Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 443 papers

Neural substrates for visual pattern recognition learning in Igo.

  • Kosuke Itoh‎ et al.
  • Brain research‎
  • 2008‎

Different contexts require different visual pattern recognitions even for identical retinal inputs, and acquiring expertise in various visual-cognitive skills requires long-term training to become capable of recognizing relevant visual patterns in otherwise ambiguous stimuli. This 3-Tesla fMRI experiment exploited shikatsu-mondai (life-or-death problems) in the Oriental board game of Igo (Go) to identify the neural substrates supporting this gradual and adaptive learning. In shikatsu-mondai, the player adds stones to the board with the objective of making, or preventing the opponent from making nigan (two eyes), or the topology of figure of eight, with these stones. Without learning the game, passive viewing of shikatsu-mondai activated the occipito-temporal cortices, reflecting visual processing without the recognition of nigan. Several days after two-hour training, passive viewing of the same stimuli additionally activated the premotor area, intraparietal sulcus, and a visual area near the junction of the (left) intraparietal and transverse occipital sulci, demonstrating plastic changes in neuronal responsivity to the stimuli that contained indications of nigan. Behavioral tests confirmed that the participants had successfully learned to recognize nigan and solve the problems. In the newly activated regions, the level of neural activity while viewing the problems correlated positively with the level of achievement in learning. These results conformed to the hypothesis that recognition of a newly learned visual pattern is supported by the activities of fronto-parietal and visual cortical neurons that interact via newly formed functional connections among these regions. These connections would provide the medium by which the fronto-parietal system modulates visual cortical activity to attain behaviorally relevant perceptions.


Neural changes in the ventral and dorsal visual streams during pattern recognition learning.

  • Colline C Poirier‎ et al.
  • Neurobiology of learning and memory‎
  • 2006‎

The learning process related to pattern and object recognition is difficult to study because the human brain has a remarkable capacity to recognise complex visual forms from early infancy. In the present study, we investigated on-going neural changes underlying the learning process of visual pattern recognition by means of a device substituting audition for vision. Functional MRI evidenced the gradual pattern recognition-induced recruitment of the ventral visual stream, bilaterally, from learning session 1 to session 3, and a slight decrease in these activation foci from session 3 to session 4. The initial increase in activation is thought to reflect the gradually enhanced visualisation of patterns in the subjects' mind across sessions. By contrast the subsequent decrease reported at the end of the training period is interpreted as the progressive optimisation of neuronal responses elicited by the task. Our results, in accordance with previous observations, suggest that the succession of activation increase and decrease in sensori-motor areas could be a general rule in sensory and sensori-motor learning.


Modal-independent Pattern Recognition Deficit in Developmental Dyscalculia Adults: Evidence from Tactile and Visual Enumeration.

  • Zahira Z Cohen‎ et al.
  • Neuroscience‎
  • 2019‎

Developmental dyscalculia (DD) is characterized by lower numerical and finger-related skills. Studies of enumeration among those DD that suggested core deficiency in pattern recognition, working memory or/and attention were mostly carried out in the visual modality. In our study, we examined visual (dots) enumeration of 1-10 stimuli and tactile (vibration) enumeration of 1-10 fingers among DD and matched-control adults. We used 800-ms stimuli exposure time of either random/non-neighboring or canonical/neighboring stimuli arrangements (visual/tactile). Compared to controls, those with DD responded faster in visual random enumeration and did not differ in reaction time (RT) of canonical stimuli arrangements. However, while the control group had near perfect accuracy in random stimuli arrangements of up to five stimuli, DD participants performed accurately for only up to four stimuli, and they were less accurate in the canonical stimuli arrangements in the counting range. In the tactile task, DD participants showed less accurate tactile enumeration only for neighboring arrangements, more profoundly for finger counting (FC) patterns. The longer exposure time in the visual task enabled us to explore pattern recognition effects when working memory and attention loads were low. We discuss possible modal-independent deficits in pattern recognition and working memory on enumeration performance among those with DD and the unique role of fingers in ordinal and cardinal representation of numbers.


Pattern Recognition Analysis Reveals Unique Contrast Sensitivity Isocontours Using Static Perimetry Thresholds Across the Visual Field.

  • Jack Phu‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2017‎

To determine the locus of test locations that exhibit statistically similar age-related decline in sensitivity to light increments and age-corrected contrast sensitivity isocontours (CSIs) across the central visual field (VF). We compared these CSIs with test point clusters used by the Glaucoma Hemifield Test (GHT).


Multifractal Functional Connectivity Analysis of Electroencephalogram Reveals Reorganization of Brain Networks in a Visual Pattern Recognition Paradigm.

  • Orestis Stylianou‎ et al.
  • Frontiers in human neuroscience‎
  • 2021‎

The human brain consists of anatomically distant neuronal assemblies that are interconnected via a myriad of synapses. This anatomical network provides the neurophysiological wiring framework for functional connectivity (FC), which is essential for higher-order brain functions. While several studies have explored the scale-specific FC, the scale-free (i.e., multifractal) aspect of brain connectivity remains largely neglected. Here we examined the brain reorganization during a visual pattern recognition paradigm, using bivariate focus-based multifractal (BFMF) analysis. For this study, 58 young, healthy volunteers were recruited. Before the task, 3-3 min of resting EEG was recorded in eyes-closed (EC) and eyes-open (EO) states, respectively. The subsequent part of the measurement protocol consisted of 30 visual pattern recognition trials of 3 difficulty levels graded as Easy, Medium, and Hard. Multifractal FC was estimated with BFMF analysis of preprocessed EEG signals yielding two generalized Hurst exponent-based multifractal connectivity endpoint parameters, H(2) and ΔH 15; with the former indicating the long-term cross-correlation between two brain regions, while the latter captures the degree of multifractality of their functional coupling. Accordingly, H(2) and ΔH 15 networks were constructed for every participant and state, and they were characterized by their weighted local and global node degrees. Then, we investigated the between- and within-state variability of multifractal FC, as well as the relationship between global node degree and task performance captured in average success rate and reaction time. Multifractal FC increased when visual pattern recognition was administered with no differences regarding difficulty level. The observed regional heterogeneity was greater for ΔH 15 networks compared to H(2) networks. These results show that reorganization of scale-free coupled dynamics takes place during visual pattern recognition independent of difficulty level. Additionally, the observed regional variability illustrates that multifractal FC is region-specific both during rest and task. Our findings indicate that investigating multifractal FC under various conditions - such as mental workload in healthy and potentially in diseased populations - is a promising direction for future research.


Electronic system with memristive synapses for pattern recognition.

  • Sangsu Park‎ et al.
  • Scientific reports‎
  • 2015‎

Memristive synapses, the most promising passive devices for synaptic interconnections in artificial neural networks, are the driving force behind recent research on hardware neural networks. Despite significant efforts to utilize memristive synapses, progress to date has only shown the possibility of building a neural network system that can classify simple image patterns. In this article, we report a high-density cross-point memristive synapse array with improved synaptic characteristics. The proposed PCMO-based memristive synapse exhibits the necessary gradual and symmetrical conductance changes, and has been successfully adapted to a neural network system. The system learns, and later recognizes, the human thought pattern corresponding to three vowels, i.e. /a /, /i /, and /u/, using electroencephalography signals generated while a subject imagines speaking vowels. Our successful demonstration of a neural network system for EEG pattern recognition is likely to intrigue many researchers and stimulate a new research direction.


Invariant visual object recognition: biologically plausible approaches.

  • Leigh Robinson‎ et al.
  • Biological cybernetics‎
  • 2015‎

Key properties of inferior temporal cortex neurons are described, and then, the biological plausibility of two leading approaches to invariant visual object recognition in the ventral visual system is assessed to investigate whether they account for these properties. Experiment 1 shows that VisNet performs object classification with random exemplars comparably to HMAX, except that the final layer C neurons of HMAX have a very non-sparse representation (unlike that in the brain) that provides little information in the single-neuron responses about the object class. Experiment 2 shows that VisNet forms invariant representations when trained with different views of each object, whereas HMAX performs poorly when assessed with a biologically plausible pattern association network, as HMAX has no mechanism to learn view invariance. Experiment 3 shows that VisNet neurons do not respond to scrambled images of faces, and thus encode shape information. HMAX neurons responded with similarly high rates to the unscrambled and scrambled faces, indicating that low-level features including texture may be relevant to HMAX performance. Experiment 4 shows that VisNet can learn to recognize objects even when the view provided by the object changes catastrophically as it transforms, whereas HMAX has no learning mechanism in its S-C hierarchy that provides for view-invariant learning. This highlights some requirements for the neurobiological mechanisms of high-level vision, and how some different approaches perform, in order to help understand the fundamental underlying principles of invariant visual object recognition in the ventral visual stream.


A programmable chemical computer with memory and pattern recognition.

  • Juan Manuel Parrilla-Gutierrez‎ et al.
  • Nature communications‎
  • 2020‎

Current computers are limited by the von Neumann bottleneck, which constrains the throughput between the processing unit and the memory. Chemical processes have the potential to scale beyond current computing architectures as the processing unit and memory reside in the same space, performing computations through chemical reactions, yet their lack of programmability limits them. Herein, we present a programmable chemical processor comprising of a 5 by 5 array of cells filled with a switchable oscillating chemical (Belousov-Zhabotinsky) reaction. Each cell can be individually addressed in the 'on' or 'off' state, yielding more than 2.9 × 1017 chemical states which arise from the ability to detect distinct amplitudes of oscillations via image processing. By programming the array of interconnected BZ reactions we demonstrate chemically encoded and addressable memory, and we create a chemical Autoencoder for pattern recognition able to perform the equivalent of one million operations per second.


Pattern recognition reveals sex-dependent neural substrates of sexual perception.

  • Vesa Putkinen‎ et al.
  • Human brain mapping‎
  • 2023‎

Sex differences in brain activity evoked by sexual stimuli remain elusive despite robust evidence for stronger enjoyment of and interest toward sexual stimuli in men than in women. To test whether visual sexual stimuli evoke different brain activity patterns in men and women, we measured hemodynamic brain activity induced by visual sexual stimuli in two experiments with 91 subjects (46 males). In one experiment, the subjects viewed sexual and nonsexual film clips, and dynamic annotations for nudity in the clips were used to predict hemodynamic activity. In the second experiment, the subjects viewed sexual and nonsexual pictures in an event-related design. Men showed stronger activation than women in the visual and prefrontal cortices and dorsal attention network in both experiments. Furthermore, using multivariate pattern classification we could accurately predict the sex of the subject on the basis of the brain activity elicited by the sexual stimuli. The classification generalized across the experiments indicating that the sex differences were task-independent. Eye tracking data obtained from an independent sample of subjects (N = 110) showed that men looked longer than women at the chest area of the nude female actors in the film clips. These results indicate that visual sexual stimuli evoke discernible brain activity patterns in men and women which may reflect stronger attentional engagement with sexual stimuli in men.


A dual role of prestimulus spontaneous neural activity in visual object recognition.

  • Ella Podvalny‎ et al.
  • Nature communications‎
  • 2019‎

Vision relies on both specific knowledge of visual attributes, such as object categories, and general brain states, such as those reflecting arousal. We hypothesized that these phenomena independently influence recognition of forthcoming stimuli through distinct processes reflected in spontaneous neural activity. Here, we recorded magnetoencephalographic (MEG) activity in participants (N = 24) who viewed images of objects presented at recognition threshold. Using multivariate analysis applied to sensor-level activity patterns recorded before stimulus presentation, we identified two neural processes influencing subsequent subjective recognition: a general process, which disregards stimulus category and correlates with pupil size, and a specific process, which facilitates category-specific recognition. The two processes are doubly-dissociable: the general process correlates with changes in criterion but not in sensitivity, whereas the specific process correlates with changes in sensitivity but not in criterion. Our findings reveal distinct mechanisms of how spontaneous neural activity influences perception and provide a framework to integrate previous findings.


Pattern recognition using a device substituting audition for vision in blindfolded sighted subjects.

  • C Poirier‎ et al.
  • Neuropsychologia‎
  • 2007‎

A major question in the field of sensory substitution concerns the nature of the perception generated by sensory substitution devices. In the present fMRI study, we investigated the neural substrates of pattern recognition through a device substituting audition for vision in blindfolded sighted subjects, before and after a short training period. Before training, pattern recognition recruited dorsal and ventral extra-striate areas. After training, the recruitment of these visual areas was found to have increased. These results suggest that visual imagery processes could be involved in pattern recognition and that perception through the substitution device could be visual-like.


An efficient framework using visual recognition for IoT based smart city surveillance.

  • Manish Kumar‎ et al.
  • Multimedia tools and applications‎
  • 2021‎

Smart city surveillance systems are the battery operated light weight Internet of Things (IoT) devices. In such devices, automatic face recognition requires a low powered memory efficient visual computing system. For these real time applications in smart cities, efficient visual recognition systems are need of the hour. In this manuscript, efficient fast subspace decomposition over Chi Square transformation is proposed for IoT based on smart city surveillance systems. The proposed technique extracts the features for visual recognition using local binary pattern histogram. The redundant features are discarded by applying the fast subspace decomposition over the Gaussian distributed Local Binary Pattern (LBP) features. This redundancy is major contributor to memory and time consumption for battery based surveillance systems. The proposed technique is suitable for all visual recognition applications deployed in IoT based surveillance devices due to higher dimension reduction. The validation of proposed technique is proved on the basis of well-known databases. The technique shows significant results for all databases when implemented on Raspberry Pi. A comparison of the proposed technique with already existing/reported techniques for the similar applications has been provided. Least error rate is achieved by the proposed technique with maximum feature reduction in minimum time for all the standard databases. Therefore, the proposed algorithm is useful for real time visual recognition for smart city surveillance.


Visual recognition is heralded by shifts in local field potential oscillations and inhibitory networks in primary visual cortex.

  • Dustin J Hayden‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2021‎

Learning to recognize and filter familiar, irrelevant sensory stimuli eases the computational burden on the cerebral cortex. Inhibition is a candidate mechanism in this filtration process, and oscillations in the cortical local field potential (LFP) serve as markers of the engagement of different inhibitory neurons. We show here that LFP oscillatory activity in visual cortex is profoundly altered as male and female mice learn to recognize an oriented grating stimulus-low frequency (∼15 Hz peak) power sharply increases while high frequency (∼65 Hz peak) power decreases. These changes report recognition of the familiar pattern, as they disappear when the stimulus is rotated to a novel orientation. Two-photon imaging of neuronal activity reveals that parvalbumin-expressing inhibitory neurons disengage with familiar stimuli and reactivate to novelty, whereas somatostatin-expressing inhibitory neurons show opposing activity patterns. We propose a model in which the balance of two interacting interneuron circuits shifts as novel stimuli become familiar.SIGNIFICANCE STATEMENT:Habituation, familiarity and novelty detection are fundamental cognitive processes that enable organisms to adaptively filter meaningless stimuli and focus attention on potentially important elements of their environment. We have shown that this process can be studied fruitfully in the mouse primary visual cortex by using simple grating stimuli for which novelty and familiarity are defined by orientation, and by measuring stimulus-evoked and continuous local field potentials. Altered event-related and spontaneous potentials, and deficient habituation, are well-documented features of several neurodevelopmental psychiatric disorders. The paradigm described here will be valuable to interrogate the origins of these signals and the meaning of their disruption more deeply.


Isorhamnetin Ameliorates Aspergillus fumigatus Keratitis by Reducing Fungal Load, Inhibiting Pattern-Recognition Receptors and Inflammatory Cytokines.

  • Xue Tian‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2021‎

Isorhamnetin is a natural flavonoid with both antimicrobial and anti-inflammatory properties, but its effect on fungal keratitis (FK) remains unknown. The current study aims to investigate the antifungal and anti-inflammatory effects of isorhamnetin against mouse Aspergillus fumigatus keratitis.


Different hemispheric specialization for face/word recognition: A high-density ERP study with hemifield visual stimulation.

  • Naomi Takamiya‎ et al.
  • Brain and behavior‎
  • 2020‎

The right fusiform face area (FFA) is important for face recognition, whereas the left visual word fusiform area (VWFA) is critical for word processing. Nevertheless, the early stages of unconscious and conscious face and word processing have not been studied systematically.


Deficits in Face Recognition and Consequent Quality-of-Life Factors in Individuals with Cerebral Visual Impairment.

  • Corinna M Bauer‎ et al.
  • Vision (Basel, Switzerland)‎
  • 2023‎

Individuals with cerebral visual impairment (CVI) frequently report challenges with face recognition, and subsequent difficulties with social interactions. However, there is limited empirical evidence supporting poor face recognition in individuals with CVI and the potential impact on social-emotional quality-of-life factors. Moreover, it is unclear whether any difficulties with face recognition represent a broader ventral stream dysfunction. In this web-based study, data from a face recognition task, a glass pattern detection task, and the Strengths and Difficulties Questionnaire (SDQ) were analyzed from 16 participants with CVI and 25 controls. In addition, participants completed a subset of questions from the CVI Inventory to provide a self-report of potential areas of visual perception that participants found challenging. The results demonstrate a significant impairment in the performance of a face recognition task in participants with CVI compared to controls, which was not observed for the glass pattern task. Specifically, we observed a significant increase in threshold, reduction in the proportion correct, and an increase in response time for the faces, but not for the glass pattern task. Participants with CVI also reported a significant increase in sub-scores of the SDQ for emotional problems and internalizing scores after adjusting for the potential confounding effects of age. Finally, individuals with CVI also reported a greater number of difficulties on items from the CVI Inventory, specifically the five questions and those related to face and object recognition. Together, these results indicate that individuals with CVI may demonstrate significant difficulties with face recognition, which may be linked to quality-of-life factors. This evidence suggests that targeted evaluations of face recognition are warranted in all individuals with CVI, regardless of their age.


Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping.

  • Yasmine Probst‎ et al.
  • Nutrients‎
  • 2015‎

Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work.


Feature-Specific Event-Related Potential Effects to Action- and Sound-Related Verbs during Visual Word Recognition.

  • Margot Popp‎ et al.
  • Frontiers in human neuroscience‎
  • 2016‎

Grounded cognition theories suggest that conceptual representations essentially depend on modality-specific sensory and motor systems. Feature-specific brain activation across different feature types such as action or audition has been intensively investigated in nouns, while feature-specific conceptual category differences in verbs mainly focused on body part specific effects. The present work aimed at assessing whether feature-specific event-related potential (ERP) differences between action and sound concepts, as previously observed in nouns, can also be found within the word class of verbs. In Experiment 1, participants were visually presented with carefully matched sound and action verbs within a lexical decision task, which provides implicit access to word meaning and minimizes strategic access to semantic word features. Experiment 2 tested whether pre-activating the verb concept in a context phase, in which the verb is presented with a related context noun, modulates subsequent feature-specific action vs. sound verb processing within the lexical decision task. In Experiment 1, ERP analyses revealed a differential ERP polarity pattern for action and sound verbs at parietal and central electrodes similar to previous results in nouns. Pre-activation of the meaning of verbs in the preceding context phase in Experiment 2 resulted in a polarity-reversal of feature-specific ERP effects in the lexical decision task compared with Experiment 1. This parallels analogous earlier findings for primed action and sound related nouns. In line with grounded cognitions theories, our ERP study provides evidence for a differential processing of action and sound verbs similar to earlier observation for concrete nouns. Although the localizational value of ERPs must be viewed with caution, our results indicate that the meaning of verbs is linked to different neural circuits depending on conceptual feature relevance.


Visual recognition for urban traffic data retrieval and analysis in major events using convolutional neural networks.

  • Yalong Pi‎ et al.
  • Computational urban science‎
  • 2022‎

Accurate and prompt traffic data are necessary for the successful management of major events. Computer vision techniques, such as convolutional neural network (CNN) applied on video monitoring data, can provide a cost-efficient and timely alternative to traditional data collection and analysis methods. This paper presents a framework designed to take videos as input and output traffic volume counts and intersection turning patterns. This framework comprises a CNN model and an object tracking algorithm to detect and track vehicles in the camera's pixel view first. Homographic projection then maps vehicle spatial-temporal information (including unique ID, location, and timestamp) onto an orthogonal real-scale map, from which the traffic counts and turns are computed. Several video data are manually labeled and compared with the framework output. The following results show a robust traffic volume count accuracy up to 96.91%. Moreover, this work investigates the performance influencing factors including lighting condition (over a 24-h-period), pixel size, and camera angle. Based on the analysis, it is suggested to place cameras such that detection pixel size is above 2343 and the view angle is below 22°, for more accurate counts. Next, previous and current traffic reports after Texas A&M home football games are compared with the framework output. Results suggest that the proposed framework is able to reproduce traffic volume change trends for different traffic directions. Lastly, this work also contributes a new intersection turning pattern, i.e., counts for each ingress-egress edge pair, with its optimization technique which result in an accuracy between 43% and 72%.


Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression.

  • Janaina Mourão-Miranda‎ et al.
  • Bipolar disorders‎
  • 2012‎

Recently, pattern recognition approaches have been used to classify patterns of brain activity elicited by sensory or cognitive processes. In the clinical context, these approaches have been mainly applied to classify groups of individuals based on structural magnetic resonance imaging (MRI) data. Only a few studies have applied similar methods to functional MRI (fMRI) data.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: