Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 191 papers

Post-transcriptional regulation of GABAB receptor and GIRK1 channels by Nogo receptor 1.

  • Rachana Murthy‎ et al.
  • Molecular brain‎
  • 2013‎

Type B GABA receptors (GABA Rs) play a critical role in synaptic transmission. We carried out studies to determine whether neuronal cell surface expression of GABAB-Rs might be regulated by the Nogo receptor 1 (NgR1).


The Soluble Form of LOTUS inhibits Nogo Receptor-Mediated Signaling by Interfering with the Interaction Between Nogo Receptor Type 1 and p75 Neurotrophin Receptor.

  • Yutaka Kawakami‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

Nogo receptor type 1 (NgR1) is known to inhibit neuronal regeneration in the CNS. Previously, we have shown that lateral olfactory tract usher substance (LOTUS) interacts with NgR1 and inhibits its function by blocking its ligand binding. Therefore, LOTUS is expected to have therapeutic potential for the promotion of neuronal regeneration. However, it remains unknown whether the soluble form of LOTUS (s-LOTUS) also has an inhibitory action on NgR1 function as a candidate for therapeutic agents. Here, we show that s-LOTUS inhibits NgR1-mediated signaling by inhibiting the molecular interaction between NgR1 and its coreceptor, p75 neurotrophin receptor (p75NTR). In contrast to the membrane-bound form of LOTUS, s-LOTUS did not block ligand binding to NgR1. However, we identified p75NTR as a novel LOTUS binding partner and found that s-LOTUS suppressed the interaction between p75NTR and NgR1. s-LOTUS inhibited myelin-associated inhibitor (MAI)-induced RhoA activation in murine cortical neurons. Functional analyses revealed that s-LOTUS inhibited MAI-induced growth cone collapse and neurite outgrowth inhibition in chick DRG neurons. In addition, whereas olfactory bulb neurons of lotus-KO mice are sensitive to MAI due to a lack of LOTUS expression, treatment with s-LOTUS inhibited MAI-induced growth cone collapse in these neurons. Finally, we observed that s-LOTUS promoted axonal regeneration in optic nerve crush injury of mice (either sex). These findings suggest that s-LOTUS inhibits NgR1-mediated signaling, possibly by interfering with the interaction between NgR1 and p75NTR Therefore, s-LOTUS may have potential as a therapeutic agent for neuronal regeneration in the damaged CNS.SIGNIFICANCE STATEMENT Nogo receptor type 1 (NgR1) is a receptor well known to inhibit neuronal regeneration in the CNS. Because the membrane-bound form of lateral olfactory tract usher substance (LOTUS) antagonizes NgR1 through a cis-type molecular interaction between LOTUS and NgR1, the soluble form of LOTUS (s-LOTUS) is expected to be a therapeutic agent for neuronal regeneration. In our present study, we show that s-LOTUS inhibits the interaction between NgR1 and p75NTR, NgR1 ligand-induced RhoA activation, growth cone collapse, and neurite outgrowth inhibition and promotes axonal regeneration. Our results indicate that s-LOTUS inhibits NgR1-mediated signaling through a trans-type molecular interaction between LOTUS and NgR1 and, therefore, s-LOTUS may have therapeutic potential for neuronal regeneration.


Nogo receptor 1 is expressed by nearly all retinal ganglion cells.

  • Alexander M Solomon‎ et al.
  • PloS one‎
  • 2018‎

A variety of conditions ranging from glaucoma to blunt force trauma lead to optic nerve atrophy. Identifying signaling pathways for stimulating axon growth in the optic nerve may lead to treatments for these pathologies. Inhibiting signaling by the nogo-66 receptor 1 (NgR1) promotes the re-extension of axons following a crush injury to the optic nerve, and while NgR1 mRNA and protein expression are observed in the retinal ganglion cell (RGC) layer and inner nuclear layer, which retinal cell types express NgR1 remains unknown. Here we determine the expression pattern of NgR1 in the mouse retina by co-labeling neurons with characterized markers of specific retinal neurons together with antibodies specific for NgR1 or Green Fluorescent Protein expressed under control of the ngr1 promoter. We demonstrate that more than 99% of RGCs express NgR1. Thus, inhibiting NgR1 function may ubiquitously promote the regeneration of axons by RGCs. These results provide additional support for the therapeutic potential of NgR1 signaling in reversing optic nerve atrophy.


Erasure of fear memories is prevented by Nogo Receptor 1 in adulthood.

  • S M Bhagat‎ et al.
  • Molecular psychiatry‎
  • 2016‎

Critical periods are temporary windows of heightened neural plasticity early in development. For example, fear memories in juvenile rodents are subject to erasure following extinction training, while after closure of this critical period, extinction training only temporarily and weakly suppresses fear memories. Persistence of fear memories is important for survival, but the inability to effectively adapt to the trauma is a characteristic of post-traumatic stress disorder (PTSD). We examined whether Nogo Receptor 1 (NgR1) regulates the plasticity associated with fear extinction. The loss of NgR1 function in adulthood eliminates spontaneous fear recovery and fear renewal, with a restoration of fear reacquisition rate equal to that of naive mice; thus, mimicking the phenotype observed in juvenile rodents. Regional gene disruption demonstrates that NgR1 expression is required in both the basolateral amygdala (BLA) and infralimbic (IL) cortex to prevent fear erasure. NgR1 expression by parvalbumin expressing interneurons is essential for limiting extinction-dependent plasticity. NgR1 gene deletion enhances anatomical changes of inhibitory synapse markers after extinction training. Thus, NgR1 robustly inhibits elimination of fear expression in the adult brain and could serve as a therapeutic target for anxiety disorders, such as PTSD.


Nogo receptor 1 limits tactile task performance independent of basal anatomical plasticity.

  • Jennifer I Park‎ et al.
  • PloS one‎
  • 2014‎

The genes that govern how experience refines neural circuitry and alters synaptic structural plasticity are poorly understood. The nogo-66 receptor 1 gene (ngr1) is one candidate that may restrict the rate of learning as well as basal anatomical plasticity in adult cerebral cortex. To investigate if ngr1 limits the rate of learning we tested adult ngr1 null mice on a tactile learning task. Ngr1 mutants display greater overall performance despite a normal rate of improvement on the gap-cross assay, a whisker-dependent learning paradigm. To determine if ngr1 restricts basal anatomical plasticity in the associated sensory cortex, we repeatedly imaged dendritic spines and axonal varicosities of both constitutive and conditional adult ngr1 mutant mice in somatosensory barrel cortex for two weeks through cranial windows with two-photon chronic in vivo imaging. Neither constant nor acute deletion of ngr1 affected turnover or stability of dendritic spines or axonal boutons. The improved performance on the gap-cross task is not attributable to greater motor coordination, as ngr1 mutant mice possess a mild deficit in overall performance and a normal learning rate on the rotarod, a motor task. Mice lacking ngr1 also exhibit normal induction of tone-associated fear conditioning yet accelerated fear extinction and impaired consolidation. Thus, ngr1 alters tactile and motor task performance but does not appear to limit the rate of tactile or motor learning, nor determine the low set point for synaptic turnover in sensory cortex.


Nogo receptor 1 is expressed in both primary cultured glial cells and neurons.

  • Junichi Ukai‎ et al.
  • Nagoya journal of medical science‎
  • 2016‎

Nogo receptor (NgR) is common in myelin-derived molecules, i.e., Nogo, MAG, and OMgp, and plays important roles in both axon fasciculation and the inhibition of axonal regeneration. In contrast to NgR's roles in neurons, its roles in glial cells have been poorly explored. Here, we found a dynamic regulation of NgR1 expression during development and neuronal injury. NgR1 mRNA was consistently expressed in the brain from embryonic day 18 to postnatal day 25. In contrast, its expression significantly decreased in the spinal cord during development. Primary cultured neurons, microglia, and astrocytes expressed NgR1. Interestingly, a contusion injury in the spinal cord led to elevated NgR1 mRNA expression at the injury site, but not in the motor cortex, 14 days after injury. Consistent with this, astrocyte activation by TGFβ1 increased NgR1 expression, while microglia activation rather decreased NgR1 expression. These results collectively suggest that NgR1 expression is enhanced in a milieu of neural injury. Our findings may provide insight into the roles of NgR1 in glial cells.


LGI1 is a Nogo receptor 1 ligand that antagonizes myelin-based growth inhibition.

  • Rhalena Thomas‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2010‎

Mutations in leucine-rich glioma inactivated (LGI1) are a genetic cause of autosomal dominant temporal lobe epilepsy with auditory features. LGI1 is a secreted protein that shares homology with members of the SLIT family, ligands that direct axonal repulsion and growth cone collapse, and we therefore considered the possibility that LGI1 may regulate neuronal process extension or growth cone collapse. Here we report that LGI1 does not affect growth directly but instead enhances neuronal growth on myelin-based inhibitory substrates and antagonizes myelin-induced growth cone collapse. We show that LGI1 mediates this effect by functioning as a specific Nogo receptor 1 (NgR1) ligand that antagonizes the action of myelin-based inhibitory cues. Finally, we demonstrate that NgR1 and ADAM22 physically associate to form a receptor complex in which NgR1 facilitates LGI1 binding to ADAM22.


TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration.

  • Zhaohui Shao‎ et al.
  • Neuron‎
  • 2005‎

Myelin-associated inhibitory factors (MAIFs) are inhibitors of CNS axonal regeneration following injury. The Nogo receptor complex, composed of the Nogo-66 receptor 1 (NgR1), neurotrophin p75 receptor (p75), and LINGO-1, represses axon regeneration upon binding to these myelin components. The limited expression of p75 to certain types of neurons and its temporal expression during development prompted speculation that other receptors are involved in the NgR1 complex. Here, we show that an orphan receptor in the TNF family called TAJ, broadly expressed in postnatal and adult neurons, binds to NgR1 and can replace p75 in the p75/NgR1/LINGO-1 complex to activate RhoA in the presence of myelin inhibitors. In vitro exogenously added TAJ reversed neurite outgrowth caused by MAIFs. Neurons from Taj-deficient mice were more resistant to the suppressive action of the myelin inhibitors. Given the limited expression of p75, the discovery of TAJ function is an important step for understanding the regulation of axonal regeneration.


Experience-dependent expression of Nogo-A and Nogo receptor in the developing rat visual cortex.

  • Xiaoying Wu‎ et al.
  • Neural regeneration research‎
  • 2012‎

Nogo-A and Nogo receptor (NgR) expression in the visual cortex following a critical developmental period (postnatal days 20-60) has been previously shown. However, little is known regarding Nogo-A and NgR expression between postnatal day 0 and initiation of the critical period. The present study analyzed Nogo-A and NgR expression at four different time points: postnatal day 0 (P0), before critical period (P14), during critical period (P28), and after critical period (P60). Results showed significantly increased Nogo-A mRNA and protein expression levels in the visual cortex following birth, and expression levels remained steady between P28 and P60. NgR mRNA or protein expression was dramatically upregulated with age and peaked at P14 or P28, respectively, and maintained high expression to P60. In addition, Nogo-A and NgR expression was analyzed in each visual cortex layer in normal developing rats and rats with monocular deprivation. Monocular deprivation decreased Nogo-A and NgR mRNA and protein expression in the rat visual cortex, in particular in layers II-III and IV in the visual cortex contralateral to the deprived eye. These findings suggested that Nogo-A and NgR regulated termination of the critical period in experience- dependent visual cortical plasticity.


Nogo receptor 1 regulates Caspr distribution at axo-glial units in the central nervous system.

  • Jae Young Lee‎ et al.
  • Scientific reports‎
  • 2017‎

Axo-glial units are highly organised microstructures propagating saltatory conduction and are disrupted during multiple sclerosis (MS). Nogo receptor 1 (NgR1) has been suggested to govern axonal damage during the progression of disease in the MS-like mouse model, experimental autoimmune encephalomyelitis (EAE). Here we have identified that adult ngr1 -/- mice, previously used in EAE and spinal cord injury experiments, display elongated paranodes, and nodes of Ranvier. Unstructured paranodal regions in ngr1 -/- mice are matched with more distributed expression pattern of Caspr. Compound action potentials of optic nerves and spinal cords from naïve ngr1 -/- mice are delayed and reduced. Molecular interaction studies revealed enhanced Caspr cleavage. Our data suggest that NgR1 may regulate axo-myelin ultrastructure through Caspr-mediated adhesion, regulating the electrophysiological signature of myelinated axons of central nervous system (CNS).


Soluble Nogo receptor 1 fusion protein protects neural progenitor cells in rats with ischemic stroke.

  • Hai-Wei He‎ et al.
  • Neural regeneration research‎
  • 2019‎

Soluble Nogo66 receptor-Fc protein (sNgR-Fc) enhances axonal regeneration following central nervous system injury. However, the underlying mechanisms remain unclear. In this study, we investigated the effects of sNgR-Fc on the proliferation and differentiation of neural progenitor cells. The photothrombotic cortical injury model of ischemic stroke was produced in the parietal cortex of Sprague-Dawley rats. The rats with photothrombotic cortical injury were randomized to receive infusion of 400 μg/kg sNgR-Fc (sNgR-Fc group) or an equal volume of phosphate-buffered saline (photothrombotic cortical injury group) into the lateral ventricle for 3 days. The effects of sNgR-Fc on the proliferation and differentiation of endogenous neural progenitor cells were examined using BrdU staining. Neurological function was evaluated with the Morris water maze test. To further examine the effects of sNgR-Fc treatment on neural progenitor cells, photothrombotic cortical injury was produced in another group of rats that received transplantation of neural progenitor cells from the hippocampus of embryonic Sprague-Dawley rats. The animals were then given an infusion of phosphate-buffered saline (neural progenitor cells group) or sNgR-Fc (sNgR-Fc + neural progenitor cells group) into the lateral ventricle for 3 days. sNgR-Fc enhanced the proliferation of cultured neural progenitor cells in vitro as well as that of endogenous neural progenitor cells in vivo, compared with phosphate-buffered saline, and it also induced the differentiation of neural progenitor cells into neurons. Compared with the photothrombotic cortical injury group, escape latency in the Morris water maze and neurological severity score were greatly reduced, and distance traveled in the target quadrant was considerably increased in the sNgR-Fc group, indicating a substantial improvement in neurological function. Furthermore, compared with phosphate-buffered saline infusion, sNgR-Fc infusion strikingly improved the survival and differentiation of grafted neural progenitor cells. Our findings show that sNgR-Fc regulates neural progenitor cell proliferation, migration and differentiation. Therefore, sNgR-Fc is a potential novel therapy for stroke and neurodegenerative diseases, The protocols were approved by the Committee on the Use of Live Animals in Teaching and Research of the University of Hong Kong (approval No. 4560-17) in November, 2015.


Blockade of Nogo-A/Nogo-66 receptor 1 (NgR1) Inhibits Autophagic Activation and Prevents Secondary Neuronal Damage in the Thalamus after Focal Cerebral Infarction in Hypertensive Rats.

  • Wei Xu‎ et al.
  • Neuroscience‎
  • 2020‎

Focal cerebral infarction leads to autophagic activation, which contributes to secondary neuronal damage in the ipsilateral thalamus. Although Nogo-A deactivation enhances neuronal plasticity, its role in autophagic activation in the thalamus after ischemic stroke remains unclear. This study aimed to investigate the potential roles of Nogo-A/Nogo-66 receptor 1 (NgR1) in autophagic activation in the ipsilateral thalamus after cerebral infarction. Focal neocortical infarction was established using the middle cerebral artery occlusion (MCAO) method. Secondary damage in the ipsilateral thalamus was assessed by Nissl staining and immunostaining. The expression of Nogo-A, NgR1, Rho-A and Rho-associated coiled-coil containing protein kinase 1 (ROCK1) as well as autophagic flux were evaluated by immunofluorescence and immunoblotting. The roles of Nogo-A-NgR1 signaling in autophagic activation were determined by intraventricular delivery of an NgR1 antagonist peptide, NEP1-40, at 24 h after MCAO. The results showed that Nogo-A and NgR1 overexpression temporally coincided with marked increases in the levels of Beclin1, LC3-II and sequestosome 1 (SQSTM1)/p62 in the ipsilateral thalamus at seven and fourteen days after MCAO. In contrast, NEP1-40 treatment significantly reduced the expression of Rho-A and ROCK1 which was accompanied by marked reductions of LC3-II conversion as well as the levels of Beclin1 and SQSTM1/p62. Furthermore, NEP1-40 treatment significantly reduced neuronal loss and gliosis in the ipsilateral thalamus, and accelerated somatosensory recovery at the observed time-points after MCAO. These results suggest that blockade of Nogo-A-NgR1 signaling inhibits autophagic activation, attenuates secondary neuronal damage in the ipsilateral thalamus, and promotes functional recovery after focal cerebral cortical infarction.


Cyclic-AMP induces Nogo-A receptor NgR1 internalization and inhibits Nogo-A-mediated collapse of growth cone.

  • Rayudu Gopalakrishna‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

The promotion of axonal regeneration is required for functional recovery from stroke and various neuronal injuries. However, axonal regeneration is inhibited by diverse axonal growth inhibitors, such as Nogo-A. Nogo-66, a C-terminal domain of Nogo-A, binds to the Nogo-A receptor 1 (NgR1) and induces the collapse of growth cones and inhibits neurite outgrowth. NgR1 is also a receptor for additional axonal growth inhibitors, suggesting it is an important target for the prevention of axonal growth inhibition. By using the indirect immunofluorescence method, we show for the first time that a cell-permeable cAMP analog (dibutyryl-cAMP) induced a rapid decrease in the cell surface expression of NgR1 in Neuroscreen-1 (NS-1) cells. The biotinylation method revealed that cAMP indeed induced internalization of NgR1 within minutes. Other intracellular cAMP-elevating agents, such as forskolin, which directly activates adenylyl cyclase, and rolipram, which inhibits cyclic nucleotide phosphodiesterase, also induced this process. This internalization was found to be reversible and influenced by intracellular levels of cAMP. Using selective activators and inhibitors of protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac), we found that NgR1 internalization is independent of PKA, but dependent on Epac. The decrease in cell surface expression of NgR1 desensitized NS-1 cells to Nogo-66-induced growth cone collapse. Therefore, it is likely that besides axonal growth inhibitors affecting neurons, neurons themselves also self-regulate their sensitivity to axonal growth inhibitors, as influenced by intracellular cAMP/Epac. This normal cellular regulatory mechanism may be pharmacologically exploited to overcome axonal growth inhibitors, and enhance functional recovery after stroke and neuronal injuries.


Nogo Receptor 1 (RTN4R) as a candidate gene for schizophrenia: analysis using human and mouse genetic approaches.

  • Ruby Hsu‎ et al.
  • PloS one‎
  • 2007‎

NOGO Receptor 1 (RTN4R) regulates axonal growth, as well as axon regeneration after injury. The gene maps to the 22q11.2 schizophrenia susceptibility locus and is thus a strong functional and positional candidate gene.


Schwann Cell Expressed Nogo-B Modulates Axonal Branching of Adult Sensory Neurons Through the Nogo-B Receptor NgBR.

  • Christoph Eckharter‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2015‎

In contrast to the central nervous system (CNS) nerve fibers do regenerate in the peripheral nervous system (PNS) although in a clinically unsatisfying manner. A major problem is excessive sprouting of regenerating axons which results in aberrant reinnervation of target tissue and impaired functional recovery. In the CNS, the reticulon protein Nogo-A has been identified as a prominent oligodendrocyte expressed inhibitor of long-distance growth of regenerating axons. We show here that the related isoform Nogo-B is abundantly expressed in Schwann cells in the PNS. Other than Nogo-A in oligodendrocytes, Nogo-B does not localize to the myelin sheath but is detected in the ER and the plasma membrane of Schwann cells. Adult sensory neurons that are cultured on nogo-a/b deficient Schwann cells form significantly fewer axonal branches vs. those on wildtype Schwann cells, while their maximal axonal extension is unaffected. We demonstrate that this effect of Nogo-B on neuronal morphology is restricted to undifferentiated Schwann cells and is mediated by direct physical contact between these two cell types. Moreover, we show that blocking the Nogo-B specific receptor NgBR, which we find expressed on sensory neurons and to interact with Schwann cell expressed Nogo-B, produces the same branching phenotype as observed after deletion of Nogo-B. These data provide evidence for a novel function of the nogo gene that is implemented by the Nogo-B isoform. The remarkably specific effects of Nogo-B/NgBR on axonal branching, while leaving axonal extension unaffected, are of potential clinical relevance in the context of excessive axonal sprouting after peripheral nerve injury.


Differential conserted activity induced regulation of Nogo receptors (1-3), LOTUS and Nogo mRNA in mouse brain.

  • Tobias E Karlsson‎ et al.
  • PloS one‎
  • 2013‎

Nogo Receptor 1 (NgR1) mRNA is downregulated in hippocampal and cortical regions by increased neuronal activity such as a kainic acid challenge or by exposing rats to running wheels. Plastic changes in cerebral cortex in response to loss of specific sensory inputs caused by spinal cord injury are also associated with downregulation of NgR1 mRNA. Here we investigate the possible regulation by neuronal activity of the homologous receptors NgR2 and NgR3 as well as the endogenous NgR1 antagonist LOTUS and the ligand Nogo. The investigated genes respond to kainic acid by gene-specific, concerted alterations of transcript levels, suggesting a role in the regulation of synaptic plasticity, Downregulation of NgR1, coupled to upregulation of the NgR1 antagonist LOTUS, paired with upregulation of NgR2 and 3 in the dentate gyrus suggest a temporary decrease of Nogo/OMgp sensitivity while CSPG and MAG sensitivity could remain. It is suggested that these activity-synchronized temporary alterations may serve to allow structural alterations at the level of local synaptic circuitry in gray matter, while maintaining white matter pathways and that subsequent upregulation of Nogo-A and NgR1 transcript levels signals the end of such a temporarily opened window of plasticity.


Nogo-receptor 1 deficiency has no influence on immune cell repertoire or function during experimental autoimmune encephalomyelitis.

  • Sara A Litwak‎ et al.
  • PloS one‎
  • 2013‎

The potential role of Nogo-66 Receptor 1 (NgR1) on immune cell phenotypes and their activation during neuroinflammatory diseases such as multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), is unclear. To further understand the function of this receptor on haematopoietically-derived cells, phenotypic and functional analyses were performed using NgR1-deficient (ngr1-/-) animals. Flow cytometry-based phenotypic analyses performed on blood, spleen, thymus, lymph nodes, bone marrow and central nervous-system (CNS)-infiltrating blood cells revealed no immunological defects in naïve ngr1-/- animals versus wild-type littermate (WTLM) controls. EAE was induced by either recombinant myelin oligodendrocyte glycoprotein (rMOG), a model in which B cells are considered to contribute pathogenically, or by MOG35-55 peptide, a B cell-independent model. We have demonstrated that in ngr1-/- mice injected with MOG35-55, a significant reduction in the severity of EAE correlated with reduced axonal damage present in the spinal cord when compared to their WTLM controls. However, despite a reduction in axonal damage observed in the CNS of ngr1-/- mice at the chronic stage of disease, no clinical differences could be attributed to a specific genotype when rMOG was used as the encephalitogen. Following MOG35-55-induction of EAE, we could not derive any major changes to the immune cell populations analyzed between ngr1-/- and WTLM mice. Collectively, these data demonstrate that NgR1 has little if any effects on the repertoire of immune cells, their activation and trafficking to the CNS.


Nogo receptor antagonist LOTUS exerts suppression on axonal growth-inhibiting receptor PIR-B.

  • Yuji Kurihara‎ et al.
  • Journal of neurochemistry‎
  • 2020‎

Damaged axons in the adult mammalian central nervous system have a restricted regenerative capacity mainly because of Nogo protein, which is a major myelin-associated axonal growth inhibitor with binding to both receptors of Nogo receptor-1 (NgR1) and paired immunoglobulin-like receptor (PIR)-B. Lateral olfactory tract usher substance (LOTUS) exerts complete suppression of NgR1-mediated axonal growth inhibition by antagonizing NgR1. However, the regulation of PIR-B functions in neurons remains unknown. In this study, protein-protein interactions analyses found that LOTUS binds to PIR-B and abolishes Nogo-binding to PIR-B completely. Reverse transcription-polymerase chain reaction and immunocytochemistry revealed that PIR-B is expressed in dorsal root ganglions (DRGs) from wild-type and Ngr1-deficient mice (male and female). In these DRG neurons, Nogo induced growth cone collapse and neurite outgrowth inhibition, but treatment with the soluble form of LOTUS completely suppressed them. Moreover, Nogo-induced growth cone collapse and neurite outgrowth inhibition in Ngr1-deficient DRG neurons were neutralized by PIR-B function-blocking antibodies, indicating that these Nogo-induced phenomena were mediated by PIR-B. Our data show that LOTUS negatively regulates a PIR-B function. LOTUS thus exerts an antagonistic action on both receptors of NgR1 and PIR-B. This may lead to an improvement in the defective regeneration of axons following injury.


The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity.

  • Anissa Kempf‎ et al.
  • PLoS biology‎
  • 2014‎

Nogo-A is a membrane protein of the central nervous system (CNS) restricting neurite growth and synaptic plasticity via two extracellular domains: Nogo-66 and Nogo-A-Δ20. Receptors transducing Nogo-A-Δ20 signaling remained elusive so far. Here we identify the G protein-coupled receptor (GPCR) sphingosine 1-phosphate receptor 2 (S1PR2) as a Nogo-A-Δ20-specific receptor. Nogo-A-Δ20 binds S1PR2 on sites distinct from the pocket of the sphingolipid sphingosine 1-phosphate (S1P) and signals via the G protein G13, the Rho GEF LARG, and RhoA. Deleting or blocking S1PR2 counteracts Nogo-A-Δ20- and myelin-mediated inhibition of neurite outgrowth and cell spreading. Blockade of S1PR2 strongly enhances long-term potentiation (LTP) in the hippocampus of wild-type but not Nogo-A(-/-) mice, indicating a repressor function of the Nogo-A/S1PR2 axis in synaptic plasticity. A similar increase in LTP was also observed in the motor cortex after S1PR2 blockade. We propose a novel signaling model in which a GPCR functions as a receptor for two structurally unrelated ligands, a membrane protein and a sphingolipid. Elucidating Nogo-A/S1PR2 signaling platforms will provide new insights into regulation of synaptic plasticity.


Nogo Receptor Signaling Restricts Adult Neural Plasticity by Limiting Synaptic AMPA Receptor Delivery.

  • Susumu Jitsuki‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2016‎

Experience-dependent plasticity is limited in the adult brain, and its molecular and cellular mechanisms are poorly understood. Removal of the myelin-inhibiting signaling protein, Nogo receptor (NgR1), restores adult neural plasticity. Here we found that, in NgR1-deficient mice, whisker experience-driven synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) insertion in the barrel cortex, which is normally complete by 2 weeks after birth, lasts into adulthood. In vivo live imaging by two-photon microscopy revealed more AMPAR on the surface of spines in the adult barrel cortex of NgR1-deficient than on those of wild-type (WT) mice. Furthermore, we observed that whisker stimulation produced new spines in the adult barrel cortex of mutant but not WT mice, and that the newly synthesized spines contained surface AMPAR. These results suggest that Nogo signaling limits plasticity by restricting synaptic AMPAR delivery in coordination with anatomical plasticity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: