Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 75 papers

The nuclear receptor co-repressor 1 is a novel cardioprotective factor against acute myocardial ischemia-reperfusion injury.

  • Zihan Qin‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2022‎

Acute myocardial ischemia/reperfusion (MI/R) is a major determinant of prognosis in myocardial infarction patients, while effective therapies are currently lacking. Nuclear receptor co-repressor 1 (NCoR1) is emerging as a critical regulator of cell survival and death signaling in mammals. However, the role of NCoR1 in the pathogenesis of acute MI/R injury remains unknown. Here, we observed that NCoR1 was highly expressed in the mouse heart and significantly downregulated after acute MI/R injury. Cardiomyocyte-specific NCoR1 deletion led to significantly increased infarct size and exacerbated cardiac dysfunction compared to wild-type littermates. Moreover, cardiomyocyte-specific NCoR1 deficiency exacerbated MI/R-induced mitochondrial dysfunction and apoptotic pathway activation. Transcriptomic profiling results indicated that cardiomyocyte-specific NCoR1 deficiency pivotally promoted activation of inflammatory pathways. Through integrated omics analysis, signal transducer and activator of transcription 1 (STAT1) was identified as a downstream target trans-repressed by NCoR1. STAT1 activation played a key mediating role in the detrimental effects of NCoR1 deficiency in MI/R injury. Collectively, our findings provided the first evidence that cardiomyocyte-expressed NCoR1 functioned as a crucial cardioprotective factor against acute MI/R injury by targeting the STAT1 pathway in heart.


Receptor-interacting protein 140 as a co-repressor of Heat Shock Factor 1 regulates neuronal stress response.

  • Yu-Lung Lin‎ et al.
  • Cell death & disease‎
  • 2017‎

Heat shock response (HSR) is a highly conserved transcriptional program that protects organisms against various stressful conditions. However, the molecular mechanisms modulating HSR, especially the suppression of HSR, is poorly understood. Here, we found that RIP140, a wide-spectrum cofactor of nuclear hormone receptors, acts as a co-repressor of heat shock factor 1 (HSF1) to suppress HSR in healthy neurons. When neurons are stressed such as by heat shock or sodium arsenite (As), cells engage specific proteosome-mediated degradation to reduce RIP140 level, thereby relieving the suppression and activating HSR. RIP140 degradation requires specific Tyr-phosphorylation by Syk that is activated in stressful conditions. Lowering RIP140 level protects hippocampal neurons from As stress, significantly it increases neuron survival and improves spine density. Reducing hippocampal RIP140 in the mouse rescues chronic As-induced spatial learning deficits. This is the first study elucidating RIP140-mediated suppression of HSF1-activated HSR in neurons and brain. Importantly, degradation of RIP140 in stressed neurons relieves this suppression, allowing neurons to efficiently and timely engage HSR programs and recover. Therefore, stimulating RIP140 degradation to activate anti-stress program provides a potential preventive or therapeutic strategy for neurodegeneration diseases.


Autophagic Degradation of Misfolded Nuclear Receptor Co-repressor (NCoR) Is Linked to the Growth of Tumor Cells in HBX Positive Hepatocellular Carcinoma (HCC).

  • Su Yin Tan‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Hepatitis B virus (HBV) is causally linked to hepatocellular injury and cell death, which are followed by hepatocellular carcinoma (HCC) after a long latent period. The HBV derived X protein (HBX) is the most potent carcinogenic factor for HCC, however, the molecular mechanism of HBX-induced transformation of hepatic cells in HCC is poorly understood. We have shown that nuclear receptor co-repressor (NCoR) is essential for the spatial repression of global transcription by the promyelocytic leukemia oncogenic domains (PODs), a frequent target of viral oncoproteins like HBX and that disintegration of PODs due to misfolded conformation dependent loss (MCDL) of NCoR is linked to promyelocytic and monocytic acute myeloid leukemia (AML). Given the key role of NCoR in cellular homeostasis across various tissue subtypes, we hypothesized that HBX-induced MCDL of NCoR might be linked to HCC through similar mechanism. Based on this hypothesis, the conformation of NCoR in HCC derived tumor cells and primary human tissue sections were analyzed and a selective MCDL of NCoR in HBX positive HCC cells was identified. HBX triggered the misfolding of NCoR through ubiquitination, followed by its degradation by autophagy, thus suggesting a cross talk between ubiquitin proteasome system (UPS) and autophagy lysosomal pathway (ALP) in MCDL of NCoR in HBX positive HCC cells. SiRNA-induced NCoR ablation selectively impaired the growth and survival of HBX positive HCC cells, suggesting a role of MCDL in the growth and survival of HBX positive HCC cells. These finding identify a possible crosstalk between UPS and ALP in the misfolding and loss of NCoR in HBX positive HCC cells and suggest a role of autophagic recycling of misfolded NCoR in the activation of oncogenic metabolic signaling in HCC. The misfolded NCoR reported in this study represents a novel conformation based molecular target which could be valuable in the design and development of tumor cell specific diagnostic and therapeutic approach for HBX positive HCC.


The transcriptional co-repressor TLE3 suppresses basal signaling on a subset of estrogen receptor α target genes.

  • Maïka Jangal‎ et al.
  • Nucleic acids research‎
  • 2014‎

Chromatin constitutes a repressive barrier to the process of ligand-dependent transcriptional activity of nuclear receptors. Nucleosomes prevent the binding of estrogen receptor α (ERα) in absence of ligand and thus represent an important level of transcriptional regulation. Here, we show that in breast cancer MCF-7 cells, TLE3, a co-repressor of the Groucho/Grg/TLE family, interacts with FoxA1 and is detected at regulatory elements of ERα target genes in absence of estrogen. As a result, the chromatin is maintained in a basal state of acetylation, thus preventing ligand-independent activation of transcription. In absence of TLE3, the basal expression of ERα target genes induced by E2 is increased. At the TFF1 gene, the recruitment of TLE3 to the chromatin is FoxA1-dependent and prevents ERα and RNA polymerase II recruitment to TFF1 gene regulatory elements. Moreover, the interaction of TLE3 with HDAC2 results in the maintenance of acetylation at a basal level. We also provide evidence that TLE3 is recruited at several other regulatory elements of ERα target genes and is probably an important co-regulator of the E2 signaling pathway. In sum, our results describe a mechanism by which TLE3 affects ligand dependency in ERα-regulated gene expression via its binding restricting function and its role in gene regulation by histone acetylation.


Screening and association testing of common coding variation in steroid hormone receptor co-activator and co-repressor genes in relation to breast cancer risk: the Multiethnic Cohort.

  • Christopher A Haiman‎ et al.
  • BMC cancer‎
  • 2009‎

Only a limited number of studies have performed comprehensive investigations of coding variation in relation to breast cancer risk. Given the established role of estrogens in breast cancer, we hypothesized that coding variation in steroid receptor coactivator and corepressor genes may alter inter-individual response to estrogen and serve as markers of breast cancer risk.


RANK ligand converts the NCoR/HDAC3 co-repressor to a PGC1β- and RNA-dependent co-activator of osteoclast gene expression.

  • Yohei Abe‎ et al.
  • Molecular cell‎
  • 2023‎

The nuclear receptor co-repressor (NCoR) complex mediates transcriptional repression dependent on histone deacetylation by histone deacetylase 3 (HDAC3) as a component of the complex. Unexpectedly, we found that signaling by the receptor activator of nuclear factor κB (RANK) converts the NCoR/HDAC3 co-repressor complex to a co-activator of AP-1 and NF-κB target genes that are required for mouse osteoclast differentiation. Accordingly, the dominant function of NCoR/HDAC3 complexes in response to RANK signaling is to activate, rather than repress, gene expression. Mechanistically, RANK signaling promotes RNA-dependent interaction of the transcriptional co-activator PGC1β with the NCoR/HDAC3 complex, resulting in the activation of PGC1β and inhibition of HDAC3 activity for acetylated histone H3. Non-coding RNAs Dancr and Rnu12, which are associated with altered human bone homeostasis, promote NCoR/HDAC3 complex assembly and are necessary for RANKL-induced osteoclast differentiation in vitro. These findings may be prototypic for signal-dependent functions of NCoR in other biological contexts.


IRF2BP2 is a novel HNF4α co-repressor: Its role in gluconeogenic gene regulation via biochemically labile interaction.

  • Takumi Kouketsu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Hepatocyte nuclear factor 4α (HNF4α) has essential roles in controlling the expression of a variety of genes involved in key metabolic pathways, including gluconeogenesis in the liver. The mechanistic and physiological significance of peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) for HNF4α-mediated transcriptional activation models for gluconeogenic genes is well characterized. However, the transcriptional repression of HNF4α for those genes remains to be examined. In this study, we applied novel proteomic techniques to evaluate the interactions of HNF4α, including those with biochemically labile binding proteins. Based upon our experiments, we identified interferon regulatory factor 2 binding protein 2 (IRF2BP2) as a novel HNF4α co-repressor. This interaction could not be detected by conventional immunoprecipitation. IRF2BP2 repressed the transcriptional activity of HNF4α dependent on its E3 ubiquitin ligase activity. Deficiency of the IRF2BP2 gene in HepG2 cells induced gluconeogenic genes comparable to that of forskolin-treated wild-type HepG2 cells. Together, these results suggest that IRF2BP2 represents a novel class of nuclear receptor co-regulator.


Distinct and overlapping DNMT1 interactions with multiple transcription factors in erythroid cells: Evidence for co-repressor functions.

  • Dimitris N Papageorgiou‎ et al.
  • Biochimica et biophysica acta‎
  • 2016‎

DNMT1 is the maintenance DNA methyltransferase shown to be essential for embryonic development and cellular growth and differentiation in many somatic tissues in mammals. Increasing evidence has also suggested a role for DNMT1 in repressing gene expression through interactions with specific transcription factors. Previously, we identified DNMT1 as an interacting partner of the TR2/TR4 nuclear receptor heterodimer in erythroid cells, implicated in the developmental silencing of fetal β-type globin genes in the adult stage of human erythropoiesis. Here, we extended this work by using a biotinylation tagging approach to characterize DNMT1 protein complexes in mouse erythroleukemic cells. We identified novel DNMT1 interactions with several hematopoietic transcription factors with essential roles in erythroid differentiation, including GATA1, GFI-1b and FOG-1. We provide evidence for DNMT1 forming distinct protein subcomplexes with specific transcription factors and propose the existence of a "core" DNMT1 complex with the transcription factors ZBP-89 and ZNF143, which is also present in non-hematopoietic cells. Furthermore, we identified the short (17a.a.) PCNA Binding Domain (PBD) located near the N-terminus of DNMT1 as being necessary for mediating interactions with the transcription factors described herein. Lastly, we provide evidence for DNMT1 serving as a co-repressor of ZBP-89 and GATA1 acting through upstream regulatory elements of the PU.1 and GATA1 gene loci.


Systems genetics analyses predict a transcription role for P2P-R: molecular confirmation that P2P-R is a transcriptional co-repressor.

  • Philippos Peidis‎ et al.
  • BMC systems biology‎
  • 2010‎

The 250 kDa P2P-R protein (also known as PACT and Rbbp6) was cloned over a decade ago and was found to bind both the p53 and Rb1 tumor suppressor proteins. In addition, P2P-R has been associated with multiple biological functions, such as mitosis, mRNA processing, translation and ubiquitination. In the current studies, the online GeneNetwork system was employed to further probe P2P-R biological functions. Molecular studies were then performed to confirm the GeneNetwork evaluations.


Suppressive effect of aryl hydrocarbon receptor repressor on transcriptional activity of estrogen receptor alpha by protein-protein interaction in stably and transiently expressing cell lines.

  • Yuichiro Kanno‎ et al.
  • Molecular and cellular endocrinology‎
  • 2008‎

Aryl hydrocarbon receptor repressor (AhRR) suppressed, in a ligand independent manner, the ability of estrogen receptor alpha (ERalpha) to enhance the transcription of heterologous estrogen-responsive reporter plasmids in transient transfection assays, as well as of endogenous estrogen-responsive genes in human breast cancer MCF-7 cells. AhRR repressed ERalpha-mediated trans-activation by interfering allosterically with the ligand-independent function of AF-1. The direct interaction between AhRR and ERalpha at the multipartite binding site of ERalpha, which ranges from a DNA binding domain to a ligand binding domain, but did not include the AF-1 moiety was confirmed by a coimmunoprecipitation assay. The AhRR/ERalpha complex was formed in the nuclear compartment and was entrapped by a cis-element in the promoter of E2-responsive genes, as determined in a chromatin immunoprecipitation assay. AhRR might play a role of co-repressor on the transcriptional activity of the ERalpha homodimer.


Distinct roles for aryl hydrocarbon receptor nuclear translocator and ah receptor in estrogen-mediated signaling in human cancer cell lines.

  • Mark P Labrecque‎ et al.
  • PloS one‎
  • 2012‎

The activated AHR/ARNT complex (AHRC) regulates the expression of target genes upon exposure to environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Importantly, evidence has shown that TCDD represses estrogen receptor (ER) target gene activation through the AHRC. Our data indicates that AHR and ARNT act independently from each other at non-dioxin response element sites. Therefore, we sought to determine the specific functions of AHR and ARNT in estrogen-dependent signaling in human MCF7 breast cancer and human ECC-1 endometrial carcinoma cells. Knockdown of AHR with siRNA abrogates dioxin-inducible repression of estrogen-dependent gene transcription. Intriguingly, knockdown of ARNT does not effect TCDD-mediated repression of estrogen-regulated transcription, suggesting that AHR represses ER function independently of ARNT. This theory is supported by the ability of the selective AHR modulator 3',4'-dimethoxy-α-naphthoflavone (DiMNF) to repress estrogen-inducible transcription. Furthermore, basal and estrogen-activated transcription of the genes encoding cathepsin-D and pS2 are down-regulated in MCF7 cells but up-regulated in ECC-1 cells in response to loss of ARNT. These responses are mirrored at the protein level with cathepsin-D. Furthermore, knock-down of ARNT led to opposite but corresponding changes in estrogen-stimulated proliferation in both MCF7 and ECC-1 cells. We have obtained experimental evidence demonstrating a dioxin-dependent repressor function for AHR and a dioxin-independent co-activator/co-repressor function for ARNT in estrogen signalling. These results provide us with further insight into the mechanisms of transcription factor crosstalk and putative therapeutic targets in estrogen-positive cancers.


The class 3 PI3K coordinates autophagy and mitochondrial lipid catabolism by controlling nuclear receptor PPARα.

  • Anton Iershov‎ et al.
  • Nature communications‎
  • 2019‎

The class 3 phosphoinositide 3-kinase (PI3K) is required for lysosomal degradation by autophagy and vesicular trafficking, assuring nutrient availability. Mitochondrial lipid catabolism is another energy source. Autophagy and mitochondrial metabolism are transcriptionally controlled by nutrient sensing nuclear receptors. However, the class 3 PI3K contribution to this regulation is unknown. We show that liver-specific inactivation of Vps15, the essential regulatory subunit of the class 3 PI3K, elicits mitochondrial depletion and failure to oxidize fatty acids. Mechanistically, transcriptional activity of Peroxisome Proliferator Activated Receptor alpha (PPARα), a nuclear receptor orchestrating lipid catabolism, is blunted in Vps15-deficient livers. We find PPARα repressors Histone Deacetylase 3 (Hdac3) and Nuclear receptor co-repressor 1 (NCoR1) accumulated in Vps15-deficient livers due to defective autophagy. Activation of PPARα or inhibition of Hdac3 restored mitochondrial biogenesis and lipid oxidation in Vps15-deficient hepatocytes. These findings reveal roles for the class 3 PI3K and autophagy in transcriptional coordination of mitochondrial metabolism.


Oncogenic Actions of the Nuclear Receptor Corepressor (NCOR1) in a Mouse Model of Thyroid Cancer.

  • Laura Fozzatti‎ et al.
  • PloS one‎
  • 2013‎

Studies have suggested that the nuclear receptor corepressor 1 (NCOR1) could play an important role in human cancers. However, the detailed molecular mechanisms by which it functions in vivo to affect cancer progression are not clear. The present study elucidated the in vivo actions of NCOR1 in carcinogenesis using a mouse model (Thrb(PV/PV) mice) that spontaneously develops thyroid cancer. Thrb(PV/PV) mice harbor a dominantly negative thyroid hormone receptor β (TRβ) mutant (denoted as PV). We adopted the loss-of-the function approach by crossing Thrb(PV) mice with mice that globally express an NCOR1 mutant protein (NCOR1ΔID) in which the receptor interaction domains have been modified so that it cannot interact with the TRβ, or PV, in mice. Remarkably, expression of NCOR1ΔID protein reduced thyroid tumor growth, markedly delayed tumor progression, and prolonged survival of Thrb(PV/PV)Ncor1 (ΔID/ΔID) mice. Tumor cell proliferation was inhibited by increased expression of cyclin-dependent kinase inhibitor 1 (p21(waf1/cip1); Cdkn1A), and apoptosis was activated by elevated expression of pro-apoptotic BCL-Associated X (Bax). Further analyses showed that p53 was recruited to the p53-binding site on the proximal promoter of the Cdkn1A and the Bax gene as a co-repressor complex with PV/NCOR1/histone deacetylas-3 (HDAC-3), leading to repression of the Cdkn1A as well as the Bax gene in thyroids of Thrb(PV/PV) mice. In thyroids of Thrb(PV/PV)Ncor1 (ΔID/ΔID) mice, the p53/PV complex could not recruit NCOR1ΔID and HDAC-3, leading to de-repression of both genes to inhibit cancer progression. The present studies provided direct evidence in vivo that NCOR1 could function as an oncogene via transcription regulation in a mouse model of thyroid cancer.


Development and implementation of a cell-based assay to discover agonists of the nuclear receptor REV-ERBα.

  • Yuliya Hering‎ et al.
  • Journal of biological methods‎
  • 2018‎

The nuclear receptors are transcription factors involved in the regulation of a variety of physiological processes whose activity can be modulated by binding to relevant small molecule ligands. Their dysfunction has been shown to play a role in disease states such as diabetes, cancer, inflammatory diseases, and hormonal resistance ailments, which makes them interesting targets for drug discovery. The nuclear receptor REV-ERBα is involved in regulating the circadian rhythm and metabolism. Its natural ligand is heme and there is significant interest in identifying novel synthetic modulators to serve as tools to characterize its function and to serve as drugs in treating metabolic disorders. To do so, we established a mammalian cell-based two-hybrid assay system capable of measuring the interaction between REV-ERBα and its co-repressor, nuclear co-repressor 1. This assay was validated to industry standard criteria and was used to screen a subset of the LOPAC®1280 library and 29568 compounds from a diverse compound library. Profiling of the primary hits in a panel of counter and selectivity assays confirmed that REV-ERBα activity can be modulated pharmacologically and chemical scaffolds have been identified for optimization.


Androgen receptor activity is affected by both nuclear matrix localization and the phosphorylation status of the heterogeneous nuclear ribonucleoprotein K in anti-androgen-treated LNCaP cells.

  • Paola Barboro‎ et al.
  • PloS one‎
  • 2013‎

The androgen receptor (AR) plays a central role in the development and progression of prostate cancer (PCa) and anti-androgen therapy is a standard treatment. Unfortunately, after a few years, the majority of patients progress, developing androgen-independent PCa. AR-driven gene transcription recruits a large number of co-activator/co-repressor complexes; among these, the heterogeneous nuclear ribonucleoprotein K (hnRNP K) directly interacts with and regulates the AR translational apparatus. Here we examined AR and hnRNP K expression in response to the treatment of LNCaP cells with anti-androgen cyproterone acetate (CPA) or bicalutamide (BIC). AR and hnRNP K modulation and compartmentalization were studied by Western blot and confocal microscopy. Phosphate-affinity gel electrophoresis was employed to examine how anti-androgens modified hnRNP K phosphorylation. 10(-6) M CPA significantly stimulated LNCaP proliferation, whereas for 10(-4) M CPA or 10(-5) M BIC an antagonistic effect was observed. After anti-androgen treatment, AR expression was remarkably down-regulated within both the cytoplasm and the nucleus; however, when CPA had an agonist activity, the AR associated with the nuclear matrix (NM) increased approximately 2.5 times. This increase was synchronous with a higher PSA expression, indicating that the NM-associated AR represents the active complex. After BIC treatment, hnRNP K expression was significantly lower in the NM, the protein was hypophosphorylated and the co-localization of AR and hnRNP K decreased. In contrast, CPA as an agonist caused hnRNP K hyperphosphorylation and an increase in the co-localization of two proteins. These findings demonstrate that, in vitro, there is a strong relationship between NM-associated AR and both cell viability and PSA levels, indicating that AR transcriptional activity is critically dependent on its subnuclear localization. Moreover, the agonistic/antagonistic activity of anti-androgens is associated with modifications in hnRNP K phosphorylation, indicating an involvement of this protein in the AR transcriptional activity and likely in the onset of the androgen-independent phenotype.


Nuclear interacting SET domain protein 1 inactivation impairs GATA1-regulated erythroid differentiation and causes erythroleukemia.

  • Katharina Leonards‎ et al.
  • Nature communications‎
  • 2020‎

The nuclear receptor binding SET domain protein 1 (NSD1) is recurrently mutated in human cancers including acute leukemia. We show that NSD1 knockdown alters erythroid clonogenic growth of human CD34+ hematopoietic cells. Ablation of Nsd1 in the hematopoietic system of mice induces a transplantable erythroleukemia. In vitro differentiation of Nsd1-/- erythroblasts is majorly impaired despite abundant expression of GATA1, the transcriptional master regulator of erythropoiesis, and associated with an impaired activation of GATA1-induced targets. Retroviral expression of wildtype NSD1, but not a catalytically-inactive NSD1N1918Q SET-domain mutant induces terminal maturation of Nsd1-/- erythroblasts. Despite similar GATA1 protein levels, exogenous NSD1 but not NSDN1918Q significantly increases the occupancy of GATA1 at target genes and their expression. Notably, exogenous NSD1 reduces the association of GATA1 with the co-repressor SKI, and knockdown of SKI induces differentiation of Nsd1-/- erythroblasts. Collectively, we identify the NSD1 methyltransferase as a regulator of GATA1-controlled erythroid differentiation and leukemogenesis.


A novel mutation F826L in the human androgen receptor in partial androgen insensitivity syndrome; increased NH2-/COOH-terminal domain interaction and TIF2 co-activation.

  • Hao Yun Wong‎ et al.
  • Molecular and cellular endocrinology‎
  • 2008‎

A novel mutation F826L located within the ligand binding domain (LBD) of the human androgen receptor (AR) was investigated. This mutation was found in a boy with severe penoscrotal hypospadias (classified as 46,XY DSD). The AR mutant F826L appeared to be indistinguishable from the wild-type AR, with respect to ligand binding affinity, transcriptional activation of MMTV-luciferase and ARE2-TATA-luciferase reporter genes, protein level in genital skin fibroblasts (GSFs), and sub-cellular distribution in transfected cells. However, an at least two-fold higher NH2-/COOH-terminal domain interaction was found in luciferase and GST pull-down assays. A two-fold increase was also observed for TIF2 (transcription intermediary factor 2) co-activation of the AR F826L COOH-terminal domain. This increase could not be explained by a higher stability of the mutant protein, which was within wild-type range. Repression of transactivation by the nuclear receptor co-repressor (N-CoR) was not affected by the AR F826L mutation. The observed properties of AR F826L would be in agreement with an increased activity rather than with a partial defective AR transcriptional activation. It is concluded that the penoscrotal hypospadias in the present case is caused by an as yet unknown mechanism, which still may involve the mutant AR.


Integrated Structural Modeling of Full-Length LRH-1 Reveals Inter-domain Interactions Contribute to Receptor Structure and Function.

  • Corey D Seacrist‎ et al.
  • Structure (London, England : 1993)‎
  • 2020‎

Liver receptor homolog-1 (LRH-1; NR5A2) is a nuclear receptor that regulates a diverse array of biological processes. In contrast to dimeric nuclear receptors, LRH-1 is an obligate monomer and contains a subtype-specific helix at the C terminus of the DNA-binding domain (DBD), termed FTZ-F1. Although detailed structural information is available for individual domains of LRH-1, it is unknown how these domains exist in the intact nuclear receptor. Here, we developed an integrated structural model of human full-length LRH-1 using a combination of HDX-MS, XL-MS, Rosetta computational docking, and SAXS. The model predicts the DBD FTZ-F1 helix directly interacts with ligand binding domain helix 2. We confirmed several other predicted inter-domain interactions via structural and functional analyses. Comparison between the LRH-1/Dax-1 co-crystal structure and the integrated model predicted and confirmed Dax-1 co-repressor to modulate LRH-1 inter-domain dynamics. Together, these data support individual LRH-1 domains interacting to influence receptor structure and function.


Identification of two independent SUMO-interacting motifs in Fas-associated factor 1 (FAF1): Implications for mineralocorticoid receptor (MR)-mediated transcriptional regulation.

  • Chi-Hsien Wang‎ et al.
  • Biochimica et biophysica acta. Molecular cell research‎
  • 2019‎

Fas-associated factor 1 (FAF1) was originally isolated as a Fas-associated factor and was subsequently found to interact with numerous other proteins that are involved in various cellular events including Fas-mediated apoptosis, nuclear factor (NF)-κB, Wnt/β-catenin, and transforming growth factor (TGF)-β signaling pathways, mineralocorticoid receptor (MR)-mediated transactivation, and ubiquitin-dependent processes. Herein, we defined two small ubiquitin-like modifier (SUMO)-interacting motifs (SIMs) within FAF1 and demonstrated to be crucial for transcriptional modulation of the MR. Our study demonstrated that the SIMs of FAF1 do not play a significant role in regulating its subcellular localization, Fas-mediated apoptosis, or NF-κB or Wnt/β-catenin pathways. Remarkably, FAF1 interacts with the sumoylated MR and represses aldosterone-activated MR transactivation in a SIM-dependent manner. Moreover, silencing of endogenous FAF1 in cells resulted in an increase in the induction of MR target genes by aldosterone, indicating that FAF1 functions as an MR co-repressor. We further provide evidence to suggest that the mechanisms of FAF1/SIM-mediated MR transrepression involve inhibition of MR N/C interactions and promotion of MR polyubiquitination and degradation. Sumoylation has been linked to impacting of repressive properties on several transcription factors and cofactors. Our findings therefore provide mechanistic insights underlying SUMO-dependent transcriptional repression of the MR.


PKCepsilon stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation.

  • Pawan Gupta‎ et al.
  • PloS one‎
  • 2008‎

Receptor interacting protein 140 (RIP140) is a versatile transcriptional co-repressor that plays roles in diverse metabolic processes including fat accumulation in adipocytes. Previously we identified three methylated arginine residues in RIP140, which rendered its export to the cytoplasm; but it was unclear what triggered RIP140 arginine methylation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: