Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Structure of the Macrobrachium rosenbergii nodavirus: A new genus within the Nodaviridae?

  • Kok Lian Ho‎ et al.
  • PLoS biology‎
  • 2018‎

Macrobrachium rosenbergii nodavirus (MrNV) is a pathogen of freshwater prawns that poses a threat to food security and causes significant economic losses in the aquaculture industries of many developing nations. A detailed understanding of the MrNV virion structure will inform the development of strategies to control outbreaks. The MrNV capsid has also been engineered to display heterologous antigens, and thus knowledge of its atomic resolution structure will benefit efforts to develop tools based on this platform. Here, we present an atomic-resolution model of the MrNV capsid protein (CP), calculated by cryogenic electron microscopy (cryoEM) of MrNV virus-like particles (VLPs) produced in insect cells, and three-dimensional (3D) image reconstruction at 3.3 Å resolution. CryoEM of MrNV virions purified from infected freshwater prawn post-larvae yielded a 6.6 Å resolution structure, confirming the biological relevance of the VLP structure. Our data revealed that unlike other known nodavirus structures, which have been shown to assemble capsids having trimeric spikes, MrNV assembles a T = 3 capsid with dimeric spikes. We also found a number of surprising similarities between the MrNV capsid structure and that of the Tombusviridae: 1) an extensive network of N-terminal arms (NTAs) lines the capsid interior, forming long-range interactions to lace together asymmetric units; 2) the capsid shell is stabilised by 3 pairs of Ca2+ ions in each asymmetric unit; 3) the protruding spike domain exhibits a very similar fold to that seen in the spikes of the tombusviruses. These structural similarities raise questions concerning the taxonomic classification of MrNV.


Genomic characterization of covert mortality nodavirus from farming shrimp: Evidence for a new species within the family Nodaviridae.

  • Tingting Xu‎ et al.
  • Virus research‎
  • 2020‎

The prevalence of covert mortality nodavirus (CMNV) has become one of the major threats to the shrimp farming industry in Asia and South America recently. Here, the genomic RNA1 and RNA2 of CMNV were characterized by using transcriptome sequencing and RT-PCR. Our study revealed that RNA1 is 3228 bp in length, and contains two putative Open Reading Frames (ORFs), one encoding the RNA dependent RNA polymerase (RdRp) of length 1043 amino acids and another encoding the protein B2 with a length of 132 amino acids. RNA2 is 1448 bp in length and encodes a capsid protein of 437 amino acids. CMNV shared the highest similarity of 51.78 % for RdRp with the other known nodaviruses. Phylogenetic analyses on the basis of RdRp, B2 and capsid proteins indicated that CMNV might represent a novel viral species in the family Nodaviridae. This study reported the first genome sequence of CMNV and it would be helpful for further studies of CMNV in relation to its evolution, diagnostic technique and control strategy.


An expressed, endogenous Nodavirus-like element captured by a retrotransposon in the genome of the plant parasitic nematode Bursaphelenchus xylophilus.

  • James A Cotton‎ et al.
  • Scientific reports‎
  • 2016‎

Recently, nematode viruses infecting Caenorhabditis elegans have been reported from the family Nodaviridae, the first nematode viruses described. Here, we report the observation of a novel endogenous viral element (EVE) in the genome of Bursaphelenchus xylophilus, a plant parasitic nematode unrelated to other nematodes from which viruses have been characterised. This element derives from a different clade of nodaviruses to the previously reported nematode viruses. This represents the first endogenous nodavirus sequence, the first nematode endogenous viral element, and significantly extends our knowledge of the potential diversity of the Nodaviridae. A search for endogenous elements related to the Nodaviridae did not reveal any elements in other available nematode genomes. Further surveillance for endogenous viral elements is warranted as our knowledge of nematode genome diversity, and in particular of free-living nematodes, expands.


The taxonomy of an Australian nodavirus isolated from mosquitoes.

  • David Warrilow‎ et al.
  • PloS one‎
  • 2018‎

We describe a virus isolated from Culex annulirostris mosquitoes in Australia. Phylogenetic analysis of its RNA-dependent RNA polymerase sequence and that of other related viruses revealed 6 clades, two of which corresponded wholly or partly with existing genera in the family Nodaviridae. There was greater genetic diversity within the family than previously recognized prompting us to suggest that additional genera should be considered within the family.


Suppression of RNA interference increases alphavirus replication and virus-associated mortality in Aedes aegypti mosquitoes.

  • Chris M Cirimotich‎ et al.
  • BMC microbiology‎
  • 2009‎

Arthropod-borne viruses (arboviruses) can persistently infect and cause limited damage to mosquito vectors. RNA interference (RNAi) is a mosquito antiviral response important in restricting RNA virus replication and has been shown to be active against some arboviruses. The goal of this study was to use a recombinant Sindbis virus (SINV; family Togaviridae; genus Alphavirus) that expresses B2 protein of Flock House virus (FHV; family Nodaviridae; genus Alphanodavirus), a protein that inhibits RNAi, to determine the effects of linking arbovirus infection with RNAi inhibition.


A systematic review to describe patterns of animal and human viral research in Rwanda.

  • M Fausta Dutuze‎ et al.
  • International health‎
  • 2023‎

Rwanda is located in the Central East African region where several viral pathogens with global importance were originally described, including human immunodeficiency virus (HIV), Ebola, Zika, Rift Valley Fever (RVF), dengue and a long list of other neglected tropical viral pathogens. Due to many factors, this region has the potential to become a global hotspot for viral emergence. In Rwanda, viral diseases are underreported and the question is whether this is due to the absence of these viruses or a lack of investigation. Like many developing countries, capabilities in Rwanda need improvement despite research efforts throughout the years. This review describes the status of human and animal virus research in Rwanda and identifies relevant research and operational gaps. A comprehensive search was conducted in PubMed for virus research in Rwanda: 233 primary studies on viruses/viral diseases are indexed with connection to Rwanda. From 1958 to 2020, yearly publications generally increased and HIV/acquired immunodeficiency syndrome is the most studied virus. Compared with human viruses, few studies focus on animal and/or zoonotic viruses. The occurrence of the current severe acute respiratory syndrome coronavirus 2 pandemic shows strengthening warning and surveillance systems is critical to efficient preparedness and response. We recommend investment in human capacity, laboratory facilities and research to inform policy for viral surveillance in Rwanda.


Case Report and Genomic Characterization of a Novel Porcine Nodavirus in the United States.

  • Chenghuai Yang‎ et al.
  • Viruses‎
  • 2021‎

Nodaviruses are small bisegmented RNA viruses belonging to the family Nodaviridae. Nodaviruses have been identified in different hosts, including insects, fishes, shrimps, prawns, dogs, and bats. A novel porcine nodavirus was first identified in the United States by applying next-generation sequencing on brain tissues of pigs with neurological signs, including uncontrollable shaking. RNA1 of the porcine nodavirus had the highest nucleotide identity (51.1%) to the Flock House virus, whereas its RNA2 shared the highest nucleotide identity (48%) with the RNA2 segment of caninovirus (Canine nodavirus). Genetic characterization classified porcine nodavirus as a new species under the genus Alphanodavirus. Further studies are needed to understand the pathogenicity and clinical impacts of this virus.


The Viromes of Mosquitoes from the Natural Landscapes of Western Siberia.

  • Vladimir A Ternovoi‎ et al.
  • Viruses‎
  • 2023‎

The metagenomic analysis of mosquitoes allows for the genetic characterization of mosquito-associated viruses in different regions of the world. This study applied a metagenomic approach to identify novel viral sequences in seven species of mosquitoes collected from the Novosibirsk region of western Siberia. Using NGS sequencing, we identified 15 coding-complete viral polyproteins (genomes) and 15 viral-like partial sequences in mosquitoes. The complete sequences for novel viruses or the partial sequences of capsid proteins, hypothetical viral proteins, and RdRps were used to identify their taxonomy. The novel viral sequences were classified within the orders Tymovirales and Picornavirales and the families Partitiviridae, Totiviridae, Tombusviridae, Iflaviridae, Nodaviridae, Permutotetraviridae, and Solemoviridae, with several attributed to four unclassified RNA viruses. Interestingly, the novel putative viruses and viral sequences were mainly associated with the mosquito Coquillettidia richardii. This study aimed to increase our understanding of the viral diversity in mosquitoes found in the natural habitats of Siberia, which is characterized by very long, snowy, and cold winters.


The virome of Drosophila suzukii, an invasive pest of soft fruit.

  • Nathan C Medd‎ et al.
  • Virus evolution‎
  • 2018‎

Drosophila suzukii (Matsumura) is one of the most damaging and costly pests to invade temperate horticultural regions in recent history. Conventional control of this pest is challenging, and an environmentally benign microbial biopesticide is highly desirable. A thorough exploration of the pathogens infecting this pest is not only the first step on the road to the development of an effective biopesticide, but also provides a valuable comparative dataset for the study of viruses in the model family Drosophilidae. Here we use a metatransciptomic approach to identify viruses infecting this fly in both its native (Japanese) and invasive (British and French) ranges. We describe eighteen new RNA viruses, including members of the Picornavirales, Mononegavirales, Bunyavirales, Chuviruses, Nodaviridae, Tombusviridae, Reoviridae, and Nidovirales, and discuss their phylogenetic relationships with previously known viruses. We also detect 18 previously described viruses of other Drosophila species that appear to be associated with D. suzukii in the wild.


Characterisation of Structural Proteins from Chronic Bee Paralysis Virus (CBPV) Using Mass Spectrometry.

  • Aurore Chevin‎ et al.
  • Viruses‎
  • 2015‎

Chronic bee paralysis virus (CBPV) is the etiological agent of chronic paralysis, an infectious and contagious disease in adult honeybees. CBPV is a positive single-stranded RNA virus which contains two major viral RNA fragments. RNA 1 (3674 nt) and RNA 2 (2305 nt) encode three and four putative open reading frames (ORFs), respectively. RNA 1 is thought to encode the viral RNA-dependent RNA polymerase (RdRp) since the amino acid sequence derived from ORF 3 shares similarities with the RdRP of families Nodaviridae and Tombusviridae. The genomic organization of CBPV and in silico analyses have suggested that RNA 1 encodes non-structural proteins, while RNA 2 encodes structural proteins, which are probably encoded by ORFs 2 and 3. In this study, purified CBPV particles were used to characterize virion proteins by mass spectrometry. Several polypeptides corresponding to proteins encoded by ORF 2 and 3 on RNA 2 were detected. Their role in the formation of the viral capsid is discussed.


Genetic analysis of RNA1 and RNA2 of Macrobrachium rosenbergii nodavirus (MrNV) isolated from India.

  • Singaiah NaveenKumar‎ et al.
  • Virus research‎
  • 2013‎

Macrobrachium rosenbergii nodavirus (MrNV) is responsible for the newly emerging catastrophic disease known as white tail disease (WTD) in M. rosenbergii. The complete sequence of RNA2 (1175 bp) and 3126 bp region of RNA1 of an Indian strain of MrNV was generated. Sequence analysis of RNA2 revealed the presence of a single ORF encoding a capsid protein of 371 amino acids with a predicted molecular mass and pI of 41.5 kDa and 8.97 respectively. RNA1 contained two ORFs, one encoding a partial RNA dependent RNA polymerase (RdRp) of length 1034 amino acids and another a B2-like protein with a length 133 amino acids. A phylogenetic analysis based on the amino acid sequence of the capsid protein, to related nodavirus sequences suggests the establishment of new genotypes within the Nodaviridae family and we suggest the name should be genus Gammanodavirus. A new reverse transcriptase-polymerase chain reaction (RT-PCR) assay has been developed and optimized for the detection of shrimp nodavirus with a sensitivity to detect up to 24 copy numbers of plasmid construct.


In vitro infection efficiency of nervous necrosis virus alters depending on amount of viral particles adsorbed onto cells.

  • Han Sol Lee‎ et al.
  • Scientific reports‎
  • 2023‎

Nervous necrosis virus (NNV) in the family Nodaviridae is one of the simplest spherical RNA viruses and is pathogenic to many fish species. We investigated the effect of purified NNV on striped snakehead cells (SSN-1) in terms of adsorption ratio and infection efficiency using the 96-well titration system. The proportion of cytopathic effect (CPE)-positive wells among total number of wells inoculated with the virus (CPE appearance ratio) reduced by 17% each time the NNV infectivity dose was halved (y = 55.7x + 50.6). Thus, subtle differences in NNV infectivity could be accurately detected using this system. Experiments performed to observe alteration of CPE appearance ratio with changing viral doses and adsorption times showed that NNV particles introduced into microplate wells as suspensions in ≤ 100 µl inoculum were adsorbed almost completely onto cells seeded on the wells within 4 days of incubation. Density profile analysis of NNV coat proteins revealed that the NNV suspension at 1 50% tissue culture infectious dose (TCID50) contained 60 particles. Infection efficiency/NNV peaked at 20 particles (1.20%/particle) and then declined gradually with increasing NNV doses. Therefore, in vitro infection efficiency of NNV may alter depending on the quantity of viral particles adsorbed onto cells.


Sites responsible for infectivity and antigenicity on nervous necrosis virus (NNV) appear to be distinct.

  • Hyun Jung Gye‎ et al.
  • Scientific reports‎
  • 2021‎

Nervous necrosis virus (NNV) is a pathogenic fish-virus belonging to the genus Betanodavirus (Nodaviridae). Surface protrusions on NNV particles play a crucial role in both antigenicity and infectivity. We exposed purified NNV particles to different physicochemical conditions to investigate the effects on antigenicity and infectivity, in order to reveal information regarding the conformational stability and spatial relationships of NNV neutralizing-antibody binding sites and cell receptor binding sites. Treatment with PBS at 37 °C, drastically reduced NNV antigenicity by 66-79% on day one, whereas its infectivity declined gradually from 107.6 to 105.8 TCID50/ml over 10 days. When NNV was treated with carbonate/bicarbonate buffers at different pHs, both antigenicity and infectivity of NNV declined due to higher pH. However, the rate of decline with respect to antigenicity was more moderate than for infectivity. NNV antigenicity declined 75-84% after treatment with 2.0 M urea, however, there was no reduction observed in infectivity. The antibodies used in antigenicity experiments have high NNV-neutralizing titers and recognize conformational epitopes on surface protrusions. The maintenance of NNV infectivity means that receptor binding sites are functionally preserved. Therefore, it seems highly likely that NNV neutralizing-antibody binding sites and receptor binding sites are independently located on surface protrusions.


Altered conformational structures of nervous necrosis virus surface protrusions and free coat proteins after incubation at moderate-low temperatures.

  • Hyun Jung Gye‎ et al.
  • Scientific reports‎
  • 2019‎

Nervous necrosis virus (NNV) is a pathogenic fish virus belonging to family Nodaviridae. The objective of this study was to analyze stabilities of NNV surface protrusion and free coat protein (CP) conformational structures by analyzing changes of NNV infectivity and antigenicity after incubation at moderate-low temperatures. When cultured NNV suspension was incubated at 45 °C, its infectivity declined gradually but its antigenicity maintained. In contrast, both infectivity and antigenicity of purified NNV declined after incubation at 45 °C. After heat-treatment, surface protrusions of NNV particles disappeared completely, although viral particle structures maintained. Therefore, the reduction in NNV infectivity appeared to specifically occur as a result of heat-denaturation of virus surface protrusions. The loss of NNV infectivity in the presence of fetal bovine serum (FBS) was delayed compared to virus heated in the absence of FBS, demonstrating that FBS could function as a stabilizer for conformational structures of NNV surface protrusions. Moreover, the stabilizing function of FBS changed depending on salt concentration. Continued maintenance of antigenicity for heated cultured NNV suspension containing free-CPs may suggest that conformational structures corresponding to protrusion-domain of free-CP are more heat-stable than those of surface protrusions on NNV particles.


Metagenomic analysis reveals presence of different animal viruses in commercial fetal bovine serum and trypsin.

  • Peng Zhang‎ et al.
  • Zoological research‎
  • 2022‎

Animal-derived biological products, such as fetal bovine serum (FBS) and trypsin, are important supplements for scientific, pharmaceutical, and medical use. Although preventive guidelines and tests are implemented to reduce potential viral contamination in these biologicals, they do not target unusual or emerging viruses, leading to safety concerns. Using unbiased metagenomics, we investigated the presence of viruses in recently collected commercial FBS and trypsin samples from different geographic regions. In total, we detected viral sequences belonging to Parvoviridae, Anelloviridae, Flaviviridae, Herpesviridae, Caliciviridae, Nodaviridae, Rhabdoviridae, and Paramyxoviridae, including several viruses related to bovine diseases, viruses of potential human and insect origin, and viruses of unknown origin. Bovine parvovirus 3 and bosavirus were detected with high frequency and abundance in FBS, necessitating more stringent testing for these parvoviruses during production. Both bovine norovirus and bovine viral diarrhea virus 1 displayed relatively high genetic distance to closest hits, indicating the presence of new genotypes in farm animals. While the origin of novel lyssavirus and Nipah virus is unclear, their presence raises the possibility of the introduction of pathogenic animal-derived viruses into biologicals. Our results showed relatively widespread contamination of different viruses in biologicals, underscoring the need for robust safety protocol alternatives, such as metagenomic sequencing, to monitor emerging viruses.


Rapid evolution of virus sequences in intrinsically disordered protein regions.

  • Leonid Gitlin‎ et al.
  • PLoS pathogens‎
  • 2014‎

Nodamura Virus (NoV) is a nodavirus originally isolated from insects that can replicate in a wide variety of hosts, including mammals. Because of their simplicity and ability to replicate in many diverse hosts, NoV, and the Nodaviridae in general, provide a unique window into the evolution of viruses and host-virus interactions. Here we show that the C-terminus of the viral polymerase exhibits extreme structural and evolutionary flexibility. Indeed, fewer than 10 positively charged residues from the 110 amino acid-long C-terminal region of protein A are required to support RNA1 replication. Strikingly, this region can be replaced by completely unrelated protein sequences, yet still produce a functional replicase. Structure predictions, as well as evolutionary and mutational analyses, indicate that the C-terminal region is structurally disordered and evolves faster than the rest of the viral proteome. Thus, the function of an intrinsically unstructured protein region can be independent of most of its primary sequence, conferring both functional robustness and sequence plasticity on the protein. Our results provide an experimental explanation for rapid evolution of unstructured regions, which enables an effective exploration of the sequence space, and likely function space, available to the virus.


Molecular characterisation and phylogenetic analysis of Chronic bee paralysis virus, a honey bee virus.

  • Violaine Olivier‎ et al.
  • Virus research‎
  • 2008‎

The complete sequences of the two major RNAs of Chronic bee paralysis virus (CBPV) have been determined. RNA 1 (3674nt long) and RNA 2 (2305nt long) are positive single-stranded RNAs that are capped but not polyadenylated. The 3' ends of both RNAs are unreactive to polymerisation or ligation even in denaturing conditions, a feature already observed in alphanodavirus RNAs. The three previously described smaller RNAs [Overton, H.A., Buck, K.W., Bailey, L., et al., 1982. Relationships between the RNA components of Chronic bee-paralysis virus and those of chronic bee-paralysis virus associate. J. Gen. Virol. 63, 171-179], were not detected in this study, supporting the hypothesis that they would correspond to the three RNAs of the Chronic bee paralysis satellite virus (CBPSV). RNA 1 and RNA 2 encoded three and four overlapping open reading frames (ORFs), respectively. The amino acid sequences deduced from the ORF 3 on RNA 1 shared the conserved motifs of the RNA-dependent RNA polymerase (RdRp) sequence and presented similarities with members of the Nodaviridae and Tombusviridae families. However, no similarities were found between the other CBPV deduced amino acid sequences and sequences in the NCBI databases, suggesting that CBPV is the prototype of a new family of positive single-stranded RNA viruses.


Flock house virus RNA polymerase initiates RNA synthesis de novo and possesses a terminal nucleotidyl transferase activity.

  • Wenzhe Wu‎ et al.
  • PloS one‎
  • 2014‎

Flock House virus (FHV) is a positive-stranded RNA virus with a bipartite genome of RNAs, RNA1 and RNA2, and belongs to the family Nodaviridae. As the most extensively studied nodavirus, FHV has become a well-recognized model for studying various aspects of RNA virology, particularly viral RNA replication and antiviral innate immunity. FHV RNA1 encodes protein A, which is an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for RNA replication. Although the RNA replication of FHV has been studied in considerable detail, the mechanism employed by FHV protein A to initiate RNA synthesis has not been determined. In this study, we characterized the RdRP activity of FHV protein A in detail and revealed that it can initiate RNA synthesis via a de novo (primer-independent) mechanism. Moreover, we found that FHV protein A also possesses a terminal nucleotidyl transferase (TNTase) activity, which was able to restore the nucleotide loss at the 3'-end initiation site of RNA template to rescue RNA synthesis initiation in vitro, and may function as a rescue and protection mechanism to protect the 3' initiation site, and ensure the efficiency and accuracy of viral RNA synthesis. Altogether, our study establishes the de novo initiation mechanism of RdRP and the terminal rescue mechanism of TNTase for FHV protein A, and represents an important advance toward understanding FHV RNA replication.


Dialysis buffer with different ionic strength affects the antigenicity of cultured nervous necrosis virus (NNV) suspensions.

  • Hyun Jung Gye‎ et al.
  • Virus research‎
  • 2016‎

Nervous necrosis virus (NNV) belongs to the genus Betanodavirus (Nodaviridae). It is highly pathogenic to various marine fishes. Here, we investigated the antigenicity changes of cultured NNV suspensions during 14days of dialyses using a dialysis tube at 1.4×10(4) molecular weight cut off (MWCO) in three different buffers (Dulbecco's phosphate buffered saline (D-PBS), 15mM Tris-HCl (pH 8.0), and deionized water (DIW)). Total NNV antigen titers of cultured NNV suspension varied depending on different dialysis buffers. For example, total NNV antigen titer during D-PBS dialysis was increased once but then decreased. During Tris-HCl dialysis, it was relatively stable. During dialysis in DIW, total NNV antigen titer was increased gradually. These antigenicity changes in NNV suspension might be due to changes in the aggregation state of NNV particles and/or coat proteins (CPs). ELISA values of NNV suspension changed due to changing aggregates state of NNV antigens. NNV particles in suspension were aggregated at a certain level. These aggregates were progressive after D-PBS dialysis, but regressive after Tris-HCl dialysis. The purified NNV particles self-aggregated after dialysis in D-PBS or in Tris-HCl containing 600mM NaCl, but not after dialysis in Tris-HCl or DIW. Quantitative analysis is merited to determine NNV antigens in the highly purified NNV particles suspended in buffer at low salt condition.


The Unexplored Virome of Two Atlantic Coast Fish: Contribution of Next-Generation Sequencing to Fish Virology.

  • Andreia Filipa-Silva‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2020‎

Much of the knowledge on viruses is focused on those that can be propagated using cell-cultures or that can cause disease in humans or in economically important animals and plants. However, this only reflects a small portion of the virosphere. Therefore, in this study, we explore by targeted next-generation sequencing, how the virome varies between Atlantic horse mackerels and gilthead seabreams from fisheries and aquaculture from the center and south regions of Portugal. Viral genomes potentially pathogenic to fish and crustaceans, as well as to humans, were identified namelyese included Astroviridae, Nodaviridae, Hepadnaviridae, Birnaviridae, Caliciviridae, and Picornaviridae families. Also bacteriophages sequences were identified corresponding to the majority of sequencese detected, with Myoviridae, Podoviridae, and Siphoviridae, the most widespread families in both fish species. However, these findings can also be due to the presence of bacteria in fish tissues, or even to contamination. Overall, seabreams harbored viruses from a smaller number of families in comparison with mackerels. Therefore, the obtained data show that fish sold for consumption can harbor a high diversity of viruses, many of which are unknown, reflecting the overall uncharacterized virome of fish. While cross-species transmission of bonafide fish viruses to humans is unlikely, the finding of human pathogenic viruses in fish suggest that fish virome can be a potential threat regarding food safety.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: