Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,993 papers

XIAP promotes melanoma growth by inducing tumour neutrophil infiltration.

  • Mila Daoud‎ et al.
  • EMBO reports‎
  • 2022‎

Elevated expression of the X-linked inhibitor of apoptosis protein (XIAP) has been frequently reported in malignant melanoma suggesting that XIAP renders apoptosis resistance and thereby supports melanoma progression. Independent of its anti-apoptotic function, XIAP mediates cellular inflammatory signalling and promotes immunity against bacterial infection. The pro-inflammatory function of XIAP has not yet been considered in cancer. By providing detailed in vitro analyses, utilising two independent mouse melanoma models and including human melanoma samples, we show here that XIAP is an important mediator of melanoma neutrophil infiltration. Neutrophils represent a major driver of melanoma progression and are increasingly considered as a valuable therapeutic target in solid cancer. Our data reveal that XIAP ubiquitylates RIPK2, involve TAB1/RIPK2 complex and induce the transcriptional up-regulation and secretion of chemokines such as IL8, that are responsible for intra-tumour neutrophil accumulation. Alteration of the XIAP-RIPK2-TAB1 inflammatory axis or the depletion of neutrophils in mice reduced melanoma growth. Our data shed new light on how XIAP contributes to tumour growth and provides important insights for novel XIAP targeting strategies in cancer.


Pentraxin 3 regulates neutrophil infiltration to the brain during neuroinflammation.

  • Ivana Rajkovic‎ et al.
  • AMRC open research‎
  • 2019‎

Introduction: The acute phase protein pentraxin 3 (PTX3) is known for its anti-inflammatory effects through downregulating neutrophil transmigration during peripheral inflammation. Furthermore, we have previously demonstrated a neuroprotective and neuroreparative effect of PTX3 after cerebral ischaemia. Here we investigated, to our knowledge for the first time, the role of PTX3 in neutrophil transmigration and neurotoxicity following lipopolysaccharide (LPS)-induced cerebral inflammation and cerebral ischaemia. Methods: Neutrophil transmigration through interleukin-1β (IL-1β) activated brain endothelium and neurotoxicity of neutrophils isolated from wild-type (WT) or PTX3 knock-out (KO) mice was assessed in vitro. Primary cortical neuronal death after treatment with transmigrated neutrophils was quantified by lactate dehydrogenase (LDH) assay. Cerebral inflammation or ischemia was induced in WT and PTX3 KO mice via intrastriatal LPS injection or by transient middle cerebral artery occlusion (MCAo) respectively. Subsequent neutrophil infiltration in the brain was assessed by immunohistochemistry and the expression of pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1β by enzyme-linked immunosorbent assay (ELISA). Results: Neutrophils isolated from WT mice after intrastriatal LPS injection transmigrated significantly more through IL-1β activated brain endothelium compared to neutrophils from PTX3 KO mice. Transmigrated WT and PTX3 KO neutrophils were significantly more neurotoxic than corresponding non-transmigrated neutrophils; however, no significant differences in neurotoxicity between genotypes were observed. PTX3 reduced the number of transmigrated neutrophils to the brain after intrastriatal LPS injection. Furthermore, PTX3 KO mice showed significantly increased levels of neutrophils in the brain after LPS administration or in the ischaemic hemisphere after MCAo, compared to WT mice. Conclusion: Our study shows that PTX3 regulates neutrophil transmigration in the CNS during neuroinflammation, demonstrating the potential of PTX3 as an effective therapeutic target in neuroinflammatory conditions.


Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation.

  • Yansen Xiao‎ et al.
  • Cancer cell‎
  • 2021‎

Lung metastasis is the major cause of breast cancer-related mortality. The neutrophil-associated inflammatory microenvironment aids tumor cells in metastatic colonization in lungs. Here, we show that tumor-secreted protease cathepsin C (CTSC) promotes breast-to-lung metastasis by regulating recruitment of neutrophils and formation of neutrophil extracellular traps (NETs). CTSC enzymatically activates neutrophil membrane-bound proteinase 3 (PR3) to facilitate interleukin-1β (IL-1β) processing and nuclear factor κB activation, thus upregulating IL-6 and CCL3 for neutrophil recruitment. In addition, the CTSC-PR3-IL-1β axis induces neutrophil reactive oxygen species production and formation of NETs, which degrade thrombospondin-1 and support metastatic growth of cancer cells in the lungs. CTSC expression and secretion are associated with NET formation and lung metastasis in human breast tumors. Importantly, targeting CTSC with compound AZD7986 effectively suppresses lung metastasis of breast cancer in a mouse model. Overall, our findings reveal a mechanism of how tumor cells regulate neutrophils in metastatic niches and support CTSC-targeting approaches for cancer treatment.


p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration.

  • Bárbara González-Terán‎ et al.
  • The EMBO journal‎
  • 2016‎

Non-alcoholic fatty liver disease (NAFLD) is a major health problem and the main cause of liver disease in Western countries. Although NAFLD is strongly associated with obesity and insulin resistance, its pathogenesis remains poorly understood. The disease begins with an excessive accumulation of triglycerides in the liver, which stimulates an inflammatory response. Alternative p38 mitogen-activated kinases (p38γ and p38δ) have been shown to contribute to inflammation in different diseases. Here we demonstrate that p38δ is elevated in livers of obese patients with NAFLD and that mice lacking p38γ/δ in myeloid cells are resistant to diet-induced fatty liver, hepatic triglyceride accumulation and glucose intolerance. This protective effect is due to defective migration of p38γ/δ-deficient neutrophils to the damaged liver. We further show that neutrophil infiltration in wild-type mice contributes to steatosis development by means of inflammation and liver metabolic changes. Therefore, p38γ and p38δ in myeloid cells provide a potential target for NAFLD therapy.


Morphine reduces local cytokine expression and neutrophil infiltration after incision.

  • J David Clark‎ et al.
  • Molecular pain‎
  • 2007‎

Inflammation and nociceptive sensitization are hallmarks of tissue surrounding surgical incisions. Recent studies demonstrate that several cytokines may participate in the enhancement of nociception near these wounds. Since opioids like morphine interact with neutrophils and other immunocytes, it is possible that morphine exerts some of its antinociceptive action after surgical incision by altering the vigor of the inflammatory response. On the other hand, keratinocytes also express opioid receptors and have the capacity to produce cytokines after injury. Our studies were directed towards determining if opioids alter cytokine production near incisions and to identify cell populations responsible for producing these cytokines.


STAT3 Activation Correlates with Adventitial Neutrophil Infiltration in Human Aortic Dissection.

  • Shohei Yoshida‎ et al.
  • Annals of vascular diseases‎
  • 2019‎

Objective: Aortic dissection (AD) is a fatal disease that is caused by the rapid destruction of the aortic wall. Although recent studies in animal models indicate an important relationship between inflammation and tissue destruction, activation status of inflammatory signaling and its relation to the inflammatory cell infiltration are poorly characterized in human AD. Materials and Methods: We examined the activation of inflammatory signaling molecules NFκB and STAT3, and neutrophil infiltration in AD tissue samples that were obtained during the surgical repair within 24 h after AD onset. Results: Activation of NFκB was observed mainly in the intima both in AD samples and in aortic samples without AD. Activation of STAT3 was observed in AD samples, but not in the aortic sample without AD. Neutrophil infiltration was observed predominantly in the adventitial layer of AD samples. Histological analysis revealed that STAT3 was activated in cells other than neutrophils. Notably, STAT3 activation and neutrophil infiltration showed positive correlation in adventitial layer of AD tissue. Conclusion: These findings demonstrated that adventitial STAT3 activation was associated with neutrophil infiltration, suggesting their importance in AD pathogenesis.


Atovaquone attenuates experimental colitis by reducing neutrophil infiltration of colonic mucosa.

  • Laura D Manzanares‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Ulcerative colitis (UC) is a chronic relapsing disease featuring aberrant accumulation of neutrophils in colonic mucosa and the luminal space. Although significant advances in UC therapy have been made with the development of novel biologics and small molecules targeting immune responses, success of most current therapies is still limited, with significant safety concerns. Thus, there is a need to develop additional safe and effective therapies for the treatment of UC. Antimalarial drugs have been safely used for many years to resolve tissue inflammation and the associated pathologies. Atovaquone is a recent FDA-approved antimalarial drug that has shown anti-viral and tumor-suppressive properties in vitro however, its role in mucosal inflammation has not been evaluated. Using pre-clinical murine DSS-induced colitis model combined with complementary in vivo peritonitis and ex vivo human neutrophil activation and chemotaxis assays we investigated functional and mechanistic impacts of atovaquone on disease resolution and neutrophil trafficking. We demonstrate that atovaquone promotes resolution of DSS-induced murine colitis by reducing neutrophil accumulation in the inflamed colonic mucosa. Mechanistically, we show that atovaquone suppressed induction of CD11b expression in neutrophils, reducing their polarization and migratory ability. Thus, our findings identify a new role of atovaquone in promoting resolution of mucosal inflammation, supporting the idea of potential repurposing of this FDA-approved drug as UC therapeutic.


Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism.

  • María Crespo‎ et al.
  • eLife‎
  • 2020‎

Liver metabolism follows diurnal fluctuations through the modulation of molecular clock genes. Disruption of this molecular clock can result in metabolic disease but its potential regulation by immune cells remains unexplored. Here, we demonstrated that in steady state, neutrophils infiltrated the mouse liver following a circadian pattern and regulated hepatocyte clock-genes by neutrophil elastase (NE) secretion. NE signals through c-Jun NH2-terminal kinase (JNK) inhibiting fibroblast growth factor 21 (FGF21) and activating Bmal1 expression in the hepatocyte. Interestingly, mice with neutropenia, defective neutrophil infiltration or lacking elastase were protected against steatosis correlating with lower JNK activation, reduced Bmal1 and increased FGF21 expression, together with decreased lipogenesis in the liver. Lastly, using a cohort of human samples we found a direct correlation between JNK activation, NE levels and Bmal1 expression in the liver. This study demonstrates that neutrophils contribute to the maintenance of daily hepatic homeostasis through the regulation of the NE/JNK/Bmal1 axis.


Recombinant human thioredoxin suppresses lipopolysaccharide-induced bronchoalveolar neutrophil infiltration in rat.

  • Shugo Ueda‎ et al.
  • Life sciences‎
  • 2006‎

Human thioredoxin (TRX) is a multifunctional redox-active protein. We previously reported that the intraperitoneal administration of recombinant human thioredoxin (rhTRX) attenuates inflammatory cytokine- or bleomycin-induced lung injury in mice. In this study, the effect of rhTRX injected intravenously after lipopolysaccharide (LPS) injection was analyzed in rats. Rats were injected with LPS followed by treatment with rhTRX. Although the bolus injection exerted no protective effect, continuous intravenous administration of rhTRX significantly suppressed percentage number of neutrophils in bronchoalveolar lavage fluid. Histological examination also showed that rhTRX decreased neutrophil infiltration in the lung tissues. Administered rhTRX was mainly excreted into the urine and the tissue accumulation of rhTRX in the lung was marginal. LPS-induced oxidative stress in the lung was slight in this model. These results demonstrated that continuous intravenous administration of rhTRX suppresses LPS-induced bronchoalveolar neutrophil infiltration by an anti-chemotactic effect. Administration of rhTRX did not promote the tumor growth nor affect chemosensitivity in the xenotransplantation model, suggesting the safety of rhTRX therapy for cancer patients.


Lysophosphatidylcholine aggravates contact hypersensitivity by promoting neutrophil infiltration and IL17 expression.

  • Mi Hye Song‎ et al.
  • BMB reports‎
  • 2021‎

Lysophosphatidylcholine (LPC) is a bioactive lysolipid known to contribute to the development of lung allergic diseases. However, it remains unknown whether LPC possesses proinflammatory properties in the skin as well. Here, we investigated this issue by injection of LPC into the murine contact hypersensitivity (CHS) model induced by 2,4-dinitrofluorobenzene (DNFB). LPC increased the expression of IL17, recruited more neutrophils, and eventually aggravated the CHS in the skins. Moreover, the effects of LPC diminished after neutralizing IL17 or depleting neutrophils. Mechanistically, LPC upregulated not only IL17 but also CXCL1 and CXCL2 in a G2A-dependent manner. Taken together, our study demonstrated that the upregulation of LPC could contribute to allergic skin inflammation by increasing IL17 expression and neutrophil recruitment via G2A receptor. [BMB Reports 2021; 54(4): 203-208].


MiR-182-5p enhances in vitro neutrophil infiltration in Kawasaki disease.

  • Sung-Chou Li‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2019‎

Kawasaki disease (KD) patients could develop coronary artery lesion (CAL) which threatens children's life. A previous study identified KD biomarker miRNAs that could discriminate KD patients from febrile non-KD patients. We wonder whether these KD prediction biomarkers could be further applied to predict CAL formation in KD patients.


Systemic murine cathelicidin CRAMP safely attenuated colonic neutrophil infiltration in pigs.

  • Cristina C Fodor‎ et al.
  • Veterinary immunology and immunopathology‎
  • 2022‎

Post-weaning diarrheic colitis, often caused by enteropathogens, are severe and potentially lethal diseases in young pigs. Conventional treatment with antibiotics is problematic due to increasing prevalence of multi-drug resistant bacteria. Few alternative treatments exist, so development of antibiotic-free therapies is urgently needed for livestock. Cathelicidin peptides, produced by epithelial cells and neutrophils, are microbicidal compounds capable of modulating innate immune and inflammatory responses. However, the effects of exogenous cathelicidin on gut homeostasis is poorly understood in pigs. We administered the murine cathelicidin CRAMP systemically to healthy pigs, to establish the peptide's safety and assess its ability to modulate colonic mucosal defenses. A single intraperitoneal injection of CRAMP was well tolerated up to two weeks and pigs remained clinically healthy. CRAMP caused some alteration of mucus glycosylation patterns in the colon by increasing sialylated mucins (P < 0.05) and decreased neutrophil influx close to the epithelium (P < 0.001). This study supports further investigation of CRAMP as an immunomodulatory treatment for infectious colitis in pigs.


Excess neutrophil infiltration during cytomegalovirus brain infection of interleukin-10-deficient mice.

  • Manohar B Mutnal‎ et al.
  • Journal of neuroimmunology‎
  • 2010‎

Wild-type mice control murine cytomegalovirus (MCMV) brain infection, but identical infection is lethal to animals deficient in interleukin (IL)-10. Here, we report that MCMV-infected IL-10 knockout (KO) mice displayed a marked increase in neutrophil infiltration into the infected, IL-10-deficient brain when compared to wild-type animals. Enhanced microglial cell activation, determined by MHC class II up-regulation, overexpression of CXCL2, and elevated P-selectin mRNA levels were observed. In vivo blocking of CXCL2 attenuated neutrophil infiltration and significantly improved the outcome of infection. Collectively, these data indicate that the absence of IL-10 results in pathologic neutrophil infiltration into MCMV-infected brains.


Loss of CX3CR1 augments neutrophil infiltration into cochlear tissues after acoustic overstimulation.

  • Celia Zhang‎ et al.
  • Journal of neuroscience research‎
  • 2021‎

The cochlea, the sensory organ for hearing, has a protected immune environment, segregated from the systemic immune system by the blood-labyrinth barrier. Previous studies have revealed that acute acoustic injury causes the infiltration of circulating leukocytes into the cochlea. However, the molecular mechanisms controlling immune cell trafficking are poorly understood. Here, we report the role of CX3CR1 in regulating the entry of neutrophils into the cochlea after acoustic trauma. We employed B6.129P-Cx3cr1tm1Litt /J mice, a transgenic strain that lacks the gene, Cx3cr1, for coding the fractalkine receptor. Our results demonstrate that lack of Cx3cr1 results in the augmentation of neutrophil infiltration into cochlear tissues after exposure to an intense noise of 120 dB SPL for 1 hr. Neutrophil distribution in the cochlea is site specific, and the infiltration level is positively associated with noise intensity. Moreover, neutrophils are short lived and macrophage phagocytosis plays a role in neutrophil clearance, consistent with typical neutrophil dynamics in inflamed non-cochlear tissues. Importantly, our study reveals the potentiation of noise-induced hearing loss and sensory cell loss in Cx3cr1-/- mice. In wild-type control mice (Cx3cr1+/+ ) exposed to the same noise, we also found neutrophils. However, neutrophils were present primarily inside the microvessels of the cochlea, with only a few in the cochlear tissues. Collectively, our data implicate CX3CR1-mediated signaling in controlling neutrophil migration from the circulation into cochlear tissues and provide a better understanding of the impacts of neutrophils on cochlear responses to acoustic injury.


VCAM-1-mediated neutrophil infiltration exacerbates ambient fine particle-induced lung injury.

  • Anfeng Cui‎ et al.
  • Toxicology letters‎
  • 2019‎

Fine ambient particle matter (PM2.5) induces inflammatory lung injury; however, whether intratracheal administration of PM2.5 increases pulmonary polymorphonuclear leukocyte (PMN) infiltration, the mechanism of infiltration, and if these cells exacerbate PM2.5-induced lung injury are unknown.


RNF128 regulates neutrophil infiltration and myeloperoxidase functions to prevent acute lung injury.

  • Pei-Yao Liu‎ et al.
  • Cell death & disease‎
  • 2023‎

Acute lung injury (ALI) is characterised by severe pulmonary inflammation, alveolar-capillary barrier disruption, and pulmonary oedema. Therefore, establishing effective therapeutic targets for ALI prevention is crucial. The present study reports a novel function of RNF128 in regulating LPS-induced ALI. Severe lung damage and increased immune cell infiltration were detected in RNF128-deficient mice. In vitro experiments revealed that RNF128 inhibits neutrophil activation by binding to myeloperoxidase (MPO) and reducing its levels and activity. Moreover, RNF128 regulates alveolar macrophage activation and neutrophil infiltration by interacting with TLR4, targeting it for degradation, and inhibiting NF-κB activation, hence decreasing pro-inflammatory cytokines. Our results demonstrate for the first time that RNF128 is a negative regulator of MPO and TLR4 in neutrophils and alveolar macrophages, respectively. However, AAV9-mediated RNF128 overexpression alleviated lung tissue damage and reduced inflammatory cell infiltration. Thus, RNF128 is a promising therapeutic candidate for pharmacological interventions in ALI.


Lipopolysaccharide from the Cyanobacterium Geitlerinema sp. Induces Neutrophil Infiltration and Lung Inflammation.

  • Julie A Swartzendruber‎ et al.
  • Toxins‎
  • 2022‎

Glucocorticoid-resistant asthma, which predominates with neutrophils instead of eosinophils, is an increasing health concern. One potential source for the induction of neutrophil-predominant asthma is aerosolized lipopolysaccharide (LPS). Cyanobacteria have recently caused significant tidal blooms, and aerosolized cyanobacterial LPS has been detected near the cyanobacterial overgrowth. We hypothesized that cyanobacterial LPS contributes to lung inflammation by increasing factors that promote lung inflammation and neutrophil recruitment. To test this hypothesis, c57Bl/6 mice were exposed intranasally to LPS from the cyanobacterium member, Geitlerinema sp., in vivo to assess neutrophil infiltration and the production of pro-inflammatory cytokines and chemokines from the bronchoalveolar fluid by ELISA. Additionally, we exposed the airway epithelial cell line, A549, to Geitlerinema sp. LPS in vitro to confirm that airway epithelial cells were stimulated by this LPS to increase cytokine production and the expression of the adhesion molecule, ICAM-1. Our data demonstrate that Geitlerinema sp. LPS induces lung neutrophil infiltration, the production of pro-inflammatory cytokines such as Interleukin (IL)-6, Tumor necrosis factor-alpha, and Interferongamma as well as the chemokines IL-8 and RANTES. Additionally, we demonstrate that Geitlerinema sp. LPS directly activates airway epithelial cells to produce pro-inflammatory cytokines and the adhesion molecule, Intercellular Adhesion Molecule-1 (ICAM-1), in vitro using the airway epithelial cell line, A549. Based on our findings that use Geitlerinema sp. LPS as a model system, the data indicate that cyanobacteria LPS may contribute to the development of glucocorticoid-resistant asthma seen near water sources that contain high levels of cyanobacteria.


Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation.

  • Kate J Gurney‎ et al.
  • Neurobiology of disease‎
  • 2006‎

Blood-brain barrier (BBB) opening is mediated by matrix metalloproteinases (MMPs) in neuroinflammation. We tested the hypothesis that MMP-3 plays a role in BBB damage, using MMP-3 knockout (KO) mice and lipopolysaccharide (LPS)-induced opening of the BBB. We found less disruption of the BBB after intracerebral LPS injection in MMP-3 KO mice than in wild type (P<0.0006). MMP-3 KO mice had less MMP-9 than WT mice but similar levels of activation. Moreover, MMP-9 mRNA levels were increased to a similar level in both the MMP-3 KO and WT, suggesting both endogenous and exogenous sources. Unbiased stereology showed increased neutrophil counts in the brains of MMP-3 WT compared to KO mice. Degradation of tight junction proteins, claudin-5 and occludin, and the basal lamina protein, laminin-alpha1, was less affected in the KO than in the WT. Our results provide the first in vivo evidence that MMP-3 attacks the basal lamina and tight junction proteins, opening the BBB, thereby facilitating neutrophil influx.


Fpr2/CXCL1/2 Controls Rapid Neutrophil Infiltration to Inhibit Streptococcus agalactiae Infection.

  • Zeyu Sun‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Streptococcus agalactiae, also known as group B streptococcus (GBS), can cause pneumonia, meningitis, and bacteremia, making it a pathogen that can increase the risk of death in newborns and immunodeficient individuals. Neutrophils are the first barrier to a host's innate immune defense against these infections. Fpr2(Formyl peptide receptor 2) is an important chemotactic receptor of neutrophils, though its activation would cause pro- and anti-inflammatory effects. In this study, we found that mice without Fpr2 receptor were highly susceptible to GBS infections. These mice demonstrated decreased chemotaxis to neutrophils, decreased bactericidal ability of neutrophils, and high mortality. RNA-seq and Luminex assay indicated that Fpr2 activates key signal molecules downstream and produces chemokines CXCL1/2 to chemotaxis neutrophils. Like Fpr2-/-, CXCL1/2 or neutrophil depletion impairs host's ability to defend against GBS infection. Altogether, these data indicate that Fpr2 contributes to a host's ability to control GBS infection and that a lack of Fpr2 was associated with selective impairment during the production of chemokines CXCL1 and CXCL2 as well as neutrophil recruitment. Here, We clarified that Fpr2, as a chemotactic receptor, could not only directly chemotactic neutrophils, but also regulate the production of chemokines to control infection by chemotactic neutrophils.


TRIM26 alleviates fatal immunopathology by regulating inflammatory neutrophil infiltration during Candida infection.

  • Guimin Zhao‎ et al.
  • PLoS pathogens‎
  • 2024‎

Fungal infections have emerged as a major concern among immunocompromised patients, causing approximately 2 million deaths each year worldwide. However, the regulatory mechanisms underlying antifungal immunity remain elusive and require further investigation. The E3 ligase Trim26 belongs to the tripartite motif (Trim) protein family, which is involved in various biological processes, including cell proliferation, antiviral innate immunity, and inflammatory responses. Herein, we report that Trim26 exerts protective antifungal immune functions after fungal infection. Trim26-deficient mice are more susceptible to fungemia than their wild-type counterparts. Mechanistically, Trim26 restricts inflammatory neutrophils infiltration and limits proinflammatory cytokine production, which can attenuate kidney fungal load and renal damage during Candida infection. Trim26-deficient neutrophils showed higher proinflammatory cytokine expression and impaired fungicidal activity. We further demonstrated that excessive neutrophils infiltration in the kidney was because of the increased production of chemokines CXCL1 and CXCL2, which are mainly synthesized in the macrophages or dendritic cells of Trim26-deficient mice after Candida albicans infections. Together, our study findings unraveled the vital role of Trim26 in regulating antifungal immunity through the regulation of inflammatory neutrophils infiltration and proinflammatory cytokine and chemokine expression during candidiasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: