Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Polypyrimidine tract-binding protein (PTB) and PTB-associated splicing factor in CVB3 infection: an ITAF for an ITAF.

  • Pratik Dave‎ et al.
  • Nucleic acids research‎
  • 2017‎

The 5' UTR of Coxsackievirus B3 (CVB3) contains internal ribosome entry site (IRES), which allows cap-independent translation of the viral RNA and a 5'-terminal cloverleaf structure that regulates viral replication, translation and stability. Here, we demonstrate that host protein PSF (PTB associated splicing factor) interacts with the cloverleaf RNA as well as the IRES element. PSF was found to be an important IRES trans acting factor (ITAF) for efficient translation of CVB3 RNA. Interestingly, cytoplasmic abundance of PSF protein increased during CVB3 infection and this is regulated by phosphorylation status at two different amino acid positions. Further, PSF protein was up-regulated in CVB3 infection. The expression of CVB3-2A protease alone could also induce increased PSF protein levels. Furthermore, we observed the presence of an IRES element in the 5'UTR of PSF mRNA, which is activated during CVB3 infection and might contribute to the elevated levels of PSF. It appears that PSF IRES is also positively regulated by PTB, which is known to regulate CVB3 IRES. Taken together, the results suggest for the first time a novel mechanism of regulations of ITAFs during viral infection, where an ITAF undergoes IRES mediated translation, sustaining its protein levels under condition of translation shut-off.


PTB-associated splicing factor (PSF) is a PPARγ-binding protein and growth regulator of colon cancer cells.

  • Tamotsu Tsukahara‎ et al.
  • PloS one‎
  • 2013‎

Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that plays an essential role in cell proliferation, apoptosis, and inflammation. It is over-expressed in many types of cancer, including colon, stomach, breast, and lung cancer, suggesting that regulation of PPARγ might affect cancer pathogenesis. Here, using a proteomic approach, we identify PTB-associated splicing factor (PSF) as a novel PPARγ-interacting protein and demonstrate that PSF is involved in several important regulatory steps of colon cancer cell proliferation. To investigate the relationship between PSF and PPARγ in colon cancer, we evaluated the effects of PSF expression in DLD-1 and HT-29 colon cancer cell lines, which express low and high levels of PPARγ, respectively PSF affected the ability of PPARγ to bind, and expression of PSF siRNA significantly suppressed the proliferation of colon cancer cells. Furthermore, PSF knockdown induced apoptosis via activation of caspase-3. Interestingly, DLD-1 cells were more susceptible to PSF knockdown-induced cell death than HT-29 cells. Our data suggest that PSF is an important regulator of cell death that plays critical roles in the survival and growth of colon cancer cells. The PSF-PPARγ axis may play a role in the control of colorectal carcinogenesis. Taken together, this study is the first to describe the effects of PSF on cell proliferation, tumor growth, and cell signaling associated with PPARγ.


The PTB-Associated Splicing Factor/Peroxisome Proliferator-Activated Receptor Gamma Axis Regulates Autophagosome Formation in Human Pancreatic Cancer Cells.

  • Tamotsu Tsukahara‎ et al.
  • BioResearch open access‎
  • 2015‎

Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that plays a major regulatory role in metabolic function. It is overexpressed in many types of cancer cells, suggesting that regulation of PPARγ may also affect carcinogenesis. Our previous study suggested that PTB-associated splicing factor (PSF) is a PPARγ-interacting protein and growth regulator of colon cancer cells. In addition, PSF has been shown to be involved in several important regulatory steps of cancer cell proliferation. In this study, we aimed to investigate the relationships between PSF and PPARγ in pancreatic cancer by evaluating the effects of PSF expression in pancreatic cancer cell lines. PSF expression affected the expression of PPARγ, and knockdown of PSF using specific small-interfering RNA (siRNA) significantly suppressed the proliferation of pancreatic cancer cells. Furthermore, PSF knockdown induced cell growth inhibition and autophagosome formation through inhibition of PPARγ. Interestingly, Panc-1 cells were more susceptible to PSF knockdown-induced autophagy than MIA-PaCa-2 cells. Thus, our data indicated that PSF was an important regulator of autophagy and played critical roles in the survival and growth of pancreatic cancer cells. The PSF-PPARγ axis may play a role in the control of pancreatic cancer pathogenesis. This study is the first to describe the effects of PSF on pancreatic cancer cell growth and autophagy associated with PPARγ.


Hypoxia exposure upregulates MALAT-1 and regulates the transcriptional activity of PTB-associated splicing factor in A549 lung adenocarcinoma cells.

  • Ling Hu‎ et al.
  • Oncology letters‎
  • 2018‎

Hypoxia has been reported to be a critical microenvironmental factor that induces cancer metastasis and proliferation in gastric, liver and hepatic cancers; however, the underlying mechanisms of this are largely unknown. Long noncoding RNAs (lncRNAs) have emerged as crucial factors of several aspects of tumor malignancy, including tumorigenesis, metastasis and chemoresistance. However, the potential association of lncRNAs with hypoxia-induced cancer malignancy remains to be determined. In the present study, the differential expression of lncRNAs following the induction of hypoxia in A549 lung adenocarcinoma cells was analyzed reverse transcription-quantitative polymerase chain reaction. It was identified that the lncRNA metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) was upregulated significantly by hypoxia in A549 cells. By considering its promotive effects on malignant tumor behaviors, in the present study, it was identified that upregulated MALAT-1 released the binding of PTB-associated splicing factor (PSF) to its target gene, GAGE6, and thus promoted proliferation, migration and invasion of A549 cells following hypoxia exposure. These results advance the overall understanding of the mechanism of hypoxia-induced lung cancer metastasis and may assist in the development of novel therapeutics.


Vimentin, a Novel NF-κB Regulator, Is Required for Meningitic Escherichia coli K1-Induced Pathogen Invasion and PMN Transmigration across the Blood-Brain Barrier.

  • Sheng-He Huang‎ et al.
  • PloS one‎
  • 2016‎

NF-κB activation, pathogen invasion, polymorphonuclear leukocytes (PMN) transmigration (PMNT) across the blood-brain barrier (BBB) are the pathogenic triad hallmark features of bacterial meningitis, but the mechanisms underlying these events remain largely unknown. Vimentin, which is a novel NF-κB regulator, is the primary receptor for the major Escherichia coli K1 virulence factor IbeA that contributes to the pathogenesis of neonatal bacterial sepsis and meningitis (NSM). We have previously shown that IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PTB-associated splicing factor (PSF) is required for pathogen penetration and leukocyte transmigration across the BBB. This is the first in vivo study to demonstrate how vimentin and related factors contributed to the pathogenic triad of bacterial meningitis.


PSF: nuclear busy-body or nuclear facilitator?

  • Christopher A Yarosh‎ et al.
  • Wiley interdisciplinary reviews. RNA‎
  • 2015‎

PTB-associated splicing factor (PSF) is an abundant and essential nucleic acid-binding protein that participates in a wide range of gene regulatory processes and cellular response pathways. At the protein level, PSF consists of multiple domains, many of which remain poorly characterized. Although grouped in a family with the proteins p54nrb/NONO and PSPC1 based on sequence homology, PSF contains additional protein sequence not included in other family members. Consistently, PSF has also been implicated in functions not ascribed to p54nrb/NONO or PSPC1. Here, we provide a review of the cellular activities in which PSF has been implicated and what is known regarding the mechanisms by which PSF functions in each case. We propose that the complex domain arrangement of PSF allows for its diversity of function and integration of activities. Finally, we discuss recent evidence that individual activities of PSF can be regulated independently from one another through the activity of domain-specific co-factors.


Novel marker for the onset of frontotemporal dementia: early increase in activity-dependent neuroprotective protein (ADNP) in the face of Tau mutation.

  • Yulie Schirer‎ et al.
  • PloS one‎
  • 2014‎

Tauopathy, a major pathology in Alzheimer's disease, is also found in ~50% of frontotemporal dementias (FTDs). Tau transcript, a product of a single gene, undergoes alternative splicing to yield 6 protein species, each with either 3 or 4 microtubule binding repeat domains (tau 3R or 4R, associated with dynamic and stable microtubules, respectively). While the healthy human brain shows a 1/1 ratio of tau 3R/4R, this ratio may be dramatically changed in the FTD brain. We have previously discovered that activity-dependent neuroprotective protein (ADNP) is essential for brain formation in the mouse, with ADNP+/- mice exhibiting tauopathy, age-driven neurodegeneration and behavioral deficits. Here, in transgenic mice overexpressing a mutated tau 4R species, in the cerebral cortex but not in the cerebellum, we showed significantly increased ADNP expression (~3-fold transcripts) in the cerebral cortex of young transgenic mice (~disease onset), but not in the cerebellum, as compared to control littermates. The transgene-age-related increased ADNP expression paralleled augmented dynamic tau 3R transcript level compared to control littermates. Blocking mutated tau 4R transgene expression resulted in normalization of ADNP and tau 3R expression. ADNP was previously shown to be a member of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. Here, Brahma (Brm), a component of the SWI/SNF complex regulating alternative splicing, showed a similar developmental expression pattern to ADNP. Immunoprecipitations further suggested Brm-ADNP interaction coupled to ADNP - polypyrimidine tract-binding protein (PTB)-associated splicing factor (PSF)-binding, with PSF being a direct regulator of tau transcript splicing. It should be noted that although we have shown a correlation between levels of ADNP and tau isoform expression three months of age, we are not presenting evidence of a direct link between the two. Future research into ADNP/tau relations is warranted.


PSF knockdown enhances apoptosis via downregulation of LC3B in human colon cancer cells.

  • Tamotsu Tsukahara‎ et al.
  • BioMed research international‎
  • 2013‎

Our previous study demonstrated that PTB-associated splicing factor (PSF) is an important regulator of cell death and plays critical roles in the survival and growth of colon cancer cells. However, the molecular mechanism that activates these downstream signaling events remains unknown. To address this issue, we investigated the effects of PSF knockdown in two different colon cancer cell lines, DLD-1 and HT-29. We found that knockdown of PSF markedly decreased the autophagic molecule LC3B in DLD-1 cells but not in HT-29 cells. Furthermore, DLD-1 cells were more susceptible to PSF knockdown-induced cell growth inhibition and apoptosis than HT-29 cells. This susceptibility is probably a result of LC3B inhibition, given the known relationship between autophagy and apoptosis. C3B is associated with a number of physiological processes, including cell growth and apoptotic cell death. Our results suggest that autophagy is inhibited by PSF knockdown and that apoptosis and cell growth inhibition may act together to mediate the PSF-LC3B signaling pathway. Furthermore, we found that the peroxisome proliferator-activated receptor gamma (PPARγ)-PSF complex induced LC3B downregulation in DLD-1 cells. The results of this study identify a new physiological role for the PSF-LC3B axis as a potential endogenous modulator of colon cancer treatment.


Long noncoding RNA GAPLINC promotes invasion in colorectal cancer by targeting SNAI2 through binding with PSF and NONO.

  • Peng Yang‎ et al.
  • Oncotarget‎
  • 2016‎

This study aimed to investigate the role of long noncoding RNAs (lncRNAs) in the metastasis of colorectal cancer (CRC). Metastasis is an important prognostic factor of CRC, and lncRNAs have been implicated in tumor proliferation and metastasis. The human CRC cell lines HCT116, HT29, SW480, DLD-1, and SW620 were used in the study. Genome-wide lncRNA expression patterns in metastatic lymph nodes compared with paired normal lymph nodes of CRC were assessed by microarray analysis. Gastric adenocarcinoma predictive long intergenic noncoding (GAPLINC) RNA was detected via functional prediction. The increased expression of GAPLINC was found to be positively correlated with larger tumor size, advanced tumor stage (T stage), advanced node stage (N stage), increased death, and shorter survival of patients with CRC by in situ hybridization analysis. Besides, the decreased expression of GAPLINC could significantly repress CRC cell invasion in vitro and also inhibit proliferation in vitro and in vivo. RNA pull-down with mass spectrum experiments revealed that PTB-associated splicing factor (PSF) and non-POU-domain-containing octamer-binding (NONO) protein bound to GAPLINC and reversed the effect of GAPLINC on cell invasion. Gene array and bioinformatics analyses identified that snail family zinc finger 2 (SNAI2) was involved in the biological processes of GAPLINC/PSF/NONO. This study indicated the importance of GAPLINC in promoting CRC invasion via binding to PSF/NONO and partly by stimulating the expression of SNAI2. Hence, GAPLINC may serve as a promising target for CRC diagnosis and therapy. The findings may help in developing a novel therapeutic strategy for patients with CRC.


Annexin A2 binds the internal ribosomal entry site of c-myc mRNA and regulates its translation.

  • Elin Strand‎ et al.
  • RNA biology‎
  • 2021‎

The expression and localization of the oncoprotein c-Myc is highly regulated at the level of transcription, mRNA transport, translation, as well as stability of the protein. We previously showed that Annexin A2 (AnxA2) binds to a specific localization element in the 3'untranslated region (UTR) of c-myc mRNA and is involved in its localization to the perinuclear region. In the present study, we demonstrate that AnxA2 binds in a Ca2+-dependent manner to the internal ribosomal entry site (IRES) containing two pseudo-knots in the 5´UTR of the c-myc mRNA. Here, we employ an in vitro rabbit reticulocyte lysate system with chimeric c-myc reporter mRNAs to demonstrate that binding of AnxA2 to the c-myc IRES modulates the expression of c-Myc. Notably, we show that low levels of AnxA2 appear to increase, while high levels of AnxA2 inhibits translation of the chimeric mRNA. However, when both the AnxA2-binding site and the ribosomal docking site in the c-myc IRES are deleted, AnxA2 has no effect on the translation of the reporter mRNA. Forskolin-treatment of PC12 cells results in upregulation of Ser25 phosphorylated AnxA2 expression while c-Myc expression is down-regulated. The effect of forskolin on c-Myc expression and the level of Ser25 phosphorylated AnxA2 was abolished in the presence of EGTA. These findings indicate that AnxA2 regulates both the transport and subsequent translation of the c-myc mRNA, possibly by silencing the mRNA during its transport. They also suggest that AnxA2 act as a switch to turn off the c-myc IRES activity in the presence of calcium.Abbreviations: AnxA2, Annexin A2; β2--µglob, β2-microglobulin; cpm, counts per minute; hnRNP, heterogenous nuclear ribonucleoprotein; IRES, internal ribosomal entry site; ITAF, IRES trans-acting factor; MM, multiple myeloma; PABP, poly(A)-binding protein; PCBP, poly(rC) binding protein; PSF, PTB-associated splicing factor; PTB, polypyrimidine tract binding protein; RRL, rabbit reticulocyte lysate; UTR, untranslated region; YB, Y-box binding protein.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: