Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 366 papers

Interventions for perceptual disorders following stroke.

  • Christine Hazelton‎ et al.
  • The Cochrane database of systematic reviews‎
  • 2022‎

Perception is the ability to understand information from our senses. It allows us to experience and meaningfully interact with our environment. A stroke may impair perception in up to 70% of stroke survivors, leading to distress, increased dependence on others, and poorer quality of life. Interventions to address perceptual disorders may include assessment and screening, rehabilitation, non-invasive brain stimulation, pharmacological and surgical approaches.


Perceptual Disorders After Stroke: A Scoping Review of Interventions.

  • Christine Hazelton‎ et al.
  • Stroke‎
  • 2022‎

Perceptual disorders relating to hearing, smell, somatosensation, taste, touch, and vision commonly impair stroke survivors' ability to interpret sensory information, impacting on their ability to interact with the world. We aimed to identify and summarize the existing evidence for perceptual disorder interventions poststroke and identify evidence gaps. We searched 13 electronic databases including MEDLINE and Embase and Grey literature and performed citation tracking. Two authors independently applied a priori-defined selection criteria; studies involving stroke survivors with perceptual impairments and interventions addressing those impairments were included. We extracted data on study design, population, perceptual disorders, interventions, and outcomes. Data were tabulated and synthesized narratively. Stroke survivors, carers, and clinicians were involved in agreeing definitions and organizing and interpreting data. From 91 869 records, 80 studies were identified (888 adults and 5 children); participant numbers were small (median, 3.5; range, 1-80), with a broad range of stroke types and time points. Primarily focused on vision (34/80, 42.5%) and somatosensation (28/80; 35.0%), included studies were often case reports (36/80; 45.0%) or randomized controlled trials (22/80; 27.5%). Rehabilitation approaches (78/93; 83.9%), primarily aimed to restore function, and were delivered by clinicians (30/78; 38.5%) or technology (28/78; 35.9%; including robotic interventions for somatosensory disorders). Pharmacological (6/93; 6.5%) and noninvasive brain stimulation (7/93; 7.5%) approaches were also evident. Intervention delivery was poorly reported, but most were delivered in hospital settings (56/93; 60.2%). Study outcomes failed to assess the transfer of training to daily life. Interventions for stroke-related perceptual disorders are underresearched, particularly for pediatric populations. Evidence gaps include interventions for disorders of hearing, taste, touch, and smell perception. Future studies must involve key stakeholders and report this fully. Optimization of intervention design, evaluation, and reporting is required, to support the development of effective, acceptable, and implementable interventions. Registration: URL: https://www.crd.york.ac.uk/PROSPERO/; Unique identifier: CRD42019160270.


Salicylate-induced auditory perceptual disorders and plastic changes in nonclassical auditory centers in rats.

  • Guang-Di Chen‎ et al.
  • Neural plasticity‎
  • 2014‎

Previous studies have shown that sodium salicylate (SS) activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus). The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus.


Perceptual insensitivity to the modulation of interoceptive signals in depression, anxiety, and substance use disorders.

  • Ryan Smith‎ et al.
  • Scientific reports‎
  • 2021‎

This study employed a series of heartbeat perception tasks to assess the hypothesis that cardiac interoceptive processing in individuals with depression/anxiety (N = 221), and substance use disorders (N = 136) is less flexible than that of healthy individuals (N = 53) in the context of physiological perturbation. Cardiac interoception was assessed via heartbeat tapping when: (1) guessing was allowed; (2) guessing was not allowed; and (3) experiencing an interoceptive perturbation (inspiratory breath hold) expected to amplify cardiac sensation. Healthy participants showed performance improvements across the three conditions, whereas those with depression/anxiety and/or substance use disorder showed minimal improvement. Machine learning analyses suggested that individual differences in these improvements were negatively related to anxiety sensitivity, but explained relatively little variance in performance. These results reveal a perceptual insensitivity to the modulation of interoceptive signals that was evident across several common psychiatric disorders, suggesting that interoceptive deficits in the realm of psychopathology manifest most prominently during states of homeostatic perturbation.


Visual snow syndrome, the spectrum of perceptual disorders, and migraine as a common risk factor: A narrative review.

  • Antonia Klein‎ et al.
  • Headache‎
  • 2021‎

The aim of this narrative review is to explore the relationship between visual snow syndrome (VSS), migraine, and a group of other perceptual disorders.


Vocal tasks for acoustic and/or auditory perceptual analysis for discriminating individuals with and without voice disorders: a systematic review protocol.

  • Dhanshree R Gunjawate‎ et al.
  • BMJ open‎
  • 2023‎

The primary objective of the present systematic review is to: (1) identify the current vocal tasks being used for acoustic and/or auditory perceptual analysis to differentiate between individuals with and without voice disorders. The secondary objectives are to: (2) evaluate the evidence of the sensitivity, specificity and accuracy of those vocal tasks for acoustic and/or auditory perceptual analysis in discriminating the individuals with voice disorders from those without; and (3) compare the values between the vocal tasks in discriminating individuals with voice disorders from those without.


Auditory Perceptual Abilities Are Associated with Specific Auditory Experience.

  • Yael Zaltz‎ et al.
  • Frontiers in psychology‎
  • 2017‎

The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF), intensity discrimination, spectrum discrimination (DLS), and time discrimination (DLT). Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels), and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels), were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant discrimination, demonstrating highly specific effects for auditory linguistic experience as well. Overall, results suggest that auditory superiority is associated with the specific auditory exposure.


Disruption of Perceptual Learning by a Brief Practice Break.

  • David F Little‎ et al.
  • Current biology : CB‎
  • 2017‎

Some forms of associative learning require only a single experience to create a lasting memory [1, 2]. In contrast, perceptual learning often requires extensive practice within a day for performance to improve across days [3, 4]. This suggests that the requisite practice for durable perceptual learning is integrated throughout each day. If the total amount of daily practice is the only important variable, then a practice break within a day should not disrupt across-day improvement. To test this idea, we trained human listeners on an auditory frequency-discrimination task over multiple days and compared the performance of those who engaged in a single continuous practice session each day [4] with those who were given a 30-min break halfway through each practice session. Continuous practice yielded significant perceptual learning [4]. In contrast, practice with a rest break led to no improvement, indicating that the integration process had decayed within 30 min. In a separate experiment, a 30-min practice break also disrupted durable learning on a non-native phonetic classification task. These results suggest that practice trials are integrated up to a learning threshold within a transient memory store before they are sent en masse into a memory that lasts across days. Thus, the oft cited benefits of distributed over massed training [5, 6] may arise from different mechanisms depending on whether the breaks occur before or after a learning threshold has been reached. Trial integration could serve as an early gatekeeper to plasticity, helping to ensure that longer-lasting changes are only made when deemed worthwhile.


Age, Hearing, and the Perceptual Learning of Rapid Speech.

  • Maayan Manheim‎ et al.
  • Trends in hearing‎
  • 2018‎

The effects of aging and age-related hearing loss on the ability to learn degraded speech are not well understood. This study was designed to compare the perceptual learning of time-compressed speech and its generalization to natural-fast speech across young adults with normal hearing, older adults with normal hearing, and older adults with age-related hearing loss. Early learning (following brief exposure to time-compressed speech) and later learning (following further training) were compared across groups. Age and age-related hearing loss were both associated with declines in early learning. Although the two groups of older adults improved during the training session, when compared to untrained control groups (matched for age and hearing), learning was weaker in older than in young adults. Especially, the transfer of learning to untrained time-compressed sentences was reduced in both groups of older adults. Transfer of learning to natural-fast speech occurred regardless of age and hearing, but it was limited to sentences encountered during training. Findings are discussed within the framework of dynamic models of speech perception and learning. Based on this framework, we tentatively suggest that age-related declines in learning may stem from age differences in the use of high- and low-level speech cues. These age differences result in weaker early learning in older adults, which may further contribute to the difficulty to perceive speech in daily conversational settings in this population.


Perceptual learning of pitch provided by cochlear implant stimulation rate.

  • Susan R S Bissmeyer‎ et al.
  • PloS one‎
  • 2020‎

Cochlear implant users hear pitch evoked by stimulation rate, but discrimination diminishes for rates above 300 Hz. This upper limit on rate pitch is surprising given the remarkable and specialized ability of the auditory nerve to respond synchronously to stimulation rates at least as high as 3 kHz and arguably as high as 10 kHz. Sensitivity to stimulation rate as a pitch cue varies widely across cochlear implant users and can be improved with training. The present study examines individual differences and perceptual learning of stimulation rate as a cue for pitch ranking. Adult cochlear implant users participated in electrode psychophysics that involved testing once per week for three weeks. Stimulation pulse rate discrimination was measured in bipolar and monopolar configurations for apical and basal electrodes. Base stimulation rates between 100 and 800 Hz were examined. Individual differences were quantified using psychophysically derived metrics of spatial tuning and temporal integration. This study examined distribution of measures across subjects, predictive power of psychophysically derived metrics of spatial tuning and temporal integration, and the effect of training on rate discrimination thresholds. Psychophysical metrics of spatial tuning and temporal integration were not predictive of stimulation rate discrimination, but discrimination thresholds improved at lower frequencies with training. Since most clinical devices do not use variable stimulation rates, it is unknown to what extent recipients may learn to use stimulation rate cues if provided in a clear and consistent manner.


Perceptual warping exposes categorical representations for speech in human brainstem responses.

  • Jared A Carter‎ et al.
  • NeuroImage‎
  • 2023‎

The brain transforms continuous acoustic events into discrete category representations to downsample the speech signal for our perceptual-cognitive systems. Such phonetic categories are highly malleable, and their percepts can change depending on surrounding stimulus context. Previous work suggests these acoustic-phonetic mapping and perceptual warping of speech emerge in the brain no earlier than auditory cortex. Here, we examined whether these auditory-category phenomena inherent to speech perception occur even earlier in the human brain, at the level of auditory brainstem. We recorded speech-evoked frequency following responses (FFRs) during a task designed to induce more/less warping of listeners' perceptual categories depending on stimulus presentation order of a speech continuum (random, forward, backward directions). We used a novel clustered stimulus paradigm to rapidly record the high trial counts needed for FFRs concurrent with active behavioral tasks. We found serial stimulus order caused perceptual shifts (hysteresis) near listeners' category boundary confirming identical speech tokens are perceived differentially depending on stimulus context. Critically, we further show neural FFRs during active (but not passive) listening are enhanced for prototypical vs. category-ambiguous tokens and are biased in the direction of listeners' phonetic label even for acoustically-identical speech stimuli. These findings were not observed in the stimulus acoustics nor model FFR responses generated via a computational model of cochlear and auditory nerve transduction, confirming a central origin to the effects. Our data reveal FFRs carry category-level information and suggest top-down processing actively shapes the neural encoding and categorization of speech at subcortical levels. These findings suggest the acoustic-phonetic mapping and perceptual warping in speech perception occur surprisingly early along the auditory neuroaxis, which might aid understanding by reducing ambiguity inherent to the speech signal.


Ventral stream hierarchy underlying perceptual organization in adolescents with autism.

  • Laurie-Anne Sapey-Triomphe‎ et al.
  • NeuroImage. Clinical‎
  • 2020‎

Object recognition relies on a hierarchically organized ventral visual stream, with both bottom-up and top-down processes. Here, we aimed at investigating the neural underpinnings of perceptual organization along the ventral visual stream in Autism Spectrum Disorders (ASD), and at determining whether this would be associated with decreased top-down processing in ASD. Nineteen typically developing (TD) adolescents and sixteen adolescents with ASD participated in an fMRI study where they had to detect visual objects. Five conditions displayed Gabor patterns (defined by texture and/or contour) with increasing levels of perceptual organization. In each condition, both groups showed similar abilities. In line with the expected cortical hierarchy, brain activity patterns revealed a progressive involvement of regions, from low-level occipital regions to higher-level frontal regions, when stimuli became more and more organized. The brain patterns were generally similar in both groups, but the ASD group showed greater activation than TD participants in the middle occipital gyrus and lateral occipital complex when perceiving fully organized everyday objects. Effective connectivity analyses suggested that top-down functional connections between the lower levels of the cortical hierarchy were less influenced by the meaning carried by the stimuli in the ASD group than in the TD group. We hypothesize that adolescents with ASD may have been less influenced by top-down processing when perceiving recognizable objects.


Looking without Perceiving: Impaired Preattentive Perceptual Grouping in Autism Spectrum Disorder.

  • Tiffany A Carther-Krone‎ et al.
  • PloS one‎
  • 2016‎

Before becoming aware of a visual scene, our perceptual system has organized and selected elements in our environment to which attention should be allocated. Part of this process involves grouping perceptual features into a global whole. Individuals with autism spectrum disorders (ASD) rely on a more local processing strategy, which may be driven by difficulties perceptually grouping stimuli. We tested this notion using a line discrimination task in which two horizontal lines were superimposed on a background of black and white dots organized so that, on occasion, the dots induced the Ponzo illusion if perceptually grouped together. Results showed that even though neither group was aware of the illusion, the ASD group was significantly less likely than typically developing group to make perceptual judgments influenced by the illusion, revealing difficulties in preattentive grouping of visual stimuli. This may explain why individuals with ASD rely on local processing strategies, and offers new insight into the mechanism driving perceptual grouping in the typically developing human brain.


Neural mechanisms underlying touch-induced visual perceptual suppression: An fMRI study.

  • Masakazu Ide‎ et al.
  • Scientific reports‎
  • 2016‎

Crossmodal studies have demonstrated inhibitory as well as facilitatory neural effects in higher sensory association and primary sensory cortices. A recent human behavioral study reported touch-induced visual perceptual suppression (TIVS). Here, we introduced an experimental setting in which TIVS could occur and investigated brain activities underlying visuo-tactile interactions using a functional magnetic resonance imaging technique. While the suppressive effect of touch on vision was only found for half of the participants who could maintain their baseline performance above chance level (i.e. TIVS was not well replicated here), we focused on individual differences in the effect of touch on vision. This effect could be suppressive or enhancement, and the neuronal basis of these differences was analyzed. We found larger inhibitory responses in the anterior part of the right visual cortex (V1, V2) with higher TIVS magnitude when visuo-tactile stimuli were presented as spatially congruent. Activations in the right anterior superior temporal region, including the secondary somatosensory cortical area, were more strongly related to those in the visual cortex (V1, V2) with higher TIVS magnitude. These results indicate that inhibitory neural modulations from somatosensory to visual cortices and the resulting inhibitory neural responses in the visual cortex could be involved in TIVS.


Sustained neural activity correlates with rapid perceptual learning of auditory patterns.

  • Björn Herrmann‎ et al.
  • NeuroImage‎
  • 2021‎

Repeating structures forming regular patterns are common in sounds. Learning such patterns may enable accurate perceptual organization. In five experiments, we investigated the behavioral and neural signatures of rapid perceptual learning of regular sound patterns. We show that recurring (compared to novel) patterns are detected more quickly and increase sensitivity to pattern deviations and to the temporal order of pattern onset relative to a visual stimulus. Sustained neural activity reflected perceptual learning in two ways. Firstly, sustained activity increased earlier for recurring than novel patterns when participants attended to sounds, but not when they ignored them; this earlier increase mirrored the rapid perceptual learning we observed behaviorally. Secondly, the magnitude of sustained activity was generally lower for recurring than novel patterns, but only for trials later in the experiment, and independent of whether participants attended to or ignored sounds. The late manifestation of sustained activity reduction suggests that it is not directly related to rapid perceptual learning, but to a mechanism that does not require attention to sound. In sum, we demonstrate that the latency of sustained activity reflects rapid perceptual learning of auditory patterns, while the magnitude may reflect a result of learning, such as better prediction of learned auditory patterns.


The benefits of cholinergic enhancement during perceptual learning are long-lasting.

  • Ariel Rokem‎ et al.
  • Frontiers in computational neuroscience‎
  • 2013‎

The neurotransmitter acetylcholine (ACh) regulates many aspects of cognition, including attention and memory. Previous research in animal models has shown that plasticity in sensory systems often depends on the behavioral relevance of a stimulus and/or task. However, experimentally increasing ACh release in the cortex can result in experience-dependent plasticity, even in the absence of behavioral relevance. In humans, the pharmacological enhancement of ACh transmission by administration of the cholinesterase inhibitor donepezil during performance of a perceptual task increases the magnitude of perceptual learning (PL) and its specificity to physical parameters of the stimuli used for training. Behavioral effects of PL have previously been shown to persist for many months. In the present study, we tested whether enhancement of PL by donepezil is also long-lasting. Healthy human subjects were trained on a motion direction discrimination task during cholinergic enhancement, and follow-up testing was performed 5-15 months after the end of training and without additional drug administration. Increases in performance associated with training under donepezil were evident in follow-up retesting, indicating that cholinergic enhancement has beneficial long-term effects on PL. These findings suggest that cholinergic enhancement of training procedures used to treat clinical disorders should improve long-term outcomes of these procedures.


You or me? Disentangling perspectival, perceptual, and integrative mechanisms in heterotopagnosia.

  • Michela Bassolino‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2019‎

Heterotopagnosia-without-Autotopagnosia (HwA) is characterized by the incapacity to point to body parts on others, but not on one's own body. This has been classically interpreted as related to a self-other distinction, with impaired visual representations of other bodies seen in third person perspective (3PP), besides spared own body somatosensory representations in 1PP. However, HwA could be impacted by a deficit in the integration of visual and somatosensory information in space, that are spatially congruent in the case of one's own body, but not for others' body. Here, we test this hypothesis in a rare neurological patient with HwA, H+, as well as in a control patient with a comparable neuropsychological profile, but without HwA, and in age-matched healthy controls, in two experiments. First, we assessed body part recognition in a new task where somatosensory information from the participant's body and visual information from the target body shown in virtual reality was never aligned in space. Results show that, differently from the flawless performance in controls, H+ committed errors for not only the body of others in 3PP, but for all conditions where the information related to the real and the target body was not spatially congruent. Then, we tested whether the integration between these multisensory bodily cues in space, as during visuo-tactile stimulation in the full-body illusion, improves the patient's performance. Data show that after the stimulation prompting visuo-tactile integration, but not in control conditions, the patient's abilities to process body parts improved up to normal level, thus confirming and extending the first findings. Altogether, these results support a new interpretation of HwA as linked to the matching between somatosensory inputs from one's body and visual information from a body seen at a distance, and encourage the application of multisensory stimulation and virtual reality for the treatment of body-related disorders.


Acoustic and perceptual impact of face masks on speech: A scoping review.

  • Gursharan Badh‎ et al.
  • PloS one‎
  • 2023‎

During the COVID-19 pandemic, personal protective equipment such as facial masks and coverings were mandated all over the globe to protect against the virus. Although the primary aim of wearing face masks is to protect against viral transmission, they pose a potential burden on communication. The purpose of this scoping review was to identify the state of the evidence of the effect of facial coverings on acoustic and perceptual speech outcomes. The scoping review followed the framework created by Arksey & O'Malley (2005) and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews guidelines (PRISMA-ScR; Tricco et al., 2018). The search was completed in May 2021 across the following databases: PubMed, EMBASE, PsycINFO, Web of Science, and Google Scholar. A total of 3,846 records were retrieved from the database search. Following the removal of duplicates, 3,479 remained for the title/abstract screen and 149 were selected for the full-text review. Of these, 52 were included in the final review and relevant data were extracted. The 52 articles included in the final review consisted of; 11 studied perceptual outcomes only, 16 studied acoustic outcomes only, and 14 studied both perceptual and acoustic outcomes. 13 of these investigated acoustic features that could be used for mask classification. Although the findings varied from article to article, many trends stood out. Many articles revealed that face masks act as a low pass filter, dampening sounds at higher frequencies; however, the frequency range and the degree of attenuation varied based on face mask type. All but five articles that reported on perceptual outcomes showed a common trend that wearing a face mask was associated with poorer speech intelligibility. The findings of the scoping review provided evidence that facial coverings negatively impacted speech intelligibility, which is likely due to a combination of auditory and visual cue degradation. Due to the continued prevalence of mask use, how facial coverings affect a wider variety of speaker populations, such as those with communication impairments, and strategies for overcoming communication challenges should be explored.


Intranasal Oxytocin Increases Perceptual Salience of Faces in the Absence of Awareness.

  • Shao-Wei Xue‎ et al.
  • Psychiatry investigation‎
  • 2020‎

The neuropeptide oxytocin has been found to improve human social cognition and promote prosocial behavior. However, it is still unclear about the mechanisms underlying these effects of oxytocin on neural processes, such as visual perception and awareness. Especially, it is still unclear whether oxytocin influences perceptual salience of social stimuli in the absence of awareness.


Neurofunctional differences and similarities between persistent postural-perceptual dizziness and anxiety disorder.

  • Maximilian Maywald‎ et al.
  • NeuroImage. Clinical‎
  • 2023‎

Persistent postural-perceptual dizziness (PPPD) (ICD-11) and anxiety disorders (ANX) share behavioural symptoms like anxiety, avoidance, social withdrawal, hyperarousal, or palpitation as well as neurological symptoms like vertigo, stance and gait disorders. Furthermore, previous studies have shown a bidirectional link between vestibulo-spatial and anxiety neural networks. So far, there have been no neuroimaging-studies comparing these groups.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: