine uptake by the thyroid gland; however, information concerning their possible association with the development of autism spectrum disorder (ASD) is still missing. The current study is first presenting the alterations in perchlorate urine levels in euthyroid children with ASD.


A cross sectional study of urinary phthalates, phenols and perchlorate on thyroid hormones in US adults using structural equation models (NHANES 2007-2008).

  • Jennifer Przybyla‎ et al.
  • Environmental research‎
  • 2018‎

Biomonitoring data shows that people are exposed to phthalates, phenols and perchlorates. Many of these compounds are endocrine disrupting compounds that affect thyroid hormone levels. Yet the effect of these compounds on thyroid hormone levels are often evaluated individually rather than as a mixture. Our objective was to examine the association between 11 urinary endocrine disrupting compounds and thyroid hormones using structural equation models.


Ratiometric Cu2+ Binding, Cell Imaging, Mitochondrial Targeting, and Anticancer Activity with Nanomolar IC50 by Spiro-Indoline-Conjugated Calix[4]arene.

  • Rahul Nag‎ et al.
  • ACS omega‎
  • 2019‎

A triazole-derivatized, spiro-indoline-linked, 1,3-di-derivative of calix[4]arene (L) has been synthesized to take advantage of its ion-binding capability in the ring-open form. Indeed, the spiro-indoline moiety is well known for its photochromic, acidochromic, and metallochromic properties. Therefore, the L has been explored for Cu2+ binding, cell imaging, and anticancer activity of the corresponding complex since Cu2+ complexes are known for such activity. The conversion from the closed to open form of L is expedited by light or proton, while the metal ion can open as well as stabilize it. The open form of L showed binding of Cu2+ ratiometrically as demonstrated by absorption and fluorescence spectroscopy. This leads to the formation of 1:1 complex with a binding constant of (6.9 ± 2.3) × 105 M-1, with the lowest detection limit being 1.9 nM. In the complex, the Cu2+ is bound by two triazole-N and two phenolic-O groups resulting in a distorted tetrahedral coordination core of CuN2O2 as demonstrated based on density functional theory studies. To form such coordination core, the arms underwent considerable changes in some of the dihedral angles. The binding of Cu2+ to L induces self-assembly of L by varying from simple particles to rodlike structures when bound to Cu2+. The on-off fluorescence intensity of L and its Cu2+-bound species are responsible for imaging cancer cells. The L shows red fluorescence in MDA-MB-231 cancer cells by targeting mitochondria as proved based on the colocalization study carried out using MitoTracker Green. While the L alone is nontoxic to cancer cells, the presence of Cu2+ brings cell death to an extent of 90% with an IC50 value of 165 nM by bringing a substantial quench in the fluorescence of L. A shift of population from G0/G1 and G2M phases to the Sub-G1 phase was observed as the concentration of the complex was increased, indicating cell death as studied by fluorescence-activated cell sorting. Thus, the present work clearly proved that a calix[4]arene functionalized at the lower rim with spiro-indoline moieities when complexed with Cu2+ acts as an efficient anticancer agent and is capable of imaging cancer cells.


Compositionally and density stratified igneous terrain in Jezero crater, Mars.

  • Roger C Wiens‎ et al.
  • Science advances‎
  • 2022‎

Before Perseverance, Jezero crater's floor was variably hypothesized to have a lacustrine, lava, volcanic airfall, or aeolian origin. SuperCam observations in the first 286 Mars days on Mars revealed a volcanic and intrusive terrain with compositional and density stratification. The dominant lithology along the traverse is basaltic, with plagioclase enrichment in stratigraphically higher locations. Stratigraphically lower, layered rocks are richer in normative pyroxene. The lowest observed unit has the highest inferred density and is olivine-rich with coarse (1.5 millimeters) euhedral, relatively unweathered grains, suggesting a cumulate origin. This is the first martian cumulate and shows similarities to martian meteorites, which also express olivine disequilibrium. Alteration materials including carbonates, sulfates, perchlorates, hydrated silicates, and iron oxides are pervasive but low in abundance, suggesting relatively brief lacustrine conditions. Orbital observations link the Jezero floor lithology to the broader Nili-Syrtis region, suggesting that density-driven compositional stratification is a regional characteristic.


Screening the Survival of Cyanobacteria Under Perchlorate Stress. Potential Implications for Mars In Situ Resource Utilization.

  • Piotr Rzymski‎ et al.
  • Astrobiology‎
  • 2022‎

Cyanobacteria are good candidates for various martian applications as a potential source of food, fertilizer, oxygen, and biofuels. However, the increased levels of highly toxic perchlorates may be a significant obstacle to their growth on Mars. Therefore, in the present study, 17 cyanobacteria strains that belong to Chroococcales, Chroococcidiopsidales, Nostocales, Oscillatoriales, Pleurocapsales, and Synechococcales were exposed to 0.25-1.0% magnesium perchlorate concentrations (1.5-6.0 mM ClO4- ions) for 14 days. The exposure to perchlorate induced at least partial inhibition of growth in all tested strains, although five of them were able to grow at the highest perchlorate concentration: Chroococcidiopsis thermalis, Leptolyngbya foveolarum, Arthronema africanum, Geitlerinema cf. acuminatum, and Cephalothrix komarekiana. Chroococcidiopsis sp. Chroococcidiopsis cubana demonstrated growth up to 0.5%. Strains that maintained growth displayed significantly increased malondialdehyde content, indicating perchlorate-induced oxidative stress, whereas the chlorophyll a/carotenoids ratio tended to be decreased. The results show that selected cyanobacteria from different orders can tolerate perchlorate concentrations typical for the martian regolith, indicating that they may be useful in Mars exploration. Further studies are required to elucidate the biochemical and molecular basis for the perchlorate tolerance in selected cyanobacteria.


Experimental evidence for the formation of liquid saline water on Mars.

  • Erik Fischer‎ et al.
  • Geophysical research letters‎
  • 2014‎

Evidence for deliquescence of perchlorate salts has been discovered in the Martian polar region while possible brine flows have been observed in the equatorial region. This appears to contradict the idea that bulk deliquescence is too slow to occur during the short periods of the Martian diurnal cycle during which conditions are favorable for it. We conduct laboratory experiments to study the formation of liquid brines at Mars environmental conditions. We find that when water vapor is the only source of water, bulk deliquescence of perchlorates is not rapid enough to occur during the short periods of the day during which the temperature is above the salts' eutectic value, and the humidity is above the salts' deliquescence value. However, when the salts are in contact with water ice, liquid brine forms in minutes, indicating that aqueous solutions could form temporarily where salts and ice coexist on the Martian surface and in the shallow subsurface.


Formation and Persistence of Brine on Mars: Experimental Simulations throughout the Diurnal Cycle at the Phoenix Landing Site.

  • E Fischer‎ et al.
  • Astrobiology‎
  • 2016‎

In the last few years, water ice and salts capable of melting this ice and producing liquid saline water (brine) have been detected on Mars. Moreover, indirect evidence for brine has been found in multiple areas of the planet. Here, we simulate full diurnal cycles of temperature and atmospheric water vapor content at the Phoenix landing site for the first time and show experimentally that, in spite of the low Mars-like chamber temperature, brine forms minutes after the ground temperature exceeds the eutectic temperature of salts in contact with water ice. Moreover, we show that the brine stays liquid for most of the diurnal cycle when enough water ice is available to compensate for evaporation. This is predicted to occur seasonally in areas of the polar region where the temperature exceeds the eutectic value and frost or snow is deposited on saline soils, or where water ice and salts coexist in the shallow subsurface. This is important because the existence of liquid water is a key requirement for habitability. Key Words: Mars-Ice-Perchlorates-Brine-Water-Raman spectroscopy. Astrobiology 16, 937-948.


The Structural and Magnetic Properties of FeII and CoII Complexes with 2-(furan-2-yl)-5-pyridin-2-yl-1,3,4-oxadiazole.

  • Pavel Zoufalý‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Two novel coordination compounds containing heterocyclic bidentate N,N-donor ligand 2-(furan-2-yl)-5-(pyridin-2-yl)-1,3,4-oxadiazole (fpo) were synthesized. A general formula for compounds originating from perchlorates of iron, cobalt, and fpo can be written as: [M(fpo)2(H2O)2](ClO4)2 (M = Fe(II) for (1) Co(II) for (2)). The characterization of compounds was performed by general physico-chemical methods-elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) in case of organics, and single crystal X-ray diffraction (sXRD). Moreover, magneto-chemical properties were studied employing measurements in static field (DC) for 1 and X-band EPR (Electron paramagnetic resonance), direct current (DC), and alternating current (AC) magnetic measurements in case of 2. The analysis of DC magnetic properties revealed a high spin arrangement in 1, significant rhombicity for both complexes, and large magnetic anisotropy in 2 (D = -21.2 cm-1). Moreover, 2 showed field-induced slow relaxation of the magnetization (Ueff = 65.3 K). EPR spectroscopy and ab initio calculations (CASSCF/NEVPT2) confirmed the presence of easy axis anisotropy and the importance of the second coordination sphere.


[Ln6O8] Cluster-Encapsulating Polyplumbites as New Polyoxometalate Members and Record Inorganic Anion-Exchange Materials for ReO4 - Sequestration.

  • Jian Lin‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2019‎

Various types of polyoxometalates (POMs) have been synthesized since the 19th century, but their assortment has been mostly limited to Groups 5 and 6 metals. Herein, a new family of POMs composed of a carbon group element as the addenda atoms with two distinct phases, LnPbOClO4-1 (Ln = Sm to Ho, Y) and LnPbOClO4-2 (Ln = Er and Tm) is reported. Both structures are built from [Ln6O8] rare-earth metal hexamers being incorporated in [Pb18O32]/[Pb12O24] polyplumbites, and unbound perchlorates as charge-balancing anions. Impressively, YPbOClO4-1 and ErPbOClO4-2 exhibit exceptional uptake capacities (434.7 and 427.7 mg g-1) toward ReO4 -, a chemical surrogate for the key radioactive fission product in the nuclear fuel cycle 99TcO4 -, which are the highest values among all inorganic anion-exchange materials reported until now. The sorption mechanism is clearly elucidated and visualized by single-crystal-to-single-crystal structural transformation from ErPbOClO4-2 to a perrhenate-containing complex ErPbOReO4 , revealing a unique ReO4 - uptake selectivity driven by specific interaction within Pb···O-ReO3 - bonds.


An Antarctic Extreme Halophile and Its Polyextremophilic Enzyme: Effects of Perchlorate Salts.

  • Victoria J Laye‎ et al.
  • Astrobiology‎
  • 2018‎

Effects of perchlorate salts prevalent on the surface of Mars are of significant interest to astrobiology from the perspective of potential life on the Red Planet. Halorubrum lacusprofundi, a cold-adapted halophilic Antarctic archaeon, was able to grow anaerobically on 0.04 M concentration of perchlorate. With increasing concentrations of perchlorate, growth was inhibited, with half-maximal growth rate in ca. 0.3 M NaClO4 and 0.1 M Mg(ClO4)2 under aerobic conditions. Magnesium ions were also inhibitory for growth, but at considerably higher concentrations, with half-maximal growth rate above 1 M. For a purified halophilic β-galactosidase enzyme of H. lacusprofundi expressed in Halobacterium sp. NRC-1, 50% inhibition of catalytic activity was observed at 0.88 M NaClO4 and 0.13 M Mg(ClO4)2. Magnesium ions were a more potent inhibitor of the enzyme than of cell growth. Steady-state kinetic analysis showed that Mg(ClO4)2 acts as a mixed inhibitor (KI = 0.04 M), with magnesium alone being a competitive inhibitor (KI = 0.3 M) and perchlorate alone acting as a very weak noncompetitive inhibitor (KI = 2 M). Based on the estimated concentrations of perchlorate salts on the surface of Mars, our results show that neither sodium nor magnesium perchlorates would significantly inhibit growth and enzyme activity of halophiles. This is the first study of perchlorate effects on a purified enzyme. Key Words: Halophilic archaea-Perchlorate-Enzyme inhibition-Magnesium. Astrobiology 18, 412-418.


The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses.

  • Kristina Beblo-Vranesevic‎ et al.
  • PloS one‎
  • 2017‎

The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today.


A Systematic Study of the Limits of Life in Mixed Ion Solutions: Physicochemical Parameters Do Not Predict Habitability.

  • Adam H Stevens‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

This study investigated what defines the limits of life in mixed ion solutions. Better understanding these limits should allow us to better predict the habitability of extreme environments on the Earth and extraterrestrial environments. We systematically examined the response of Bacillus subtilis, a well characterized non-halophile model organism, to a range of solutions made from single and mixed salts up to their solubility limits and measured at what concentration growth was arrested, specifically exploring Na, Mg, and Ca cations and Cl, SO4, and ClO4 anions. We measured the physicochemical properties of the solutions to identify which properties correlated with the limits of growth. Individual salts imposed a growth limit specific to the combination of cation and anion, although we generally observe that chloride salts allow growth at lower water activity than sulfate salts, with perchlorate restricting growth even at the highest measured water activity. Growth was limited at a wide range of ionic strength, with no apparently correlation. Despite the theoretically counteracting disordering effects (chaotropic) of perchlorates and ordering effects (kosmotropic) effects of sulfates, when these salts were combined they instead additively narrowed the window for growth in both the Na and Mg cation systems, in the same manner as the combined effects of two chaotropic Ca salts. Our results imply that away from hard limits that might be imposed by physicochemical properties such as water activity, ionic strength or chaotropicity in highly concentrated brines, these properties do not set the limits of life. Instead these limits are highly specific to the salts and organisms in question. This specificity means that the habitability of extreme environments cannot be predicted, even with accurate measurements of the physicochemical conditions present.


Haloterrigena sp. Strain SGH1, a Bacterioruberin-Rich, Perchlorate-Tolerant Halophilic Archaeon Isolated From Halite Microbial Communities, Atacama Desert, Chile.

  • Nataly Flores‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

An extreme halophilic archaeon, strain SGH1, is a novel microorganism isolated from endolithic microbial communities colonizing halites at Salar Grande, Atacama Desert, in northern Chile. Our study provides structural, biochemical, genomic, and physiological information on this new isolate living at the edge of the physical and chemical extremes at the Atacama Desert. SGH1 is a Gram-negative, red-pigmented, non-motile unicellular coccoid organism. Under the transmission electron microscope, strain SGH1 showed an abundant electro-dense material surrounding electron-lucent globular structures resembling gas vacuoles. Strain SGH1 showed a 16S rRNA gene sequence with a close phylogenetic relationship to the extreme halophilic archaea Haloterrigena turkmenica and Haloterrigena salina and has been denominated Haloterrigena sp. strain SGH1. Strain SGH1 grew at 20-40°C (optimum 37°C), at salinities between 15 and 30% (w/v) NaCl (optimum 25%) and growth was improved by addition of 50 mM KCl and 0.5% w/v casamino acids. Growth was severely restricted at salinities below 15% NaCl and cell lysis is avoided at a minimal 10% NaCl. Maximal concentrations of magnesium chloride and sodium or magnesium perchlorates that supported SGH1 growth were 0.5 and 0.15M, respectively. Haloterrigena sp. strain SGH1 accumulates bacterioruberin (BR), a C50 xanthophyll, as the major carotenoid. Total carotenoids in strain SGH1 amounted to nearly 400 μg BR per gram of dry biomass. Nearly 80% of total carotenoids accumulated as geometric isomers of BR: all-trans-BR (50%), 5-cis-BR (15%), 9-cis-BR (10%), 13-cis-BR (4%); other carotenoids were dehydrated derivatives of BR. Carotenogenesis in SGH1 was a reversible and salt-dependent process; transferring BR-rich cells grown in 25% (w/v) NaCl to 15% (w/v) NaCl medium resulted in depigmentation, and BR content was recovered after transference and growth of unpigmented cells to high salinity medium. Methanol extracts and purified BR isomers showed an 8-9-fold higher antioxidant activity than Trolox or β-carotene. Both, plasma membrane integrity and mitochondrial membrane potential measurements under acute 18-h assays showed that purified BR isomers were non-toxic to cultured human THP-1 cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: