Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 174 papers

Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins.

  • William A Barton‎ et al.
  • The EMBO journal‎
  • 2003‎

The myelin-derived proteins Nogo, MAG and OMgp limit axonal regeneration after injury of the spinal cord and brain. These cell-surface proteins signal through multi-subunit neuronal receptors that contain a common ligand-binding glycosylphosphatidylinositol-anchored subunit termed the Nogo-66 receptor (NgR). By deletion analysis, we show that the binding of soluble fragments of Nogo, MAG and NgR to cell-surface NgR requires the entire leucine-rich repeat (LRR) region of NgR, but not other portions of the protein. Despite sharing extensive sequence similarity with NgR, two related proteins, NgR2 and NgR3, which we have identified, do not bind Nogo, MAG, OMgp or NgR. To investigate NgR specificity and multi-ligand binding, we determined the crystal structure of the biologically active ligand-binding soluble ectodomain of NgR. The molecule is banana shaped with elongation and curvature arising from eight LRRs flanked by an N-terminal cap and a small C-terminal subdomain. The NgR structure analysis, as well as a comparison of NgR surface residues not conserved in NgR2 and NgR3, identifies potential protein interaction sites important in the assembly of a functional signaling complex.


Differential conserted activity induced regulation of Nogo receptors (1-3), LOTUS and Nogo mRNA in mouse brain.

  • Tobias E Karlsson‎ et al.
  • PloS one‎
  • 2013‎

Nogo Receptor 1 (NgR1) mRNA is downregulated in hippocampal and cortical regions by increased neuronal activity such as a kainic acid challenge or by exposing rats to running wheels. Plastic changes in cerebral cortex in response to loss of specific sensory inputs caused by spinal cord injury are also associated with downregulation of NgR1 mRNA. Here we investigate the possible regulation by neuronal activity of the homologous receptors NgR2 and NgR3 as well as the endogenous NgR1 antagonist LOTUS and the ligand Nogo. The investigated genes respond to kainic acid by gene-specific, concerted alterations of transcript levels, suggesting a role in the regulation of synaptic plasticity, Downregulation of NgR1, coupled to upregulation of the NgR1 antagonist LOTUS, paired with upregulation of NgR2 and 3 in the dentate gyrus suggest a temporary decrease of Nogo/OMgp sensitivity while CSPG and MAG sensitivity could remain. It is suggested that these activity-synchronized temporary alterations may serve to allow structural alterations at the level of local synaptic circuitry in gray matter, while maintaining white matter pathways and that subsequent upregulation of Nogo-A and NgR1 transcript levels signals the end of such a temporarily opened window of plasticity.


NOGO-A/RTN4A and NOGO-B/RTN4B are simultaneously expressed in epithelial, fibroblast and neuronal cells and maintain ER morphology.

  • Olli Rämö‎ et al.
  • Scientific reports‎
  • 2016‎

Reticulons (RTNs) are a large family of membrane associated proteins with various functions. NOGO-A/RTN4A has a well-known function in limiting neurite outgrowth and restricting the plasticity of the mammalian central nervous system. On the other hand, Reticulon 4 proteins were shown to be involved in forming and maintaining endoplasmic reticulum (ER) tubules. Using comparative transcriptome analysis and qPCR, we show here that NOGO-B/RTN4B and NOGO-A/RTN4A are simultaneously expressed in cultured epithelial, fibroblast and neuronal cells. Electron tomography combined with immunolabelling reveal that both isoforms localize preferably to curved membranes on ER tubules and sheet edges. Morphological analysis of cells with manipulated levels of NOGO-B/RTN4B revealed that it is required for maintenance of normal ER shape; over-expression changes the sheet/tubule balance strongly towards tubules and causes the deformation of the cell shape while depletion of the protein induces formation of large peripheral ER sheets.


Nogo-A regulates myogenesis via interacting with Filamin-C.

  • SunYoung Park‎ et al.
  • Cell death discovery‎
  • 2021‎

Among the three isoforms encoded by Rtn4, Nogo-A has been intensely investigated as a central nervous system inhibitor. Although Nogo-A expression is increased in muscles of patients with amyotrophic lateral sclerosis, its role in muscle homeostasis and regeneration is not well elucidated. In this study, we discovered a significant increase in Nogo-A expression in various muscle-related pathological conditions. Nogo-/- mice displayed dystrophic muscle structure, dysregulated muscle regeneration following injury, and altered gene expression involving lipid storage and muscle cell differentiation. We hypothesized that increased Nogo-A levels might regulate muscle regeneration. Differentiating myoblasts exhibited Nogo-A upregulation and silencing Nogo-A abrogated myoblast differentiation. Nogo-A interacted with filamin-C, suggesting a role for Nogo-A in cytoskeletal arrangement during myogenesis. In conclusion, Nogo-A maintains muscle homeostasis and integrity, and pathologically altered Nogo-A expression mediates muscle regeneration, suggesting Nogo-A as a novel target for the treatment of myopathies in clinical settings.


The Nogo-C2/Nogo receptor complex regulates the morphogenesis of zebrafish lateral line primordium through modulating the expression of dkk1b, a Wnt signal inhibitor.

  • Hao-Wei Han‎ et al.
  • PloS one‎
  • 2014‎

The fish lateral line (LL) is a mechanosensory system closely related to the hearing system of higher vertebrates, and it is composed of several neuromasts located on the surface of the fish. These neuromasts can detect changes in external water flow, to assist fish in maintaining a stationary position in a stream. In the present study, we identified a novel function of Nogo/Nogo receptor signaling in the formation of zebrafish neuromasts. Nogo signaling in zebrafish, like that in mammals, involves three ligands and four receptors, as well as three co-receptors (TROY, p75, and LINGO-1). We first demonstrated that Nogo-C2, NgRH1a, p75, and TROY are able to form a Nogo-C2 complex, and that disintegration of this complex causes defective neuromast formation in zebrafish. Time-lapse recording of the CldnB::lynEGFP transgenic line revealed that functional obstruction of the Nogo-C2 complex causes disordered morphogenesis, and reduces rosette formation in the posterior LL (PLL) primordium during migration. Consistent with these findings, hair-cell progenitors were lost from the PLL primordium in p75, TROY, and Nogo-C2/NgRH1a morphants. Notably, the expression levels of pea3, a downstream marker of Fgf signaling, and dkk1b, a Wnt signaling inhibitor, were both decreased in p75, TROY, and Nogo-C2/NgRH1a morphants; moreover, dkk1b mRNA injection could rescue the defects in neuromast formation resulting from knockdown of p75 or TROY. We thus suggest that a novel Nogo-C2 complex, consisting of Nogo-C2, NgRH1a, p75, and TROY, regulates Fgf signaling and dkk1b expression, thereby ensuring stable organization of the PLL primordium.


Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury.

  • Shuxin Li‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2004‎

The growth of injured axons in the adult mammalian CNS is limited after injury. Three myelin proteins, Nogo, MAG (myelin-associated glycoprotein), and OMgp (oligodendrocyte myelin glycoprotein), bind to the Nogo-66 receptor (NgR) and inhibit axonal growth in vitro. Transgenic or viral blockade of NgR function allows axonal sprouting in vivo. Here, we administered the soluble function-blocking NgR ectodomain [aa 27-310; NgR(310)ecto] to spinal-injured rats. Purified NgR(310)ecto-Fc protein was delivered intrathecally after midthoracic dorsal over-hemisection. Axonal sprouting of corticospinal and raphespinal fibers in NgR(310)ecto-Fc-treated animals correlates with improved spinal cord electrical conduction and improved locomotion. The ability of soluble NgR(310)ecto to promote axon growth and locomotor recovery demonstrates a therapeutic potential for NgR antagonism in traumatic spinal cord injury.


Microglial Nogo delays recovery following traumatic brain injury in mice.

  • Elliot J Glotfelty‎ et al.
  • Glia‎
  • 2023‎

Nogo-A, B, and C are well described members of the reticulon family of proteins, most well known for their negative regulatory effects on central nervous system (CNS) neurite outgrowth and repair following injury. Recent research indicates a relationship between Nogo-proteins and inflammation. Microglia, the brain's immune cells and inflammation-competent compartment, express Nogo protein, although specific roles of the Nogo in these cells is understudied. To examine inflammation-related effects of Nogo, we generated a microglial-specific inducible Nogo KO (MinoKO) mouse and challenged the mouse with a controlled cortical impact (CCI) traumatic brain injury (TBI). Histological analysis shows no difference in brain lesion sizes between MinoKO-CCI and Control-CCI mice, although MinoKO-CCI mice do not exhibit the levels of ipsilateral lateral ventricle enlargement as injury matched controls. Microglial Nogo-KO results in decreased lateral ventricle enlargement, microglial and astrocyte immunoreactivity, and increased microglial morphological complexity compared to injury matched controls, suggesting decreased tissue inflammation. Behaviorally, healthy MinoKO mice do not differ from control mice, but automated tracking of movement around the home cage and stereotypic behavior, such as grooming and eating (termed cage "activation"), following CCI is significantly elevated. Asymmetrical motor function, a deficit typical of unilaterally brain lesioned rodents, was not detected in CCI injured MinoKO mice, while the phenomenon was present in CCI injured controls 1-week post-injury. Overall, our studies show microglial Nogo as a negative regulator of recovery following brain injury. To date, this is the first evaluation of the roles microglial specific Nogo in a rodent injury model.


Fast Regulation of GABAAR Diffusion Dynamics by Nogo-A Signaling.

  • Steffen Fricke‎ et al.
  • Cell reports‎
  • 2019‎

Precisely controlling the excitatory and inhibitory balance is crucial for the stability and information-processing ability of neuronal networks. However, the molecular mechanisms maintaining this balance during ongoing sensory experiences are largely unclear. We show that Nogo-A signaling reciprocally regulates excitatory and inhibitory transmission. Loss of function for Nogo-A signaling through S1PR2 rapidly increases GABAAR diffusion, thereby decreasing their number at synaptic sites and the amplitude of GABAergic mIPSCs at CA3 hippocampal neurons. This increase in GABAAR diffusion rate is correlated with an increase in Ca2+ influx and requires the calcineurin-mediated dephosphorylation of the γ2 subunit at serine 327. These results suggest that Nogo-A signaling rapidly strengthens inhibitory GABAergic transmission by restricting the diffusion dynamics of GABAARs. Together with the observation that Nogo-A signaling regulates excitatory transmission in an opposite manner, these results suggest a crucial role for Nogo-A signaling in modulating the excitation and inhibition balance to restrict synaptic plasticity.


Nogo-A inactivation improves visual plasticity and recovery after retinal injury.

  • Julius Baya Mdzomba‎ et al.
  • Cell death & disease‎
  • 2018‎

Myelin-associated proteins such as Nogo-A are major inhibitors of neuronal plasticity that contribute to permanent neurological impairments in the injured CNS. In the present study, we investigated the influence of Nogo-A on visual recovery after retinal injuries in mice. Different doses of N-methyl-D-aspartate (NMDA) were injected in the vitreous of the left eye to induce retinal neuron death. The visual function was monitored using the optokinetic response (OKR) as a behavior test, and electroretinogram (ERG) and local field potential (LFP) recordings allowed to assess changes in retinal and cortical neuron activity, respectively. Longitudinal OKR follow-ups revealed reversible visual deficits after injection of NMDA ≤ 1 nmole in the left eye and concomitant functional improvement in the contralateral visual pathway of the right eye that was let intact. Irreversible OKR loss observed with NMDA ≥ 2 nmol was correlated with massive retinal cell death and important ERG response decline. Strikingly, the OKR mediated by injured and intact eye stimulation was markedly improved in Nogo-A KO mice compared with WT animals, suggesting that the inactivation of Nogo-A promotes visual recovery and plasticity. Moreover, OKR improvement was associated with shorter latency of the N2 wave of Nogo-A KO LFPs relative to WT animals. Strikingly, intravitreal injection of anti-Nogo-A antibody (11C7) in the injured eye exerted positive effects on cortical LFPs. This study presents the intrinsic ability of the visual system to recover from NMDA-induced retinal injury and its limitations. Nogo-A neutralization may promote visual recovery in retinal diseases such as glaucoma.


Neuronal Nogo-A regulates glutamate receptor subunit expression in hippocampal neurons.

  • Xiangmin Peng‎ et al.
  • Journal of neurochemistry‎
  • 2011‎

Nogo-A and its cognate receptor NogoR1 (NgR1) are both expressed in neurons. To explore the function of these proteins in neurons of the CNS, we carried out a series of studies using postnatal hippocampal neurons in culture. Interfering with the binding of Nogo-A to NgR1 either by adding truncated soluble fragment of NgR1 (NgSR) or by reducing NgR1 protein with a specific siRNA, resulted in a marked reduction in Nogo-A expression. Inhibition of Rho-ROCK or MEK-MAPK signaling resulted in a similar reduction in neuronal Nogo-A mRNA and protein. Reducing Nogo-A protein levels by siRNA resulted in an increase in the post-synaptic scaffolding protein PSD95, as well as increases in GluA1/GluA2 AMPA receptor and GluN1/GluN2A/GluN2B NMDA glutamate receptor subunits. siRNA treatment to reduce Nogo-A resulted in phosphorylation of mTOR; addition of rapamycin to block mTOR signaling prevented the up-regulation in glutamate receptor subunits. siRNA reduction of NgR1 resulted in increased expression of the same glutamate receptor subunits. Taken together the results suggest that transcription and translation of Nogo-A in hippocampal neurons is regulated by a signaling through NgR1, and that interactions between neuronal Nogo-A and NgR1 regulate glutamatergic transmission by altering NMDA and AMPA receptor levels through an rapamycin-sensitive mTOR-dependent translation mechanism.


The Nogo receptor 2 is a novel substrate of Fbs1.

  • Florian Kern‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

Members of the Nogo66 receptor family (NgR) are closely associated with nerve growth inhibition and plasticity in the CNS. All three members, NgR1, NgR2 and NgR3, are GPI anchored and highly glycosylated proteins. The binding and signaling properties of NgR1 are well described, but largely unknown for NgR2. At present the only known ligands are myelin associated glycoprotein (MAG) and amyloid beta precursor protein (APP). Despite the requirement of co-receptors for signaling no other binding partner has been uncovered. To learn more about the interactome of NgR2 we performed pull down experiments and were able to identify F-box protein that recognizes sugar chain 1 (Fbs1) as binding partner. We confirmed this finding with co-immunoprecipitations and in vitro binding assays and showed that the binding is mediated by the substrate recognition domain of Fbs1. As a substrate recognition protein of the SCF complex, Fbs1 binding leads to polyubiquitination and finally degradation of its substrates. This is the first time a member of the Nogo receptor family has been connected with an intracellular degradation pathway, which has not only implications for its production, but also for amyloid deposition in Alzheimer's disease.


Nogo (Reticulon 4) expression in innervated and denervated mouse skeletal muscle.

  • Caroline Magnusson‎ et al.
  • Molecular and cellular neurosciences‎
  • 2003‎

The nogo gene encodes at least three different proteins, which share a high C-terminal homology with other members of the Reticulon family. Nogo (Reticulon 4) expression has been studied in innervated and denervated mouse hind-limb and hemidiaphragm muscles. A common Nogo A, B, and C probe hybridized to three transcripts, in accordance with human and rat data. Denervation caused decreased Nogo C and increased Nogo A mRNA expression, while Nogo B was not substantially altered. Western blots and immunohistochemistry confirmed the presence of Nogo A-like and Nogo B-like immunoreactivity in muscle. Nogo A-like immunoreactivity increased after denervation and was also present in intramuscular nerves in both innervated and denervated muscle. Nogo B-like immunoreactivity was observed in connective tissue surrounding muscle fibres and nerves. The different Nogo transcripts are produced by both alternative splicing (A and B) and alternative promoter usage (C); both mechanisms seem to be under neural control in skeletal muscle.


Negative example selection for protein function prediction: the NoGO database.

  • Noah Youngs‎ et al.
  • PLoS computational biology‎
  • 2014‎

Negative examples - genes that are known not to carry out a given protein function - are rarely recorded in genome and proteome annotation databases, such as the Gene Ontology database. Negative examples are required, however, for several of the most powerful machine learning methods for integrative protein function prediction. Most protein function prediction efforts have relied on a variety of heuristics for the choice of negative examples. Determining the accuracy of methods for negative example prediction is itself a non-trivial task, given that the Open World Assumption as applied to gene annotations rules out many traditional validation metrics. We present a rigorous comparison of these heuristics, utilizing a temporal holdout, and a novel evaluation strategy for negative examples. We add to this comparison several algorithms adapted from Positive-Unlabeled learning scenarios in text-classification, which are the current state of the art methods for generating negative examples in low-density annotation contexts. Lastly, we present two novel algorithms of our own construction, one based on empirical conditional probability, and the other using topic modeling applied to genes and annotations. We demonstrate that our algorithms achieve significantly fewer incorrect negative example predictions than the current state of the art, using multiple benchmarks covering multiple organisms. Our methods may be applied to generate negative examples for any type of method that deals with protein function, and to this end we provide a database of negative examples in several well-studied organisms, for general use (The NoGO database, available at: bonneaulab.bio.nyu.edu/nogo.html).


Axonal branching in lateral olfactory tract is promoted by Nogo signaling.

  • Masumi Iketani‎ et al.
  • Scientific reports‎
  • 2016‎

Mitral cells are major projection neurons of the olfactory bulb (OB) that form an axonal bundle known as the lateral olfactory tract (LOT). After axonal bundle formation, collateral branches sprout from primary axons of the LOT. Recently, we identified LOT usher substance (LOTUS) as an endogenous Nogo receptor-1 (NgR1) antagonist and demonstrated that LOTUS contributes to the formation of the LOT axonal bundle. Immunoblots revealed that the expression level of Nogo-A in the OB developmentally increased during axonal collateral formation. Next, we found that the axonal collateral branches were increased in cultured OB neurons from LOTUS-knockout (KO) mice, whereas they were decreased in cultured OB neurons from NgR1-KO mice. Knockdown of Nogo-A in cultured OB neurons reduced the number of axonal collateral branches, suggesting that endogenous Nogo-A induces axonal branching. Finally, the collateral branches of the LOT were increased in LOTUS-KO mice, whereas those in NgR1-KO mice were decreased. Moreover, the abnormal increase of axonal branching observed in LOTUS-KO mice was rescued in the double mutant of LOTUS- and NgR1-KO mice. These findings suggest that Nogo-A and NgR1 interactions may contribute to axonal branching in LOT development.


RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development.

  • Jie Wang‎ et al.
  • Cell‎
  • 2021‎

RTN4-binding proteins were widely studied as "NoGo" receptors, but their physiological interactors and roles remain elusive. Similarly, BAI adhesion-GPCRs were associated with numerous activities, but their ligands and functions remain unclear. Using unbiased approaches, we observed an unexpected convergence: RTN4 receptors are high-affinity ligands for BAI adhesion-GPCRs. A single thrombospondin type 1-repeat (TSR) domain of BAIs binds to the leucine-rich repeat domain of all three RTN4-receptor isoforms with nanomolar affinity. In the 1.65 Å crystal structure of the BAI1/RTN4-receptor complex, C-mannosylation of tryptophan and O-fucosylation of threonine in the BAI TSR-domains creates a RTN4-receptor/BAI interface shaped by unusual glycoconjugates that enables high-affinity interactions. In human neurons, RTN4 receptors regulate dendritic arborization, axonal elongation, and synapse formation by differential binding to glial versus neuronal BAIs, thereby controlling neural network activity. Thus, BAI binding to RTN4/NoGo receptors represents a receptor-ligand axis that, enabled by rare post-translational modifications, controls development of synaptic circuits.


Nogo receptor expression in microglia/macrophages during experimental autoimmune encephalomyelitis progression.

  • Amani A Alrehaili‎ et al.
  • Neural regeneration research‎
  • 2018‎

Myelin-associated inhibitory factors within the central nervous system (CNS) are considered to be one of the main obstacles for axonal regeneration following disease or injury. The nogo receptor 1 (NgR1) has been well documented to play a key role in limiting axonal regrowth in the injured and diseased mammalian CNS. However, the role of nogo receptor in immune cell activation during CNS inflammation is yet to be mechanistically elucidated. Microglia/macrophages are immune cells that are regarded as pathogenic contributors to inflammatory demyelinating lesions in multiple sclerosis (MS). In this study, the animal model of MS, experimental autoimmune encephalomyelitis (EAE) was induced in ngr1+/+ and ngr1-/- female mice following injection with the myelin oligodendrocyte glycoprotein (MOG35-55) peptide. A fate-map analysis of microglia/macrophages was performed throughout spinal cord sections of EAE-induced mice at clinical scores of 0, 1, 2 and 3, respectively (increasing locomotor disability) from both genotypes, using the CD11b and Iba1 cell markers. Western immunoblotting using lysates from isolated spinal cord microglia/macrophages, along with immunohistochemistry and flow cytometric analysis, was performed to demonstrate the expression of nogo receptor and its two homologs during EAE progression. Myelin protein engulfment during EAE progression in ngr1+/+ and ngr1-/- mice was demonstrated by western immunblotting of lysates from isolated spinal cord microglia/macrophages, detecting levels of Nogo-A and MOG. The numbers of M1 and M2 microglia/macrophage phenotypes present in the spinal cords of EAE-induced ngr1+/+ and ngr1-/- mice, were assessed by flow cytometric analysis using CD38 and Erg-2 markers. A significant difference in microglia/macrophage numbers between ngr1+/+ and ngr1-/- mice was identified during the progression of the clinical symptoms of EAE, in the white versus gray matter regions of the spinal cord. This difference was unrelated to the expression of NgR on these macrophage/microglial cells. We have identified that as EAE progresses, the phagocytic activity of microglia/macrophages with myelin debris, in ngr1-/- mice, was enhanced. Moreover, we show a modulation from a predominant M1-pathogenic to the M2-neurotrophic cell phenotype in the ngr1-/- mice during EAE progression. These findings suggest that CNS-specific macrophages and microglia of ngr1-/- mice may exhibit an enhanced capacity to clear inhibitory molecules that are sequestered in inflammatory lesions.


An Rtn4/Nogo-A-interacting micropeptide modulates synaptic plasticity with age.

  • S Kragness‎ et al.
  • PloS one‎
  • 2022‎

Micropeptides, encoded from small open reading frames of 300 nucleotides or less, are hidden throughout mammalian genomes, though few functional studies of micropeptides in the brain are published. Here, we describe a micropeptide known as the Plasticity-Associated Neural Transcript Short (Pants), located in the 22q11.2 region of the human genome, the microdeletion of which conveys a high risk for schizophrenia. Our data show that Pants is upregulated in early adulthood in the mossy fiber circuit of the hippocampus, where it exerts a powerful negative effect on long-term potentiation (LTP). Further, we find that Pants is secreted from neurons, where it associates with synapses but is rapidly degraded with stimulation. Pants dynamically interacts with Rtn4/Nogo-A, a well-studied regulator of adult plasticity. Pants interaction with Nogo-A augments its influence over postsynaptic AMPA receptor clustering, thus gating plasticity at adult synapses. This work shows that neural micropeptides can act as architectural modules that increase the functional diversity of the known proteome.


Identification and regulation of reticulon 4B (Nogo-B) in renal tubular epithelial cells.

  • Ethan P Marin‎ et al.
  • The American journal of pathology‎
  • 2010‎

Nogo-B is a member of the reticulon family of proteins that has been implicated in diverse forms of vascular injury. Although Nogo-B is expressed in renal tissues, its localization and function in the kidney have not been examined. Here, we report that Nogo-B is expressed specifically in the epithelial cells of the distal nephron segments in the murine kidney. After unilateral ureteral obstruction (UUO) and ischemia/reperfusion, Nogo-B gene and protein levels increased dramatically in the kidney. This increase was driven in part by injury-induced de novo expression in proximal tubules. Examination of Nogo-B immunostaining in human biopsy specimens from patients with acute tubular necrosis showed similar increases in Nogo-B in cortical tubules. Mice genetically deficient in Nogo-A/B were indistinguishable from wild-type (WT) mice based on histological appearance and serum analyses. After UUO, there was a significant delay in recruitment of macrophages to the kidney in the Nogo-A/B-deficient mice. However, measurements of fibrosis, inflammatory gene expression, and histological damage were not significantly different from WT mice. Thus, Nogo-B is highly expressed in murine kidneys in response to experimental injuries and may serve as a marker of diverse forms of renal injury in tissues from mice and humans. Furthermore, Nogo-B may regulate macrophage recruitment after UUO, although it does not greatly affect the degree of tissue injury or fibrosis in this model.


Nogo-C Inhibits Peripheral Nerve Regeneration by Regulating Schwann Cell Apoptosis and Dedifferentiation.

  • Bo Jia‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

While Nogo protein demonstrably inhibits nerve regeneration in the central nervous system (CNS), its effect on Schwann cells in peripheral nerve repair and regeneration following sciatic nerve injury remains unknown. In this research, We assessed the post-injury expression of Nogo-C in an experimental mouse model of sciatic nerve-crush injury. Nogo-C knockout (Nogo-C-/-) mouse was generated to observe the effect of Nogo-C on sciatic nerve regeneration, Schwann cell apoptosis, and myelin disintegration after nerve injury, and the effects of Nogo-C on apoptosis and dedifferentiation of Schwann cells were observed in vitro. We found that the expression of Nogo-C protein at the distal end of the injured sciatic nerve increased in wild type (WT) mice. Compared with the injured WT mice, the proportion of neuronal apoptosis was significantly diminished and the myelin clearance rate was significantly elevated in injured Nogo-C-/- mice; the number of nerve fibers regenerated and the degree of myelination were significantly elevated in Nogo-C-/- mice on Day 14 after injury. In addition, the recovery of motor function was significantly accelerated in the injured Nogo-C-/- mice. The overexpression of Nogo-C in primary Schwann cells using adenovirus-mediated gene transfer promoted Schwann cells apoptosis. Nogo-C significantly reduced the ratio of c-Jun/krox-20 expression, indicating its inhibition of Schwann cell dedifferentiation. Above all, we hold the view that the expression of Nogo-C increases following peripheral nerve injury to promote Schwann cell apoptosis and inhibit Schwann cell dedifferentiation, thereby inhibiting peripheral nerve regeneration.


Nogo receptor is involved in the adhesion of dendritic cells to myelin.

  • Claire L McDonald‎ et al.
  • Journal of neuroinflammation‎
  • 2011‎

Nogo-66 receptor NgR1 and its structural homologue NgR2 are binding proteins for a number of myelin-associated inhibitory factors. After neuronal injury, these inhibitory factors are responsible for preventing axonal outgrowth via their interactions with NgR1 and NgR2 expressed on neurons. In vitro, cells expressing NgR1/2 are inhibited from adhering to and spreading on a myelin substrate. Neuronal injury also results in the presence of dendritic cells (DCs) in the central nervous system, where they can come into contact with myelin debris. The exact mechanisms of interaction of immune cells with CNS myelin are, however, poorly understood.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: