Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 47 papers

Automatic oculomotor nerve identification based on data-driven fiber clustering.

  • Jiahao Huang‎ et al.
  • Human brain mapping‎
  • 2022‎

The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The diffusion magnetic resonance imaging (dMRI) tractography is now widely used to describe the trajectory of the OCN. However, the complex cranial structure leads to difficulties in fiber orientation distribution (FOD) modeling, fiber tracking, and region of interest (ROI) selection. Currently, the identification of OCN relies on expert manual operation, resulting in challenges, such as the carries high clinical, time-consuming, and labor costs. Thus, we propose a method that can automatically identify OCN from dMRI tractography. First, we choose the multi-shell multi-tissue constraint spherical deconvolution (MSMT-CSD) FOD estimation model and deterministic tractography to describe the 3D trajectory of the OCN. Then, we rely on the well-established computational pipeline and anatomical expertise to create a data-driven OCN tractography atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus. Finally, we apply the proposed OCN atlas to identify the OCN automatically from 40 new HCP subjects and two patients with brainstem cavernous malformation. In terms of spatial overlap and visualization, experiment results show that the automatically and manually identified OCN fibers are consistent. Our proposed OCN atlas provides an effective tool for identifying OCN by avoiding the traditional selection strategy of ROIs.


Loss of CXCR4/CXCL12 Signaling Causes Oculomotor Nerve Misrouting and Development of Motor Trigeminal to Oculomotor Synkinesis.

  • Mary C Whitman‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2018‎

Proper control of eye movements is critical to vision, but relatively little is known about the molecular mechanisms that regulate development and axon guidance in the ocular motor system or cause the abnormal innervation patterns (oculomotor synkinesis) seen in developmental disorders and after oculomotor nerve palsy. We developed an ex vivo slice assay that allows for live imaging and molecular manipulation of the growing oculomotor nerve, which we used to identify axon guidance cues that affect the oculomotor nerve.


Oculomotor nerve guidance and terminal branching requires interactions with differentiating extraocular muscles.

  • Brielle Bjorke‎ et al.
  • Developmental biology‎
  • 2021‎

Muscle function is dependent on innervation by the correct motor nerves. Motor nerves are composed of motor axons which extend through peripheral tissues as a compact bundle, then diverge to create terminal nerve branches to specific muscle targets. As motor nerves approach their targets, they undergo a transition where the fasciculated nerve halts further growth then after a pause, the nerve later initiates branching to muscles. This transition point is potentially an intermediate target or guidepost to present specific cellular and molecular signals for navigation. Here we describe the navigation of the oculomotor nerve and its association with developing muscles in mouse embryos. We found that the oculomotor nerve initially grew to the eye three days prior to the appearance of any extraocular muscles. The oculomotor axons spread to form a plexus within a mass of cells, which included precursors of extraocular muscles and other orbital tissues and expressed the transcription factor Pitx2. The nerve growth paused in the plexus for more than two days, persisting during primary extraocular myogenesis, with a subsequent phase in which the nerve branched out to specific muscles. To test the functional significance of the nerve contact with Pitx2+ cells in the plexus, we used two strategies to genetically ablate Pitx2+ cells or muscle precursors early in nerve development. The first strategy used Myf5-Cre-mediated expression of diphtheria toxin A to ablate muscle precursors, leading to loss of extraocular muscles. The oculomotor axons navigated to the eye to form the main nerve, but subsequently largely failed to initiate terminal branches. The second strategy studied Pitx2 homozygous mutants, which have early apoptosis of Pitx2-expressing precursor cells, including precursors for extraocular muscles and other orbital tissues. Oculomotor nerve fibers also grew to the eye, but failed to stop to form the plexus, instead grew long ectopic projections. These results show that neither Pitx2 function nor Myf5-expressing cells are required for oculomotor nerve navigation to the eye. However, Pitx2 function is required for oculomotor axons to pause growth in the plexus, while Myf5-expressing cells are required for terminal branch initiation.


Intrinsic properties guide proximal abducens and oculomotor nerve outgrowth in avian embryos.

  • Cynthia Lance-Jones‎ et al.
  • Developmental neurobiology‎
  • 2012‎

Proper movement of the vertebrate eye requires the formation of precisely patterned axonal connections linking cranial somatic motoneurons, located at defined positions in the ventral midbrain and hindbrain, with extraocular muscles. The aim of this research was to assess the relative contributions of intrinsic, population-specific properties and extrinsic, outgrowth site-specific cues during the early stages of abducens and oculomotor nerve development in avian embryos. This was accomplished by surgically transposing midbrain and caudal hindbrain segments, which had been pre-labeled by electroporation with an EGFP construct. Graft-derived EGFP+ oculomotor axons entering a hindbrain microenvironment often mimicked an abducens initial pathway and coursed cranially. Similarly, some EGFP+ abducens axons entering a midbrain microenvironment mimicked an oculomotor initial pathway and coursed ventrally. Many but not all of these axons subsequently projected to extraocular muscles that they would not normally innervate. Strikingly, EGFP+ axons also took initial paths atypical for their new location. Upon exiting from a hindbrain position, most EGFP+ oculomotor axons actually coursed ventrally and joined host branchiomotor nerves, whose neurons share molecular features with oculomotor neurons. Similarly, upon exiting from a midbrain position, some EGFP+ abducens axons turned caudally, elongated parallel to the brainstem, and contacted the lateral rectus muscle, their originally correct target. These data reveal an interplay between intrinsic properties that are unique to oculomotor and abducens populations and shared ability to recognize and respond to extrinsic directional cues. The former play a prominent role in initial pathway choices, whereas the latter appear more instructive during subsequent directional choices.


Identification and characterization of differentially expressed circular RNAs in extraocular muscle of oculomotor nerve palsy.

  • Mingsu Shi‎ et al.
  • BMC genomics‎
  • 2023‎

Oculomotor nerve palsy (ONP) is a neuroparalytic disorder resulting in dysfunction of innervating extraocular muscles (EOMs), of which the pathological characteristics remain underexplored.


The profiles and clinical significance of extraocular muscle-expressed lncRNAs and mRNAs in oculomotor nerve palsy.

  • Lianqun Wu‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2023‎

Oculomotor nerve palsy (ONP) arises from primary abnormalities in the central neural pathways that control the extraocular muscles (EOMs). Long non-coding RNAs (lncRNAs) have been found to be involved in the pathogenesis of various neuroparalytic diseases. However, little is known about the role of lncRNAs in ONP.


Recovery of posterior communicating artery aneurysm induced oculomotor nerve palsy: a comparison between surgical clipping and endovascular embolization.

  • Li-Qiang Tian‎ et al.
  • BMC neurology‎
  • 2020‎

Oculomotor nerve palsy (ONP) is a common symptom of posterior communicating artery aneurysm (PcomAA) that can lead to impaired eye movement and pupil dilation. Currently, surgical clipping and endovascular embolization are the two most popular treatment methods for PcomAA-induced ONP; however, the recovery outcome between the two methods remains to be elucidated.


Clipping versus coiling for the treatment of oculomotor nerve palsy induced by posterior communicating artery aneurysms: A comparison of effectiveness.

  • Zidong Wang‎ et al.
  • Brain and behavior‎
  • 2021‎

A long debate has been going on in the clinical effectiveness to determine whether surgical clipping or coiling more favorable for oculomotor nerve palsy (ONP) caused by PcomAA. We aimed to perform a study, focusing on the effectiveness of ONP induced by PcomAA after treatment of surgical clipping and endovascular coiling.


Recurrent Painful Ophthalmoplegic Neuropathy and Oculomotor Nerve Schwannoma: A Pediatric Case Report with Long-Term MRI Follow-Up and Literature Review.

  • Maria Giuseppina Petruzzelli‎ et al.
  • Pain research & management‎
  • 2019‎

Recurrent painful ophthalmoplegic neuropathy (RPON), previously known as ophthalmoplegic migraine (OM), is an uncommon disorder with repeated episodes of ocular cranial nerve neuropathy associated with ipsilateral headache. The age of presentation is most often during childhood or adolescence. MRI has a central role in the assessment of the RPON, especially to distinguish orbital, parasellar, or posterior fossa lesions that mimic symptoms of RPON. Actually, oculomotor nerve tumors may be masquerade as RPON so that MRI follow-ups are required to detect the possibility of tumor etiology.


Exposure to low concentrations of nicotine during cranial nerve development inhibits apoptosis and causes cellular hypertrophy in the ventral oculomotor nuclei of the chick embryo.

  • John J Wielgus‎ et al.
  • Brain research‎
  • 2004‎

Maternal cigarette use during pregnancy is associated with increased incidence of neural impairments in offspring, but nicotine's unique contribution to any neuropathology remains unclear, and nicotine's neurodevelopmental effects assessed in animal models vary with concentration. During ontogenesis, the chick oculomotor complex (OMN) is regulated by central nervous system (CNS) afferent-derived and target-derived trophic factors, allowing assessment of nicotine's potential interference in receptor-mediated CNS trophic phenomena, unconfounded by myriad other compounds in cigarette smoke. In the current study, 100 ng nicotine applied daily in ovo to yolk during embryonic days (E) 1-7 mimicked maternal plasma nicotine concentrations during fetal cranial nerve development. Nicotine-treated embryos exhibited a 15% decrease in whole body weight and 7% decrease in brain weight at E16. However, at E16, nicotine-treated embryos had 37% and 15% increases in the combined ventromedial+lateral (v) OMN motoneuron density and soma area, respectively, effects not observed in the optic tectum, in which nicotine cholinergic receptor expression is delayed until E8-12. Incorporation of tritiated thymidine into whole brain DNA demonstrated that the nicotine treatment did not cause increased rates of whole brain mitosis, suggesting that the dosage regimen did not elicit a cytotoxic, wound-healing, response of differentiating cells. As determined by DNA fragment-labeling assay during the normal period of cell death, vOMN apoptosis occurs maximally on E11 during a normal period of declining cell density, and a dose-response study demonstrated 78% E11 vOMN apoptotic suppression at approximately 0.30 microM cumulative yolk nicotine with an inhibition threshold between 0.10 and 0.20 microM. These results suggest that plasma nicotine concentrations resulting from tobacco use or nicotine replacement therapy (NRT) are sufficient to inhibit motoneuron apoptosis and enhance neuronal growth.


Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling.

  • Brielle Bjorke‎ et al.
  • Neural development‎
  • 2016‎

Oculomotor neurons develop initially like typical motor neurons, projecting axons out of the ventral midbrain to their ipsilateral targets, the extraocular muscles. However, in all vertebrates, after the oculomotor nerve (nIII) has reached the extraocular muscle primordia, the cell bodies that innervate the superior rectus migrate to join the contralateral nucleus. This motor neuron migration represents a unique strategy to form a contralateral motor projection. Whether migration is guided by diffusible cues remains unknown.


Conservation of locomotion-induced oculomotor activity through evolution in mammals.

  • Filipa França de Barros‎ et al.
  • Current biology : CB‎
  • 2022‎

Efference copies are neural replicas of motor outputs used to anticipate the sensory consequences of a self-generated motor action or to coordinate neural networks involved in distinct motor behaviors.1 An established example of this motor-to-motor coupling is the efference copy of the propulsive motor command, which supplements classical visuo-vestibular reflexes to ensure gaze stabilization during amphibian larval locomotion.2 Such feedforward replica of spinal pattern-generating circuits produces a spino-extraocular motor coupled activity that evokes eye movements, spatiotemporally coordinated to tail undulation independently of any sensory signal.3,4 Exploiting the developmental stages of the frog,1 studies in metamorphing Xenopus demonstrated the persistence of this spino-extraocular motor command in adults and its developmental adaptation to tetrapodal locomotion.5,6 Here, we demonstrate for the first time the existence of a comparable locomotor-to-ocular motor coupling in the mouse. In neonates, ex vivo nerve recordings of brainstem-spinal cord preparations reveal a spino-extraocular motor coupled activity similar to the one described in Xenopus. In adult mice, trans-synaptic rabies virus injections in lateral rectus eye muscle label cervical spinal cord neurons closely connected to abducens motor neurons. Finally, treadmill-elicited locomotion in decerebrated preparations7 evokes rhythmic eye movements in synchrony with the limb gait pattern. Overall, our data are evidence for the conservation of locomotor-induced eye movements in vertebrate lineages. Thus, in mammals as in amphibians, CPG-efference copy feedforward signals might interact with sensory feedback to ensure efficient gaze control during locomotion.


Decreased ACKR3 (CXCR7) function causes oculomotor synkinesis in mice and humans.

  • Mary C Whitman‎ et al.
  • Human molecular genetics‎
  • 2019‎

Oculomotor synkinesis is the involuntary movement of the eyes or eyelids with a voluntary attempt at a different movement. The chemokine receptor CXCR4 and its ligand CXCL12 regulate oculomotor nerve development; mice with loss of either molecule have oculomotor synkinesis. In a consanguineous family with congenital ptosis and elevation of the ptotic eyelid with ipsilateral abduction, we identified a co-segregating homozygous missense variant (c.772G>A) in ACKR3, which encodes an atypical chemokine receptor that binds CXCL12 and functions as a scavenger receptor, regulating levels of CXCL12 available for CXCR4 signaling. The mutant protein (p.V258M) is expressed and traffics to the cell surface but has a lower binding affinity for CXCL12. Mice with loss of Ackr3 have variable phenotypes that include misrouting of the oculomotor and abducens nerves. All embryos show oculomotor nerve misrouting, ranging from complete misprojection in the midbrain, to aberrant peripheral branching, to a thin nerve, which aberrantly innervates the lateral rectus (as seen in Duane syndrome). The abducens nerve phenotype ranges from complete absence, to aberrant projections within the orbit, to a normal trajectory. Loss of ACKR3 in the midbrain leads to downregulation of CXCR4 protein, consistent with reports that excess CXCL12 causes ligand-induced degradation of CXCR4. Correspondingly, excess CXCL12 applied to ex vivo oculomotor slices causes axon misrouting, similar to inhibition of CXCR4. Thus, ACKR3, through its regulation of CXCL12 levels, is an important regulator of axon guidance in the oculomotor system; complete loss causes oculomotor synkinesis in mice, while reduced function causes oculomotor synkinesis in humans.


Acupuncture combined tuina for oculomotor paralysis: A protocol for systematic review and meta-analysis.

  • Yan Huang‎ et al.
  • Medicine‎
  • 2022‎

Oculomotor paralysis (OP) is a neurologic syndrome with multiple causes of oculomotor nerve and its dominant tissue and muscle dysfunction. Acupuncture combined with tuina is a wide-ranging used rehabilitation therapy, although there is short of supporting evidence for its efficacy and safety in patients with OP. The purpose of this systematic review was to estimate and synthesize evidence of the efficacy and safety of acupuncture combined with tuina in the treatment of OP.


α2-Chimaerin regulates a key axon guidance transition during development of the oculomotor projection.

  • Christopher Clark‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2013‎

The ocular motor system consists of three nerves which innervate six muscles to control eye movements. In humans, defective development of this system leads to eye movement disorders, such as Duane Retraction Syndrome, which can result from mutations in the α2-chimaerin signaling molecule. We have used the zebrafish to model the role of α2-chimaerin during development of the ocular motor system. We first mapped ocular motor spatiotemporal development, which occurs between 24 and 72 h postfertilization (hpf), with the oculomotor nerve following an invariant sequence of growth and branching to its muscle targets. We identified 52 hpf as a key axon guidance "transition," when oculomotor axons reach the orbit and select their muscle targets. Live imaging and quantitation showed that, at 52 hpf, axons undergo a switch in behavior, with striking changes in the dynamics of filopodia. We tested the role of α2-chimaerin in this guidance process and found that axons expressing gain-of-function α2-chimaerin isoforms failed to undergo the 52 hpf transition in filopodial dynamics, leading to axon stalling. α2-chimaerin loss of function led to ecotopic and misguided branching and hypoplasia of oculomotor axons; embryos had defective eye movements as measured by the optokinetic reflex. Manipulation of chimaerin signaling in oculomotor neurons in vitro led to changes in microtubule stability. These findings demonstrate that a correct level of α2-chimaerin signaling is required for key oculomotor axon guidance decisions, and provide a zebrafish model for Duane Retraction Syndrome.


COVID-19 associated cranial nerve neuropathy: A systematic review.

  • Josef Finsterer‎ et al.
  • Bosnian journal of basic medical sciences‎
  • 2022‎

The involvement of cranial nerves is being increasingly recognised in COVID-19. This review aims to summarize and discuss the recent advances concerning the clinical presentation, pathophysiology, diagnosis, treatment, and outcomes of SARS-CoV-2 associated cranial nerve mononeuropathies or polyneuropathies. Therefore, a systematic review of articles from PubMed and Google Scholar was conducted. Altogether 36 articles regarding SARS-CoV-2 associated neuropathy of cranial nerves describing 56 patients were retrieved. Out of these 56 patients, cranial nerves were compromised without the involvement of peripheral nerves in 32 of the patients, while Guillain-Barre syndrome (GBS) with cranial nerve involvement was described in 24 patients. A single cranial nerve was involved either unilaterally or bilaterally in 36 patients, while in 19 patients multiple cranial nerves were involved. Bilateral involvement was more prevalent in the GBS group (n=11) as compared to the cohort with isolated cranial nerve involvement (n=5). Treatment of cranial nerve neuropathy included steroids (n=18), intravenous immunoglobulins (IVIG) (n=18), acyclovir/valacyclovir (n=3), and plasma exchange (n=1). The outcome was classified as "complete recovery" in 21 patients and as "partial recovery" in 30 patients. One patient had a lethal outcome. In conclusion, any cranial nerve can be involved in COVID-19, but cranial nerves VII, VI, and III are the most frequently affected. The involvement of cranial nerves in COVID-19 may or may not be associated with GBS. In patients with cranial nerve involvement, COVID-19 infections are usually mild. Isolated cranial nerve palsy without GBS usually responds favorably to steroids. Cranial nerve involvement with GBS benefits from IVIG.


Ocular Motor Nerve Development in the Presence and Absence of Extraocular Muscle.

  • Suzanne M Michalak‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2017‎

To spatially and temporally define ocular motor nerve development in the presence and absence of extraocular muscles (EOMs).


Human IgM paraproteins demonstrate shared reactivity between Campylobacter jejuni lipopolysaccharides and human peripheral nerve disialylated gangliosides.

  • B C Jacobs‎ et al.
  • Journal of neuroimmunology‎
  • 1997‎

IgM paraproteins from patients with CANOMAD (chronic ataxic neuropathy, ophthalmoplegia, M-protein, agglutination, anti-disialosyl antibodies) react with NeuAc(alpha 2-8)NeuAc epitopes on a wide range of gangliosides including GQ1b, GT1a, GD1b and GD3. The tissue distribution of reactive antigens in human peripheral nerve has not been addressed in detail. In addition, the origin of these antibodies is unknown. Here we report that purified anti-disialosyl paraproteins from two affected patients bind a wide array of human peripheral nerve structures including dorsal root ganglia, dorsal and ventral root axons, femoral and oculomotor nerves. We also show that these paraproteins bind lipopolysaccharides of Campylobacter jejuni isolates from 3/3 cases of Miller Fisher syndrome, and to a less frequent extent, from cases of Guillain-Barré syndrome and enteritis controls. In conjunction with our previous studies, these data provide a possible causal link between the origin and pathogenic effects of anti-disialosyl antibodies in human paraproteinaemic neuropathy.


Influence of a 30-day spaceflight on the structure of motoneurons of the trochlear nerve nucleus in mice.

  • Irina Mikheeva‎ et al.
  • Brain research‎
  • 2021‎

During spaceflight and immediately after it, adaptive neuroplastic changes occur in the sensorimotor structures of the central nervous system, which are associated with changes of mainly vestibular and visual signals. It is known that the movement of the eyeball in the vertical direction is carried out by muscles that are innervated by the trochlear nerve (CN IV) and the oculomotor nerve (CN III). To elucidate the cellular processes underlying the atypical vertical nystagmus that occurs under microgravity conditions, it seems necessary to study the state of these nuclei in animals in more detail after prolonged space flights. We carried out a qualitative and quantitative light-optical and ultrastructural analysis of the nuclei of the trochlear nerve in mice after a 30-day flight on the Bion-M1 biosatellite. As a result, it was shown that the dendrites of motoneurons in the nucleus of the trochlear nerve significantly reorganized their geometry and orientation under microgravity conditions. The number of dendritic branches was increased, possibly in order to amplify the reduced signal flow. To ensure such plastic changes, the number and size of mitochondria in the soma of motoneurons and in axons coming from the vestibular structures increased. Thus, the main role in the adaptation of the trochlear nucleus to microgravity conditions, apparently, belongs to the dendrites of motoneurons, which rearrange their structure and function to enhance the flow of sensory information. These results complement our knowledge of the causes of atypical nystagmus in microgravity.


Upregulation of Nucleotide-Binding Oligomerization Domain-, LRR- and Pyrin Domain-Containing Protein 3 in Motoneurons Following Peripheral Nerve Injury in Mice.

  • Bernát Nógrádi‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Neuronal injuries are accompanied by release and accumulation of damage-associated molecules, which in turn may contribute to activation of the immune system. Since a wide range of danger signals (including endogenous ones) are detected by the nucleotide-binding oligomerization domain-, LRR- and pyrin domain-containing protein 3 (NLRP3) pattern recognition receptor, we hypothesized that NLRP3 may become activated in response to motor neuron injury. Here we show that peripheral injury of the oculomotor and the hypoglossal nerves results in upregulation of NLRP3 in corresponding motor nuclei in the brainstem of mice. Although basal expression of NLRP3 was observed in microglia, astroglia and neurons as well, its upregulation and co-localization with apoptosis-associated speck-like protein containing a caspase activation and recruitment domain, suggesting inflammasome activation, was only detected in neurons. Consequently, increased production of active pro-inflammatory cytokines interleukin-1β and interleukin-18 were detected after hypoglossal nerve axotomy. Injury-sensitive hypoglossal neurons responded with a more pronounced NLRP3 upregulation than injury-resistant motor neurons of the oculomotor nucleus. We further demonstrated that the mitochondrial protector diazoxide was able to reduce NLRP3 upregulation in a post-operative treatment paradigm. Our results indicate that NLRP3 is activated in motoneurons following acute nerve injury. Blockade of NLRP3 activation might contribute to the previously observed anti-inflammatory and neuroprotective effects of diazoxide.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: