Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 4,122 papers

Operon prediction in Pyrococcus furiosus.

  • Thao T Tran‎ et al.
  • Nucleic acids research‎
  • 2007‎

Identification of operons in the hyperthermophilic archaeon Pyrococcus furiosus represents an important step to understanding the regulatory mechanisms that enable the organism to adapt and thrive in extreme environments. We have predicted operons in P.furiosus by combining the results from three existing algorithms using a neural network (NN). These algorithms use intergenic distances, phylogenetic profiles, functional categories and gene-order conservation in their operon prediction. Our method takes as inputs the confidence scores of the three programs, and outputs a prediction of whether adjacent genes on the same strand belong to the same operon. In addition, we have applied Gene Ontology (GO) and KEGG pathway information to improve the accuracy of our algorithm. The parameters of this NN predictor are trained on a subset of all experimentally verified operon gene pairs of Bacillus subtilis. It subsequently achieved 86.5% prediction accuracy when applied to a subset of gene pairs for Escherichia coli, which is substantially better than any of the three prediction programs. Using this new algorithm, we predicted 470 operons in the P.furiosus genome. Of these, 349 were validated using DNA microarray data.


Operon structure of Staphylococcus aureus.

  • Nicole J P ten Broeke-Smits‎ et al.
  • Nucleic acids research‎
  • 2010‎

In bacteria, gene regulation is one of the fundamental characteristics of survival, colonization and pathogenesis. Operons play a key role in regulating expression of diverse genes involved in metabolism and virulence. However, operon structures in pathogenic bacteria have been determined only by in silico approaches that are dependent on factors such as intergenic distances and terminator/promoter sequences. Knowledge of operon structures is crucial to fully understand the pathophysiology of infections. Presently, transcriptome data obtained from growth curves in a defined medium were used to predict operons in Staphylococcus aureus. This unbiased approach and the use of five highly reproducible biological replicates resulted in 93.5% significantly regulated genes. These data, combined with Pearson's correlation coefficients of the transcriptional profiles, enabled us to accurately compile 93% of the genome in operon structures. A total of 1640 genes of different functional classes were identified in operons. Interestingly, we found several operons containing virulence genes and showed synergistic effects for two complement convertase inhibitors transcribed in one operon. This is the first experimental approach to fully identify operon structures in S. aureus. It forms the basis for further in vitro regulation studies that will profoundly advance the understanding of bacterial pathophysiology in vivo.


Eukaryotic Acquisition of a Bacterial Operon.

  • Jacek Kominek‎ et al.
  • Cell‎
  • 2019‎

Operons are a hallmark of bacterial genomes, where they allow concerted expression of functionally related genes as single polycistronic transcripts. They are rare in eukaryotes, where each gene usually drives expression of its own independent messenger RNAs. Here, we report the horizontal operon transfer of a siderophore biosynthesis pathway from relatives of Escherichia coli into a group of budding yeast taxa. We further show that the co-linearly arranged secondary metabolism genes are expressed, exhibit eukaryotic transcriptional features, and enable the sequestration and uptake of iron. After transfer, several genetic changes occurred during subsequent evolution, including the gain of new transcription start sites that were sometimes within protein-coding sequences, acquisition of polyadenylation sites, structural rearrangements, and integration of eukaryotic genes into the cluster. We conclude that the genes were likely acquired as a unit, modified for eukaryotic gene expression, and maintained by selection to adapt to the highly competitive, iron-limited environment.


The tryptophan pathway genes of the Sargasso Sea metagenome: new operon structures and the prevalence of non-operon organization.

  • Juliana Kagan‎ et al.
  • Genome biology‎
  • 2008‎

The enormous database of microbial DNA generated from the Sargasso Sea metagenome provides a unique opportunity to locate genes participating in different biosynthetic pathways and to attempt to understand the relationship and evolution of those genes. In this article, an analysis of the Sargasso Sea metagenome is made with respect to the seven genes of the tryptophan pathway.


Binary particle swarm optimization for operon prediction.

  • Li-Yeh Chuang‎ et al.
  • Nucleic acids research‎
  • 2010‎

An operon is a fundamental unit of transcription and contains specific functional genes for the construction and regulation of networks at the entire genome level. The correct prediction of operons is vital for understanding gene regulations and functions in newly sequenced genomes. As experimental methods for operon detection tend to be nontrivial and time consuming, various methods for operon prediction have been proposed in the literature. In this study, a binary particle swarm optimization is used for operon prediction in bacterial genomes. The intergenic distance, participation in the same metabolic pathway, the cluster of orthologous groups, the gene length ratio and the operon length are used to design a fitness function. We trained the proper values on the Escherichia coli genome, and used the above five properties to implement feature selection. Finally, our study used the intergenic distance, metabolic pathway and the gene length ratio property to predict operons. Experimental results show that the prediction accuracy of this method reached 92.1%, 93.3% and 95.9% on the Bacillus subtilis genome, the Pseudomonas aeruginosa PA01 genome and the Staphylococcus aureus genome, respectively. This method has enabled us to predict operons with high accuracy for these three genomes, for which only limited data on the properties of the operon structure exists.


Control of a mixed tRNA--protein operon.

  • A Travers‎
  • Nature‎
  • 1981‎

No abstract available


An RNA Repair Operon Regulated by Damaged tRNAs.

  • Kevin J Hughes‎ et al.
  • Cell reports‎
  • 2020‎

Many bacteria contain an RNA repair operon, encoding the RtcB RNA ligase and the RtcA RNA cyclase, that is regulated by the RtcR transcriptional activator. Although RtcR contains a divergent version of the CARF (CRISPR-associated Rossman fold) oligonucleotide-binding regulatory domain, both the specific signal that regulates operon expression and the substrates of the encoded enzymes are unknown. We report that tRNA fragments activate operon expression. Using a genetic screen in Salmonella enterica serovar Typhimurium, we find that the operon is expressed in the presence of mutations that cause tRNA fragments to accumulate. RtcA, which converts RNA phosphate ends to 2', 3'-cyclic phosphate, is also required. Operon expression and tRNA fragment accumulation also occur upon DNA damage. The CARF domain binds 5' tRNA fragments ending in cyclic phosphate, and RtcR oligomerizes upon binding these ligands, a prerequisite for operon activation. Our studies reveal a signaling pathway involving broken tRNAs and implicate the operon in tRNA repair.


Molecular basis of anti-CRISPR operon repression by Aca10.

  • So Yeon Lee‎ et al.
  • Nucleic acids research‎
  • 2022‎

CRISPR-Cas systems are bacterial defense systems for fighting against invaders such as bacteriophages and mobile genetic elements. To escape destruction by these bacterial immune systems, phages have co-evolved multiple anti-CRISPR (Acr) proteins, which inhibit CRISPR-Cas function. Many acr genes form an operon with genes encoding transcriptional regulators, called anti-CRISPR-associated (Aca) proteins. Aca10 is the most recently discovered Aca family that is encoded within an operon containing acrIC7 and acrIC6 in Pseudomonas citronellolis. Here, we report the high-resolution crystal structure of an Aca10 protein to unveil the molecular basis of transcriptional repressor role of Aca10 in the acrIC7-acrIC6-aca10 operon. We identified that Aca10 forms a dimer in solution, which is critical for binding specific DNA. We also showed that Aca10 directly recognizes a 21 bp palindromic sequence in the promoter of the acr operon. Finally, we revealed that R44 of Aca10 is a critical residue involved in the DNA binding, which likely results in a high degree of DNA bending.


The Klebsiella pneumoniae ter Operon Enhances Stress Tolerance.

  • Sophia Mason‎ et al.
  • Infection and immunity‎
  • 2023‎

Healthcare-acquired infections are a leading cause of disease in patients that are hospitalized or in long-term-care facilities. Klebsiella pneumoniae (Kp) is a leading cause of bacteremia, pneumonia, and urinary tract infections in these settings. Previous studies have established that the ter operon, a genetic locus that confers tellurite oxide (K2TeO3) resistance, is associated with infection in colonized patients. Rather than enhancing fitness during infection, the ter operon increases Kp fitness during gut colonization; however, the biologically relevant function of this operon is unknown. First, using a murine model of urinary tract infection, we demonstrate a novel role for the ter operon protein TerC as a bladder fitness factor. To further characterize TerC, we explored a variety of functions, including resistance to metal-induced stress, resistance to radical oxygen species-induced stress, and growth on specific sugars, all of which were independent of TerC. Then, using well-defined experimental guidelines, we determined that TerC is necessary for tolerance to ofloxacin, polymyxin B, and cetylpyridinium chloride. We used an ordered transposon library constructed in a Kp strain lacking the ter operon to identify the genes that are required to resist K2TeO3-induced and polymyxin B-induced stress, which suggested that K2TeO3-induced stress is experienced at the bacterial cell envelope. Finally, we confirmed that K2TeO3 disrupts the Kp cell envelope, though these effects are independent of ter. Collectively, the results from these studies indicate a novel role for the ter operon as a stress tolerance factor, thereby explaining its role in enhancing fitness in the gut and bladder.


Development of a Lac Operon Concept Inventory (LOCI).

  • Katherine M Stefanski‎ et al.
  • CBE life sciences education‎
  • 2016‎

Concept inventories (CIs) are valuable tools for educators that assess student achievement and identify misconceptions held by students. Results of student responses can be used to adjust or develop new instructional methods for a given topic. The regulation of gene expression in both prokaryotes and eukaryotes is an important concept in genetics and one that is particularly challenging for undergraduate students. As part of a larger study examining instructional methods related to gene regulation, the authors developed a 12-item CI assessing student knowledge of the lac operon. Using an established protocol, the authors wrote open-ended questions and conducted in-class testing with undergraduate microbiology and genetics students to discover common errors made by students about the lac operon and to determine aspects of item validity. Using these results, we constructed a 12-item multiple-choice lac operon CI called the Lac Operon Concept Inventory (LOCI), The LOCI was reviewed by two experts in the field for content validity. The LOCI underwent item analysis and was assessed for reliability with a sample of undergraduate genetics students (n = 115). The data obtained were found to be valid and reliable (coefficient alpha = 0.994) with adequate discriminatory power and item difficulty.


Recurring cluster and operon assembly for Phenylacetate degradation genes.

  • Fergal J Martin‎ et al.
  • BMC evolutionary biology‎
  • 2009‎

A large number of theories have been advanced to explain why genes involved in the same biochemical processes are often co-located in genomes. Most of these theories have been dismissed because empirical data do not match the expectations of the models. In this work we test the hypothesis that cluster formation is most likely due to a selective pressure to gradually co-localise protein products and that operon formation is not an inevitable conclusion of the process.


Visualization of ribosomal RNA operon copy number distribution.

  • Rajat Rastogi‎ et al.
  • BMC microbiology‎
  • 2009‎

Results of microbial ecology studies using 16S rRNA sequence information can be deceiving due to differences in rRNA operon copy number and genome size of the detected organisms. It therefore will be useful for investigators to have a better understanding of how these two parameters differ in various organism types. In this study, the number of ribosomal operons and genome size were separately mapped onto a Bacterial phylogenetic tree.


Acquisition of the lac operon by Salmonella enterica.

  • Susan R Leonard‎ et al.
  • BMC microbiology‎
  • 2015‎

Classical bacteriological characteristics of Salmonella enterica indicate that the members of this species are unable to utilize lactose as a carbon source. However, lactose-fermenting (Lac+) strains of several Salmonella serovars have been isolated from different foodborne outbreaks as well as different geographical regions worldwide. In the present study, we sequenced the genomes of 13 Lac + S. enterica isolates and characterized the lac region, comparing it to the lac region in other enteric bacterial species.


High accuracy operon prediction method based on STRING database scores.

  • Blanca Taboada‎ et al.
  • Nucleic acids research‎
  • 2010‎

We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412-D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/.


A Third Class: Functional Gibberellin Biosynthetic Operon in Beta-Proteobacteria.

  • Raimund Nagel‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

The ability of plant-associated microbes to produce gibberellin A (GA) phytohormones was first described for the fungal rice pathogen Gibberella fujikuroi in the 1930s. Recently the capacity to produce GAs was shown for several bacteria, including symbiotic alpha-proteobacteria (α-rhizobia) and gamma-proteobacteria phytopathogens. All necessary enzymes for GA production are encoded by a conserved operon, which appears to have undergone horizontal transfer between and within these two phylogenetic classes of bacteria. Here the operon was shown to be present and functional in a third class, the beta-proteobacteria, where it is found in several symbionts (β-rhizobia). Conservation of function was examined by biochemical characterization of the enzymes encoded by the operon from Paraburkholderia mimosarum LMG 23256T. Despite the in-frame gene fusion between the short-chain alcohol dehydrogenase/reductase and ferredoxin, the encoded enzymes exhibited the expected activity. Intriguingly, together these can only produce GA9, the immediate precursor to the bioactive GA4, as the cytochrome P450 (CYP115) that catalyzes the final hydroxylation reaction is missing, similar to most α-rhizobia. However, phylogenetic analysis indicates that the operon from β-rhizobia is more closely related to examples from gamma-proteobacteria, which almost invariably have CYP115 and, hence, can produce bioactive GA4. This indicates not only that β-rhizobia acquired the operon by horizontal gene transfer from gamma-proteobacteria, rather than α-rhizobia, but also that they independently lost CYP115 in parallel to the α-rhizobia, further hinting at the possibility of detrimental effects for the production of bioactive GA4 by these symbionts.


Differential translation tunes uneven production of operon-encoded proteins.

  • Tessa E F Quax‎ et al.
  • Cell reports‎
  • 2013‎

Clustering of functionally related genes in operons allows for coregulated gene expression in prokaryotes. This is advantageous when equal amounts of gene products are required. Production of protein complexes with an uneven stoichiometry, however, requires tuning mechanisms to generate subunits in appropriate relative quantities. Using comparative genomic analysis, we show that differential translation is a key determinant of modulated expression of genes clustered in operons and that codon bias generally is the best in silico indicator of unequal protein production. Variable ribosome density profiles of polycistronic transcripts correlate strongly with differential translation patterns. In addition, we provide experimental evidence that de novo initiation of translation can occur at intercistronic sites, allowing for differential translation of any gene irrespective of its position on a polycistronic messenger. Thus, modulation of translation efficiency appears to be a universal mode of control in bacteria and archaea that allows for differential production of operon-encoded proteins.


Structural insight into glucose repression of the mannitol operon.

  • Mangyu Choe‎ et al.
  • Scientific reports‎
  • 2019‎

Carbon catabolite repression is a regulatory mechanism to ensure sequential utilization of carbohydrates and is usually accomplished by repression of genes for the transport and metabolism of less preferred carbon compounds by a more preferred one. Although glucose and mannitol share the general components, enzyme I and HPr, of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) for their transport, glucose represses the transport and metabolism of mannitol in a manner dependent on the mannitol operon repressor MtlR in Escherichia coli. In a recent study, we identified the dephosphorylated form of HPr as a regulator determining the glucose preference over mannitol by interacting with and augmenting the repressor activity of MtlR in E. coli. Here, we determined the X-ray structure of the MtlR-HPr complex at 3.5 Å resolution to understand how phosphorylation of HPr impedes its interaction with MtlR. The phosphorylation site (His15) of HPr is located close to Glu108 and Glu140 of MtlR and phosphorylation at His15 causes electrostatic repulsion between the two proteins. Based on this structural insight and comparative sequence analyses, we suggest that the determination of the glucose preference over mannitol solely by the MtlR-HPr interaction is conserved within  the Enterobacteriaceae family.


Operon Gene Order Is Optimized for Ordered Protein Complex Assembly.

  • Jonathan N Wells‎ et al.
  • Cell reports‎
  • 2016‎

The assembly of heteromeric protein complexes is an inherently stochastic process in which multiple genes are expressed separately into proteins, which must then somehow find each other within the cell. Here, we considered one of the ways by which prokaryotic organisms have attempted to maximize the efficiency of protein complex assembly: the organization of subunit-encoding genes into operons. Using structure-based assembly predictions, we show that operon gene order has been optimized to match the order in which protein subunits assemble. Exceptions to this are almost entirely highly expressed proteins for which assembly is less stochastic and for which precisely ordered translation offers less benefit. Overall, these results show that ordered protein complex assembly pathways are of significant biological importance and represent a major evolutionary constraint on operon gene organization.


SMRT-Cappable-seq reveals complex operon variants in bacteria.

  • Bo Yan‎ et al.
  • Nature communications‎
  • 2018‎

Current methods for genome-wide analysis of gene expression require fragmentation of original transcripts into small fragments for short-read sequencing. In bacteria, the resulting fragmented information hides operon complexity. Additionally, in vivo processing of transcripts confounds the accurate identification of the 5' and 3' ends of operons. Here we develop a methodology called SMRT-Cappable-seq that combines the isolation of un-fragmented primary transcripts with single-molecule long read sequencing. Applied to E. coli, this technology results in an accurate definition of the transcriptome with 34% of known operons from RegulonDB being extended by at least one gene. Furthermore, 40% of transcription termination sites have read-through that alters the gene content of the operons. As a result, most of the bacterial genes are present in multiple operon variants reminiscent of eukaryotic splicing. By providing such granularity in the operon structure, this study represents an important resource for the study of prokaryotic gene network and regulation.


Overexpression of Enterococcus faecalis elr operon protects from phagocytosis.

  • Naima G Cortes-Perez‎ et al.
  • BMC microbiology‎
  • 2015‎

Mechanisms underlying the transition from commensalism to virulence in Enterococcus faecalis are not fully understood. We previously identified the enterococcal leucine-rich protein A (ElrA) as a virulence factor of E. faecalis. The elrA gene is part of an operon that comprises four other ORFs encoding putative surface proteins of unknown function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: