Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 118 papers

From lineage to wiring specificity. POU domain transcription factors control precise connections of Drosophila olfactory projection neurons.

  • Takaki Komiyama‎ et al.
  • Cell‎
  • 2003‎

Axonal selection of synaptic partners is generally believed to determine wiring specificity in the nervous system. However, we have recently found evidence for specific dendritic targeting in the olfactory system of Drosophila: second order olfactory neurons (Projection Neurons) from the anterodorsal (adPN) and lateral (lPN) lineages send their dendrites to stereotypical, intercalating but non-overlapping glomeruli. Here we show that POU domain transcription factors, Acj6 and Drifter, are expressed in adPNs and lPNs respectively, and are required for their dendritic targeting. Moreover, misexpression of Acj6 in lPNs, or Drifter in adPNs, results in dendritic targeting to glomeruli normally reserved for the other PN lineage. Thus, Acj6 and Drifter translate PN lineage information into distinct dendritic targeting specificity. Acj6 also controls stereotypical axon terminal arborization of PNs in a central target, suggesting that the connectivity of PN axons and dendrites in different brain centers is coordinately regulated.


The evolution of class V POU domain transcription factors in vertebrates and their characterisation in a marsupial.

  • Stephen Frankenberg‎ et al.
  • Developmental biology‎
  • 2010‎

POU5F1 (OCT4) encodes a master regulator of pluripotency that is present in all mammals. A paralogue, POU2, is also present in the genomes of marsupials and monotremes and is an orthologue of zebrafish pou2 and chicken POUV. We explored the evolution of class V POU domain transcription factors and show that POU5F1 arose by gene duplication of pou2 early in the evolution of tetrapods and is not mammal-specific, as previously thought. Instead, either POU5F1 or POU2/POUV has become extinct independently in various lineages, although all gnathostomes appear to possess at least one or the other. In the tammar wallaby, POU5F1 expression is limited to pluripotent cell types (embryonic tissues and germ cells). POU2 is similarly expressed in pluripotent tissues but is also expressed in a broad range of adult tissues. Thus, unlike POU5F1, the role of POU2 may not be restricted to pluripotent cell types but could have a related function such as maintaining multipotency in adult stem cells.


Fine-tuning of intrinsic N-Oct-3 POU domain allostery by regulatory DNA targets.

  • Robert Alazard‎ et al.
  • Nucleic acids research‎
  • 2007‎

The 'POU' (acronym of Pit-1, Oct-1, Unc-86) family of transcription factors share a common DNA-binding domain of approximately 160 residues, comprising so-called 'POUs' and 'POUh' sub-domains connected by a flexible linker. The importance of POU proteins as developmental regulators and tumor-promoting agents is due to linker flexibility, which allows them to adapt to a considerable variety of DNA targets. However, because of this flexibility, it has not been possible to determine the Oct-1/Pit-1 linker structure in crystallographic POU/DNA complexes. We have previously shown that the neuronal POU protein N-Oct-3 linker contains a structured region. Here, we have used a combination of hydrodynamic methods, DNA footprinting experiments, molecular modeling and small angle X-ray scattering to (i) structurally interpret the N-Oct-3-binding site within the HLA DRalpha gene promoter and deduce from this a novel POU domain allosteric conformation and (ii) analyze the molecular mechanisms involved in conformational transitions. We conclude that there might exist a continuum running from free to 'pre-bound' N-Oct-3 POU conformations and that regulatory DNA regions likely select pre-existing conformers, in addition to molding the appropriate DBD structure. Finally, we suggest that a specific pair of glycine residues in the linker might act as a major conformational switch.


Mutant huntingtin fragment selectively suppresses Brn-2 POU domain transcription factor to mediate hypothalamic cell dysfunction.

  • Tomoyuki Yamanaka‎ et al.
  • Human molecular genetics‎
  • 2010‎

In polyglutamine diseases including Huntington's disease (HD), mutant proteins containing expanded polyglutamine stretches form nuclear aggregates in neurons. Although analysis of their disease models suggested a significance of transcriptional dysregulation in these diseases, how it mediates the specific neuronal cell dysfunction remains obscure. Here we performed a comprehensive analysis of altered DNA binding of multiple transcription factors using R6/2 HD model mice brains that express an N-terminal fragment of mutant huntingtin (mutant Nhtt). We found a reduction of DNA binding of Brn-2, a POU domain transcription factor involved in differentiation and function of hypothalamic neurosecretory neurons. We provide evidence supporting that Brn-2 loses its function through two pathways, its sequestration by mutant Nhtt and its reduced transcription, leading to reduced expression of hypothalamic neuropeptides. In contrast to Brn-2, its functionally related protein, Brn-1, was not sequestered by mutant Nhtt but was upregulated in R6/2 brain, except in hypothalamus. Our data indicate that functional suppression of Brn-2 together with a region-specific lack of compensation by Brn-1 mediates hypothalamic cell dysfunction by mutant Nhtt.


The POU-Domain Transcription Factor Oct-6/POU3F1 as a Regulator of Cellular Response to Genotoxic Stress.

  • Cinzia Fionda‎ et al.
  • Cancers‎
  • 2019‎

DNA damage and the generation of reactive oxygen species (ROS) are key mechanisms of apoptotic cell death by commonly used genotoxic drugs. However, the complex cellular response to these pharmacologic agents remains yet to be fully characterized. Several studies have described the role of transcription factor octamer-1 (Oct-1)/Pit-1, Oct-1/2, and Unc-86 shared domain class 2 homeobox 1 (POU2F1) in the regulation of the genes important for cellular response to genotoxic stress. Evaluating the possible involvement of other POU family transcription factors in these pathways, we revealed the inducible expression of Oct-6/POU3F1, a regulator of neural morphogenesis and epidermal differentiation, in cancer cells by genotoxic drugs. The induction of Oct-6 occurs at the transcriptional level via reactive oxygen species (ROS) and ataxia telangiectasia mutated- and Rad3-related (ATR)-dependent mechanisms, but in a p53 independent manner. Moreover, we provide evidence that Oct-6 may play a role in the regulation of cellular response to DNA damaging agents. Indeed, by using the shRNA approach, we demonstrate that in doxorubicin-treated H460 non-small-cell lung carcinoma (NSCLC) cells, Oct-6 depletion leads to a reduced G2-cell cycle arrest and senescence, but also to increased levels of intracellular ROS and DNA damage. In addition, we could identify p21 and catalase as Oct-6 target genes possibly mediating these effects. These results demonstrate that Oct-6 is expressed in cancer cells after genotoxic stress, and suggests its possible role in the control of ROS, DNA damage response (DDR), and senescence.


Molecular cloning of rat and porcine retina-derived POU domain factor 1 (POU6F2) from a pituitary cDNA library.

  • Saishu Yoshida‎ et al.
  • The Journal of reproduction and development‎
  • 2014‎

Homeobox transcription factors are known to play crucial roles in the anterior lobe of the pituitary gland. During molecular cloning with the Yeast One-Hybrid System using a 5'-upstream region of the porcine Fshβ as a bait sequence, we have cloned a cDNA encoding a partial sequence of the retina-derived POU domain factor 1 (RPF1) from the porcine pituitary cDNA library and confirmed its specific binding to the bait sequence. In situ hybridization was performed to examine localization of Rpf1 and showed that this gene is expressed in the stem/progenitor cells of the rat pituitary primordium as well as the diencephalon and retina. In addition, real-time PCR demonstrated that Rpf1 transcripts are abundant in early embryonic periods but that this is followed by a decrease during pituitary development, indicating that this factor plays a role in differentiating cells of the pituitary. The transcriptional activity of RPF1 for genes of Prop1, Prrx1 and Prrx2, which were characterized as genes participating in the pituitary stem/progenitor cells by our group, was then examined with full-length cDNA obtained from the rat pituitary. RPF1 showed regulatory activity for Prop1 and Prrx2, but not for Prrx1. These results indicate the involvement of this retina-derived factor in pituitary development.


POU domain motif3 (Pdm3) induces wingless (wg) transcription and is essential for development of larval neuromuscular junctions in Drosophila.

  • Yeon Kim‎ et al.
  • Scientific reports‎
  • 2020‎

Wnt is a conserved family of secreted proteins that play diverse roles in tissue growth and differentiation. Identification of transcription factors that regulate wnt expression is pivotal for understanding tissue-specific signaling pathways regulated by Wnt. We identified pdm3m7, a new allele of the pdm3 gene encoding a POU family transcription factor, in a lethality-based genetic screen for modifiers of Wingless (Wg) signaling in Drosophila. Interestingly, pdm3m7 larvae showed slow locomotion, implying neuromuscular defects. Analysis of larval neuromuscular junctions (NMJs) revealed decreased bouton number with enlarged bouton in pdm3 mutants. pdm3 NMJs also had fewer branches at axon terminals than wild-type NMJs. Consistent with pdm3m7 being a candidate wg modifier, NMJ phenotypes in pdm3 mutants were similar to those of wg mutants, implying a functional link between these two genes. Indeed, lethality caused by Pdm3 overexpression in motor neurons was completely rescued by knockdown of wg, indicating that Pdm3 acts upstream to Wg. Furthermore, transient expression of Pdm3 induced ectopic expression of wg-LacZ reporter and Wg effector proteins in wing discs. We propose that Pdm3 expressed in presynaptic NMJ neurons regulates wg transcription for growth and development of both presynaptic neurons and postsynaptic muscles.


Characterization of platyhelminth POU domain genes: ubiquitous and specific anterior nerve cell expression of different epitopes of GtPOU-1.

  • A M Muñoz-Mármol‎ et al.
  • Mechanisms of development‎
  • 1998‎

POU domain proteins are a large family of transcription factors that have been identified in a variety of metazoans, from freshwater sponges, planarians and nematodes to arthropods, echinoderms and vertebrates. Many of these proteins are implicated in the development and establishment of the nervous system. In this paper we describe the identification of the planarian genes GtPOU-1, GtPOU-3 and GtPOU-4, which belong to the subclasses III and IV of POU-domain genes. Their similarity with other members of the POU family is restricted to the POU and homeo domains, plus some peptide sequences scattered in the linker and flanking regions. As with other subclass III POU genes, GtPOU-1 is devoid of introns. Axial transcript distribution by RT-PCR and immunohistochemical assays, performed with a polyclonal antibody raised against the GtPOU-1 fusion protein, indicate that both the GtPOU-1 transcript and protein are continuously expressed along the antero-posterior axis. A monoclonal antibody raised against the same fusion protein indicates that a GtPOU-1-specific epitope, probably obtained by post-translational modification, is present in neural cells from both the central and peripheral nerve systems of the adult planarian's anterior third. Moreover, the GtPOU-1-specific epitope shows a dynamic expression pattern during regeneration, always marking the most anterior region of the planarian nervous system. Both the rapid and general GtPOU-1-specific epitope modification, during posterior regeneration, indicate that regeneration is a global process involving all planarian regions, including those that are far from the wound, by a combination of morphallactic and epimorphic mechanisms.


Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication.

  • Paul Peixoto‎ et al.
  • Nucleic acids research‎
  • 2008‎

The development of small molecules to control gene expression could be the spearhead of future-targeted therapeutic approaches in multiple pathologies. Among heterocyclic dications developed with this aim, a phenyl-furan-benzimidazole dication DB293 binds AT-rich sites as a monomer and 5'-ATGA sequence as a stacked dimer, both in the minor groove. Here, we used a protein/DNA array approach to evaluate the ability of DB293 to specifically inhibit transcription factors DNA-binding in a single-step, competitive mode. DB293 inhibits two POU-domain transcription factors Pit-1 and Brn-3 but not IRF-1, despite the presence of an ATGA and AT-rich sites within all three consensus sequences. EMSA, DNase I footprinting and surface-plasmon-resonance experiments determined the precise binding site, affinity and stoichiometry of DB293 interaction to the consensus targets. Binding of DB293 occurred as a cooperative dimer on the ATGA part of Brn-3 site but as two monomers on AT-rich sites of IRF-1 sequence. For Pit-1 site, ATGA or AT-rich mutated sequences identified the contribution of both sites for DB293 recognition. In conclusion, DB293 is a strong inhibitor of two POU-domain transcription factors through a cooperative binding to ATGA. These findings are the first to show that heterocyclic dications can inhibit major groove transcription factors and they open the door to the control of transcription factors activity by those compounds.


The POU factor ventral veins lacking/Drifter directs the timing of metamorphosis through ecdysteroid and juvenile hormone signaling.

  • CeCe Cheng‎ et al.
  • PLoS genetics‎
  • 2014‎

Although endocrine changes are known to modulate the timing of major developmental transitions, the genetic mechanisms underlying these changes remain poorly understood. In insects, two developmental hormones, juvenile hormone (JH) and ecdysteroids, are coordinated with each other to induce developmental changes associated with metamorphosis. However, the regulation underlying the coordination of JH and ecdysteroid synthesis remains elusive. Here, we examined the function of a homolog of the vertebrate POU domain protein, Ventral veins lacking (Vvl)/Drifter, in regulating both of these hormonal pathways in the red flour beetle, Tribolium castaneum (Tenebrionidae). RNA interference-mediated silencing of vvl expression led to both precocious metamorphosis and inhibition of molting in the larva. Ectopic application of a JH analog on vvl knockdown larvae delayed the onset of metamorphosis and led to a prolonged larval stage, indicating that Vvl acts upstream of JH signaling. Accordingly, vvl knockdown also reduced the expression of a JH biosynthesis gene, JH acid methyltransferase 3 (jhamt3). In addition, ecdysone titer and the expression of the ecdysone response gene, hormone receptor 3 (HR3), were reduced in vvl knockdown larvae. The expression of the ecdysone biosynthesis gene phantom (phm) and spook (spo) were reduced in vvl knockdown larvae in the anterior and posterior halves, respectively, indicating that Vvl might influence ecdysone biosynthesis in both the prothoracic gland and additional endocrine sources. Injection of 20-hydroxyecdysone (20E) into vvl knockdown larvae could restore the expression of HR3 although molting was never restored. These findings suggest that Vvl coordinates both JH and ecdysteroid biosynthesis as well as molting behavior to influence molting and the timing of metamorphosis. Thus, in both vertebrates and insects, POU factors modulate the production of major neuroendocrine regulators during sexual maturation.


POU genes are expressed during the formation of individual ganglia of the cephalopod central nervous system.

  • Tim Wollesen‎ et al.
  • EvoDevo‎
  • 2014‎

Among the Lophotrochozoa, cephalopods possess the highest degree of central nervous system (CNS) centralization and complexity. Although the anatomy of the developing cephalopod CNS has been investigated, the developmental mechanisms underlying brain development and evolution are unknown. POU genes encode key transcription factors controlling nervous system development in a range of bilaterian species, including lophotrochozoans. In this study, we investigate the expression of POU genes during early development of the pygmy squid Idiosepius notoides and make comparisons with other bilaterians to reveal whether these genes have conserved or divergent roles during CNS development in this species.


Reprogramming competence of OCT factors is determined by transactivation domains.

  • Kee-Pyo Kim‎ et al.
  • Science advances‎
  • 2020‎

OCT4 (also known as POU5F1) plays an essential role in reprogramming. It is the only member of the POU (Pit-Oct-Unc) family of transcription factors that can induce pluripotency despite sharing high structural similarities to all other members. Here, we discover that OCT6 (also known as POU3F1) can elicit reprogramming specifically in human cells. OCT6-based reprogramming does not alter the mesenchymal-epithelial transition but is attenuated through the delayed activation of the pluripotency network in comparison with OCT4-based reprogramming. Creating a series of reciprocal domain-swapped chimeras and mutants across all OCT factors, we clearly delineate essential elements of OCT4/OCT6-dependent reprogramming and, conversely, identify the features that prevent induction of pluripotency by other OCT factors. With this strategy, we further discover various chimeric proteins that are superior to OCT4 in reprogramming. Our findings clarify how reprogramming competences of OCT factors are conferred through their structural components.


Inhibition of neural stem cell aging through the transient induction of reprogramming factors.

  • Min Ji Han‎ et al.
  • The Journal of comparative neurology‎
  • 2021‎

Adult stem cells age during long-term in vitro culture, and neural stem cells (NSCs), which can self-renew and differentiate into neurons and glial cells, also display reduced differentiation potential after repeated passaging. However, the mechanistic details underlying this process remain unclear. In this study, we found that long-term in vitro culture of NSCs resulted in aging-related upregulation of inflammatory- and endoplasmic reticulum (ER) stress-related genes, including the proinflammatory cytokines interleukin (IL)1β and IL6, the senescence-associated enzyme matrix metallopeptidase 13 (MMP13), and the ER stress-responsive transcription factor activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). However, the cyclic and transient induction of four reprogramming factors (POU domain, class 5, transcription factor 1, also known as octamer-binding transcription factor 4; SRY [sex determining region Y]-box 2; Kruppel-like factor 4; and myelocytomatosis oncogene; collectively referred to as OSKM) can inhibit NSC aging, as indicated by the decreased expression of the inflammatory and ER stress-related genes. We used ROSA-4F NSCs, which express OSKM from only one allele, to minimize the potential for full reprogramming or tumor formation during NSC rejuvenation. We expect that this novel rejuvenation method will enhance the potential of NSCs as a clinical approach to the treatment of neurological diseases.


Screening for key genes and transcription factors in ankylosing spondylitis by RNA-Seq.

  • Zhongyang Xu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

Ankylosing spondylitis (AS) is a chronic inflammatory arthritis and autoimmune disease, the etiology and pathogenesis of which remain largely unknown. In the present study, blood samples were harvested from patients with AS and from healthy volunteers as a normal control (NC) for RNA-sequencing. Differentially expressed genes (DEGs) in the AS group compared with the NC group were identified, and gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently performed. Protein-protein interaction (PPI) network and AS-specific transcriptional regulatory network construction was performed for the DEGs. A total of 503 DEGs, including 338 upregulated and 165 downregulated DEGs, were identified in patients with AS compared with the NC group. Three upregulated DEGs identified, interferon-induced protein with tetratricopeptide repeats (IFIT)1, IFIT3 and radical S-adenosyl methionine domain containing (RSAD)2, are interferon (IFN)-stimulated genes that serve a role in the IFN signaling pathway. The most significantly enriched GO term was response to other organisms. Osteoclast differentiation was a significantly enriched pathway for eight DEGs [High affinity immunoglobulin gamma Fc receptor (FCGR)1A, FCGR2B, four and a half LIM domains 2, integrin β3, signal transducer and activator of transcription 2 (STAT2), suppressor of cytokine signaling 3 (SOCS3), leukocyte immunoglobulin like receptor (LILR)A4 and LILRA6]. The six hub genes in the PPI network constructed were interferon-stimulated gene 15, heat shock protein β1, microtubule-associated proteins 1A/1B light chain 3A, IFIT1, IFIT3 and SOCS3. POU domain class 2 transcription factor 1 (1-Oct) and ecotropic virus integration site-1 (Evi-1) were identified as two important transcription factors (TFs) in AS according to the AS-specific transcriptional regulatory network constructed. In addition, IFIT1 and IFIT3 were identified as targets of 1-Oct. The results of the present study indicate that osteoclast differentiation, the IFN signaling pathway and genes associated with these two signaling pathways, particularly FCGR2B, STAT2, SOCS3, IFIT1 and IFIT3, may serve a role in AS. In addition, Evi-1 and 1-Oct may be two important TFs associated with AS. These results may provide a basis for elucidating the underlying mechanisms of and developing novel treatments for AS.


The Homeodomain Transcription Factors Vax1 and Six6 Are Required for SCN Development and Function.

  • Erica C Pandolfi‎ et al.
  • Molecular neurobiology‎
  • 2020‎

The brain's primary circadian pacemaker, the suprachiasmatic nucleus (SCN), is required to translate day-length and circadian rhythms into neuronal, hormonal, and behavioral rhythms. Here, we identify the homeodomain transcription factor ventral anterior homeobox 1 (Vax1) as required for SCN development, vasoactive intestinal peptide expression, and SCN output. Previous work has shown that VAX1 is required for gonadotropin-releasing hormone (GnRH/LHRH) neuron development, a neuronal population controlling reproductive status. Surprisingly, the ectopic expression of a Gnrh-Cre allele (Gnrhcre) in the SCN confirmed the requirement of both VAX1 (Vax1flox/flox:Gnrhcre, Vax1Gnrh-cre) and sine oculis homeobox protein 6 (Six6flox/flox:Gnrhcre, Six6Gnrh-cre) in SCN function in adulthood. To dissociate the role of Vax1 and Six6 in GnRH neuron and SCN function, we used another Gnrh-cre allele that targets GnRH neurons, but not the SCN (Lhrhcre). Both Six6Lhrh-cre and Vax1Lhrh-cre were infertile, and in contrast to Vax1Gnrh-cre and Six6Gnrh-cre mice, Six6Lhrh-cre and Vax1Lhrh-cre had normal circadian behavior. Unexpectedly, ~ 1/4 of the Six6Gnrh-cre mice were unable to entrain to light, showing that ectopic expression of Gnrhcre impaired function of the retino-hypothalamic tract that relays light information to the brain. This study identifies VAX1, and confirms SIX6, as transcription factors required for SCN development and function and demonstrates the importance of understanding how ectopic CRE expression can impact the results.


Differential expression of Brn3 transcription factors in intrinsically photosensitive retinal ganglion cells in mouse.

  • Varsha Jain‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

Several subtypes of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) have been reported. The M1 type of ipRGCs exhibit distinct properties compared with the remaining (non-M1) cells. They differ not only in their soma size and dendritic arbor, but also in their physiological properties, projection patterns, and functions. However, it is not known how these differences arise. We tested the hypothesis that M1 and non-M1 cells express Brn3 transcription factors differentially. The Brn3 family of class IV POU-domain transcription factors (Brn3a, Brn3b, and Brn3c) is involved in the regulation of differentiation, dendritic stratification, and axonal projection of retinal ganglion cells during development. By using double immunofluorescence for Brn3 transcription factors and melanopsin, and with elaborate morphometric analyses, we show in mouse retina that neither Brn3a nor Brn3c are expressed in ipRGCs. However, Brn3b is expressed in a subset of ipRGCs, particularly those with larger somas and lower melanopsin levels, suggesting that Brn3b is expressed preferentially in the non-M1 cells. By using dendritic stratification to distinguish M1 from non-M1 cells, we found that whereas nearly all non-M1 cells expressed Brn3b, a vast majority of the M1 cells were negative for Brn3b. Interestingly, in the small proportion of the M1 cells that did express Brn3b, the expression level of Brn3b was significantly lower than in the non-M1 cells. These results provide insights about how expression of specific molecules in a ganglion cell could be linked to its role in visual function.


Effect of obesity and exercise on the expression of the novel myokines, Myonectin and Fibronectin type III domain containing 5.

  • Jonathan M Peterson‎ et al.
  • PeerJ‎
  • 2014‎

Metabolic dysfunction in skeletal muscle is a major contributor to the development of type 2 diabetes. Endurance exercise training has long been established as an effective means to directly restore skeletal muscle glucose and lipid uptake and metabolism. However, in addition to the direct effects of skeletal muscle on glucose and lipids, there is renewed interest in the ability of skeletal muscle to coordinate metabolic activity of other tissues, such as adipose tissue and liver. The purpose of this study was to examine the effects of endurance exercise on the expression level of two novel muscle-derived secreted factors, or myokines, Myonectin and Fibronectin type III domain containing 5 (FNDC5), the precursor for Irisin. Methods. We performed immunoblot analysis and quantitative real-time PCR analysis of Myonectin and FNDC5 in the diaphragm muscles of obese Zucker rat (OZR) and lean Zucker rat (LZR) with 9 weeks of aerobic training on a motorized treadmill. Results. We show that myonectin gene expression is increased in the OZR model of obesity and decreases with exercise in both lean and obese Zucker rats. Conversely, myonectin protein concentration was elevated with exercise. Similarly, FNDC5 mRNA levels are significantly higher in the OZR, however exercise training had no effect on the expression level of FNDC5 in either the LZR or OZR. We did not observe any difference in muscle protein content of Irisin with obesity or exercise. Conclusion. Our data shows that exercise training does not increase either FNDC5 or myonectin gene expression, indicating that increased transcriptional regulation of these myokines is not induced by exercise. However, our data also indicates a yet to be explored disconnect between myonectin gene expression and protein content. Further, this report highlights the importance of verifying reference genes when completing gene expression analysis. We found that many commonly used reference genes varied significantly by obesity and/or exercise and would have skewed the results of this study if used to normalize gene expression data. The unstable reference genes include: beta-Actin, beta-2-microglobulin, Non-POU domain containing, octamer-binding, Peptidylprolyl isomerase H, 18S ribosomal RNA, TATA box binding protein and Transferrin receptor.


Complex interplay of three transcription factors in controlling the tormogen differentiation program of Drosophila mechanoreceptors.

  • Steven W Miller‎ et al.
  • Developmental biology‎
  • 2009‎

We have investigated the expression and function of the Sox15 transcription factor during the development of the external mechanosensory organs of Drosophila. We find that Sox15 is expressed specifically in the socket cell, and have identified the transcriptional cis-regulatory module that controls this activity. We show that Suppressor of Hairless [Su(H)] and the POU-domain factor Ventral veins lacking (Vvl) bind conserved sites in this enhancer and provide critical regulatory input. In particular, we find that Vvl contributes to the activation of the enhancer following relief of Su(H)-mediated default repression by the Notch signaling event that specifies the socket cell fate. Loss of Sox15 gene activity was found to severely impair the electrophysiological function of mechanosensory organs, due to both cell-autonomous and cell-non-autonomous effects on the differentiation of post-mitotic cells in the bristle lineage. Lastly, we find that simultaneous loss of both Sox15 and the autoregulatory activity of Su(H) reveals an important role for these factors in inhibiting transcription of the Pax family gene shaven in the socket cell, which serves to prevent inappropriate expression of the shaft differentiation program. Our results indicate that the later phases of socket cell differentiation are controlled by multiple transcription factors in a collaborative, and not hierarchical, manner.


Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells.

  • Tudor C Badea‎ et al.
  • Neuron‎
  • 2009‎

Transcriptional regulatory networks that control the morphologic and functional diversity of mammalian neurons are still largely undefined. Here we dissect the roles of the highly homologous POU-domain transcription factors Brn3a and Brn3b in retinal ganglion cell (RGC) development and function using conditional Brn3a and Brn3b alleles that permit the visualization of individual wild-type or mutant cells. We show that Brn3a- and Brn3b-expressing RGCs exhibit overlapping but distinct dendritic stratifications and central projections. Deletion of Brn3a alters dendritic stratification and the ratio of monostratified:bistratified RGCs, with little or no change in central projections. In contrast, deletion of Brn3b leads to RGC transdifferentiation and loss, axon defects in the eye and brain, and defects in central projections that differentially compromise a variety of visually driven behaviors. These findings reveal distinct roles for Brn3a and Brn3b in programming RGC diversity, and they illustrate the broad utility of germline methods for genetically manipulating and visualizing individual identified mammalian neurons.


SoxC Transcription Factors Promote Contralateral Retinal Ganglion Cell Differentiation and Axon Guidance in the Mouse Visual System.

  • Takaaki Kuwajima‎ et al.
  • Neuron‎
  • 2017‎

Transcription factors control cell identity by regulating diverse developmental steps such as differentiation and axon guidance. The mammalian binocular visual circuit is comprised of projections of retinal ganglion cells (RGCs) to ipsilateral and contralateral targets in the brain. A transcriptional code for ipsilateral RGC identity has been identified, but less is known about the transcriptional regulation of contralateral RGC development. Here we demonstrate that SoxC genes (Sox4, 11, and 12) act on the progenitor-to-postmitotic transition to implement contralateral, but not ipsilateral, RGC differentiation, by binding to Hes5 and thus repressing Notch signaling. When SoxC genes are deleted in postmitotic RGCs, contralateral RGC axons grow poorly on chiasm cells in vitro and project ipsilaterally at the chiasm midline in vivo, and Plexin-A1 and Nr-CAM expression in RGCs is downregulated. These data implicate SoxC transcription factors in the regulation of contralateral RGC differentiation and axon guidance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: