Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Mass spectrometry characterization for N-glycosylation of immunoglobulin Y from hen egg yolk.

  • Long Sheng‎ et al.
  • International journal of biological macromolecules‎
  • 2018‎

Immunoglobulin Y (IgY) is a new therapeutic antibody that exists in hen egg yolk. It is a glycoprotein, not much is known about its N-glycan structures, site occupancy and site-specific N-glycosylation. In this study, purified protein from hen egg yolk was identified as IgY based on SDS-PAGE and MALDI-TOF/TOF MS. N-glycan was released from IgY using peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine-amidase treatment, and the molecular weight of IgY was calculated using the difference between the molecular weight of IgY and deglycosylated IgY. Two potential N-Glycosylation sites (ASN308 and ASN409) were detected on IgY by nanoLC-ESI MS. Sugar chains were separated using normal phase liquid chromatography after fluorescence labeling, and 17 N-glycan structures were confirmed using ESI-MS. The sugar chain pattern contained high-mannose oligosaccharide, hybrid oligosaccharide and complex oligosaccharide. These results could lead to other important information regarding IgY glycosylation.


The impact of N-glycosylation on conformation and stability of immunoglobulin Y from egg yolk.

  • Long Sheng‎ et al.
  • International journal of biological macromolecules‎
  • 2017‎

Immunoglobulin Y (IgY) is a new therapeutic antibody, and its applications in industry are very broad. To provide insight into the effects of N-glycosylation on IgY, its conformation and stability were studied. In this research, IgY was extracted from egg yolk and then digested by peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine-amidase. SDS-PAGE and infrared absorption spectrum showed that carbohydrates were distinctly reduced after enzymolysis. The circular dichroism spectrum indicated that the IgY molecule became more flexible and disordered after removal of N-glycan. The fluorescence intensity revealed that Trp residues were buried in a more hydrophobic environment after disposal of N-glycan. Storage stability decreased with the removal of oligosaccharide chains based on size-exclusion chromatography analysis. Deglycosylated IgY exhibited less resistance to guanidine hydrochloride-induced unfolding. After deglycosylation, IgY was more sensitive to pepsin. Therefore, N-glycosylation played an important role in the maintenance of the structure and stability of IgY.


An Ultrafast N-Glycoproteome Analysis Method Using Thermoresponsive Magnetic Fluid-Immobilized Enzymes.

  • Zhiya Fan‎ et al.
  • Frontiers in chemistry‎
  • 2021‎

N-Glycosylation is one of the most common and important post-translational modification methods, and it plays a vital role in controlling many biological processes. Increasing discovery of abnormal alterations in N-linked glycans associated with many diseases leads to greater demands for rapid and efficient N-glycosylation profiling in large-scale clinical samples. In the workflow of global N-glycosylation analysis, enzymatic digestion is the main rate-limiting step, and it includes both protease digestion and peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase (PNGase) F deglycosylation. Prolonged incubation time is generally required because of the limited digestion efficiency of the conventional in-solution digestion method. Here, we propose novel thermoresponsive magnetic fluid (TMF)-immobilized enzymes (trypsin or PNGase F) for ultrafast and highly efficient proteome digestion and deglycosylation. Unlike other magnetic material-immobilized enzymes, TMF-immobilized enzymes display a unique temperature-triggered magnetic response behavior. At room temperature, a TMF-immobilized enzyme completely dissolves in an aqueous solution and forms a homogeneous system with a protein/peptide sample for efficient digestion but cannot be separated by magnetic force because of its excellent water dispersity. Above its lower critical solution temperature (LCST), thermoflocculation of a TMF-immobilized enzyme allows it to be easily recovered by increasing the temperature and magnetic force. Taking advantage of the unique homogeneous reaction of a TMF-immobilized enzyme, both protein digestion and glycopeptide deglycosylation can be finished within 3 min, and the whole sample processing time can be reduced by more than 20 times. The application of a TMF-immobilized enzyme in large-scale profiling of protein N-glycosylation in urine samples led to the successful identification of 2,197 N-glycopeptides and further demonstrated the potential of this strategy for fast and high-throughput analysis of N-glycoproteome in clinical samples.


Novel model of secreted human tau protein reveals the impact of the abnormal N-glycosylation of tau on its aggregation propensity.

  • Yelena Losev‎ et al.
  • Scientific reports‎
  • 2019‎

Alzheimer's disease (AD) is the most common neurodegenerative disorder and has no disease-modifying treatment yet. The hallmarks of AD are two amyloidogenic proteins: tau and amyloid β (Aβ). Tau undergoes several posttranslational modifications, including N-glycosylation. Tau was reported to be N-glycosylated in AD brains, but not in healthy counterparts, which may affect AD etiology. Here, we aimed to examine the effect of N-glycosylation on aggregation propensity of tau. To that end, a novel SH-SY5Y cell-based model was generated in which recombinant human tau (htau) is forced to be secreted from the cells. Secreted htau was found to localize in the secretory pathway compartments and to undergo N-glycosylation. Following N-glycan cleavage of the secreted htau, various biophysical results collectively indicated that the untreated N-glycosylated secreted htau is markedly less aggregative, contains thinner and shorter fibrils, as compared to treated de-glycosylated secreted htau. This finding shows that N-glycans attached to htau may affect its aggregation. This could help to better understand the effect of N-glycosylated htau on AD progression.


Age-dependent glycosylation of the sodium taurocholate cotransporter polypeptide: From fetal to adult human livers.

  • Camillo Sargiacomo‎ et al.
  • Hepatology communications‎
  • 2018‎

Sodium taurocholate cotransporter polypeptide (NTCP), mainly expressed on the sinusoidal membrane of hepatocytes, is one of the major transporters responsible for liver bile acid (BA) re-uptake. NTCP transports conjugated BA from the blood into hepatocytes and is crucial for correct enterohepatic circulation. Studies have shown that insufficient hepatic clearance of BA correlates with elevated serum BA in infants younger than 1 year of age. In the current study, we investigated human NTCP messenger RNA and protein expression by using reverse-transcription quantitative polymerase chain reaction and immunoblotting in isolated and cryopreserved human hepatocytes from two different age groups, below and above 1 year of age. Here, we show that NTCP messenger RNA expression is not modulated whereas NTCP protein posttranslational glycosylation is modulated in an age-dependent manner. These results were confirmed by quantification analysis of NTCP 55-kDa N-glycosylated bands, which showed significantly less total NTCP protein in donors below 1 year of age compared to donors older than 1 year. NTCP tissue localization was also analyzed by means of immunofluorescence. This revealed that NTCP cellular localization in fetal samples was mainly perinuclear, suggesting that NTCP is not glycosylated, while its postnatal localization on the plasma membrane is age dependent compared to multidrug resistant protein 2, which is apical starting in fetal life. Conclusion: After birth, the NTCP age-dependent maturation process requires approximately 1 year to complete NTCP glycosylation in human hepatocytes. Therefore, NTCP late posttranslational glycosylation appears to be important for correct NTCP membrane localization, which might explain physiologic cholestasis in neonatal life and might play a central role for HBV infection after birth. (Hepatology Communications 2018;2:693-702).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: