Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

MRI characteristics of chemotherapy-related central neurotoxicity: a pictorial review.

  • Mina F G Isaac‎ et al.
  • Insights into imaging‎
  • 2024‎

The relentless advancement of chemotherapeutic agents has enhanced survival rates among cancer patients. However, this success comes with an increased prevalence of chemotherapy-induced neurotoxicity, which often mimics the symptoms of metastatic disease or paraneoplastic syndromes and poses a diagnostic challenge for clinicians. Imaging, particularly MRI, plays a pivotal role in unraveling this conundrum.This comprehensive review explores the MRI patterns associated with central neurotoxicities induced by various chemotherapeutic agents. Our objective is to provide radiologists and clinicians with illustrative diagrams that offer a structured approach to diagnosing these conditions. By enhancing the understanding of these distinctive MRI patterns, we aim to facilitate accurate and timely diagnosis, ultimately improving patient care in the context of evolving cancer treatments.Critical relevance statementThis article describes the essential role of MRI in identifying distinct patterns of chemotherapy-induced central neurotoxicity, enabling early diagnosis and improved patient care within the field of clinical radiology.Key points• Chemotherapy-induced neurotoxicity is a growing concern for cancer patients, and MRI is a key tool in diagnosis.• This review highlights distinctive MRI patterns associated with various chemotherapy-induced neurotoxicities.• Understanding these patterns improves patient care, ensuring timely intervention and accurate diagnosis in the complex world of cancer treatment.


Oxaliplatin neurotoxicity involves peroxisome alterations. PPARγ agonism as preventive pharmacological approach.

  • Matteo Zanardelli‎ et al.
  • PloS one‎
  • 2014‎

The development of neuropathic syndromes is an important, dose limiting side effect of anticancer agents like platinum derivates, taxanes and vinca alkaloids. The causes of neurotoxicity are still unclear but the impairment of the oxidative equilibrium is strictly related to pain. Two intracellular organelles, mitochondria and peroxisomes cooperate to the maintaining of the redox cellular state. Whereas a relationship between chemotherapy-dependent mitochondrial alteration and neuropathy has been established, the role of peroxisome is poor explored. In order to study the mechanisms of oxaliplatin-induced neurotoxicity, peroxisomal involvement was evaluated in vitro and in vivo. In primary rat astrocyte cell culture, oxaliplatin (10 µM for 48 h or 1 µM for 5 days) increased the number of peroxisomes, nevertheless expression and functionality of catalase, the most important antioxidant defense enzyme in mammalian peroxisomes, were significantly reduced. Five day incubation with the selective Peroxisome Proliferator Activated Receptor-γ (PPAR-γ) antagonist G3335 (30 µM) induced a similar peroxisomal impairment suggesting a relationship between PPARγ signaling and oxaliplatin neurotoxicity. The PPARγ agonist rosiglitazone (10 µM) reduced the harmful effects induced both by G3335 and oxaliplatin. In vivo, in a rat model of oxaliplatin induced neuropathy, a repeated treatment with rosiglitazone (3 and 10 mg kg(-1) per os) significantly reduced neuropathic pain evoked by noxious (Paw pressure test) and non-noxious (Cold plate test) stimuli. The behavioral effect paralleled with the prevention of catalase impairment induced by oxaliplatin in dorsal root ganglia. In the spinal cord, catalase protection was showed by the lower rosiglitazone dosage without effect on the astrocyte density increase induced by oxaliplatin. Rosiglitazone did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. These results highlight the role of peroxisomes in oxaliplatin-dependent nervous damage and suggest PPARγ stimulation as a candidate to counteract oxaliplatin neurotoxicity.


Acute in vivo neurotoxicity of peptides from Maedi Visna virus transactivating protein Tat.

  • I Starling‎ et al.
  • Brain research‎
  • 1999‎

Lentiviruses such as Maedi Visna virus (MVV) in sheep, and human immunodeficiency virus (HIV) in man often cause a variety of neurological syndromes in later stages of infection. Neuropathological investigations reveal damage to myelin and astrocytosis in both white and grey matter. MVV infection induces axonal damage with some areas of necrosis while neuronal loss, and synaptic damage have been reported in HIV-1 infection. It is not clear, at present, how this neurodegeneration is mediated but, as these viruses do not directly infect neurons, an indirect neurotoxic action of the viruses is indicated. Previous experiments have shown that the intra-striatal injection in rats of a synthetic peptide derived from the basic region of the MVV transactivating protein Tat causes considerable neurotoxicity 1 week post-operatively. By in vivo stereotaxic injections of the same synthetic peptide, and subsequent immunocytochemical detection of neurons, astrocytes and microglia, we show that this neurotoxicity displays a distinctive and unusual lesion profile and is evident as rapidly as 0.5 h post-operatively. Furthermore, neuroprotection studies suggest that the early effects of the MVV tat peptide may involve glutamate neurotoxicity via the N-methyl-D-aspartate (NMDA) receptors since the application of dizolcipine (MK801) reduces the volume of the lesion seen at 1 h after the injection of neurotoxic peptide, while L-NAME is ineffective. The mechanism of this early neurotoxicity is thus different from the longer term actions already described.


Inhibition of NHE1 transport activity and gene transcription in DRG neurons in oxaliplatin-induced painful peripheral neurotoxicity.

  • Marianna Dionisi‎ et al.
  • Scientific reports‎
  • 2023‎

Oxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN), one of the major dose-limiting side effects of colorectal cancer treatment, is characterized by both acute and chronic syndromes. Acute exposure to low dose OHP on dorsal root ganglion (DRG) neurons is able to induce an increase in intracellular calcium and proton concentration, thus influencing ion channels activity and neuronal excitability. The Na+/H+ exchanger isoform-1 (NHE1) is a plasma membrane protein that plays a pivotal role in intracellular pH (pHi) homeostasis in many cell types, including nociceptors. Here we show that OHP has early effects on NHE1 activity in cultured mouse DRG neurons: the mean rate of pHi recovery was strongly reduced compared to vehicle-treated controls, reaching levels similar to those obtained in the presence of cariporide (Car), a specific NHE1 antagonist. The effect of OHP on NHE1 activity was sensitive to FK506, a specific calcineurin (CaN) inhibitor. Lastly, molecular analyses revealed transcriptional downregulation of NHE1 both in vitro, in mouse primary DRG neurons, and in vivo, in an OIPN rat model. Altogether, these data suggest that OHP-induced intracellular acidification of DRG neurons largely depends on CaN-mediated NHE1 inhibition, revealing new mechanisms that OHP could exert to alter neuronal excitability, and providing novel druggable targets.


Insights into Structure-Activity Relationships of 3-Arylhydrazonoindolin-2-One Derivatives for Their Multitarget Activity on β-Amyloid Aggregation and Neurotoxicity.

  • Rosa Purgatorio‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Despite the controversial outcomes of clinical trials executed so far, the prevention of β-amyloid (Aβ) deposition and neurotoxicity by small molecule inhibitors of Aβ aggregation remains a target intensively pursued in the search of effective drugs for treating Alzheimer’s disease (AD) and related neurodegeneration syndromes. As a continuation of previous studies, a series of new 3-(2-arylhydrazono)indolin-2-one derivatives was synthesized and assayed, investigating the effects of substitutions on both the indole core and arylhydrazone moiety. Compared with the reference compound 1, we disclosed equipotent derivatives bearing alkyl substituents at the indole nitrogen, and fairly tolerated bioisosteric replacements at the arylhydrazone moiety. For most of the investigated compounds, the inhibition of Aβ40 aggregation (expressed as pIC50) was found to be correlated with lipophilicity, as assessed by a reversed-phase HPLC method, through a bilinear relationship. The N¹-cyclopropyl derivative 28 was tested in cell-based assays of Aβ42 oligomer toxicity and oxidative stress induced by hydrogen peroxide, showing significant cytoprotective effects. This study confirmed the versatility of isatin in preparing multitarget small molecules affecting different biochemical pathways involved in AD.


Anxiolytic Effects of 8-O-Acetyl Shanzhiside Methylester on Acute and Chronic Anxiety via Inflammatory Response Inhibition and Excitatory/Inhibitory Transmission Imbalance.

  • Ting Sun‎ et al.
  • Neurotoxicity research‎
  • 2020‎

Anxiety leads to a global decline in quality of life and increase in social burden. However, treatments are limited, because the molecular mechanisms underlying complex emotional disorders are poorly understood. We explored the anxiolytic effects of 8-O-acetyl shanzhiside methylester (8-OaS), an active component in Lamiophlomis rotata (L. rotata; Benth.) or Kudo, a traditional herb that has been shown to be effective in the clinical treatment of chronic pain syndromes in China. Two mouse anxiety models were used: forced swimming stress (FSS)-induced anxiety and complete Freund's adjuvant (CFA)-induced chronic inflammatory pain. All animal behaviors were analyzed on the elevated plus maze and in the open-field test. 8-OaS significantly ameliorated anxiety-like behaviors in both anxiety models and inhibited the translation enhancement of GluN2A, GluN2B, and PSD95. Moreover, a reduction in GABA receptors disrupted the excitatory/inhibitory (E/I) balance in the basolateral amygdala (BLA), indicated by increased excitatory and decreased inhibitory presynaptic release. 8-OaS also blocked microglia activation and reduced the phosphorylation of p38, c-Jun N-terminal kinase (JNK), NF-κB p65, and tumor necrosis factor alpha (TNF-α) in the BLA of anxiety mice. 8-OaS exhibits obvious anxiolytic effects by regulating the excitatory/inhibitory (E/I) synaptic transmission and attenuating inflammatory responses in the BLA.


Characterization of the endotheliopathy, innate-immune activation and hemostatic imbalance underlying CAR-T cell toxicities: laboratory tools for an early and differential diagnosis.

  • Ana Belen Moreno-Castaño‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2023‎

Chimeric antigen receptor (CAR)-T cell-based immunotherapy constitutes a revolutionary advance for treatment of relapsed/refractory hematological malignancies. Nevertheless, cytokine release and immune effector cell-associated neurotoxicity syndromes are life-threatening toxicities in which the endothelium could be a pathophysiological substrate. Furthermore, differential diagnosis from sepsis, highly incident in these patients, is challenging. Suitable laboratory tools could be determinant for their appropriate management.


A Review of Epidemiological Research on Adverse Neurological Effects of Exposure to Ambient Air Pollution.

  • Xiaohui Xu‎ et al.
  • Frontiers in public health‎
  • 2016‎

There is a growing body of epidemiological research reporting the neurological effects of ambient air pollution. We examined current evidence, identified the strengths and weaknesses of published epidemiological studies, and suggest future directions for research in this area. Studies were identified through a systematic search of online scientific databases, in addition to a manual search of the reference lists from the identified papers. Despite being a relatively new area of investigation, overall, there is mounting evidence implicating adverse effects of air pollution on neurobehavioral function in both adults and children. Further research is needed to expand our understanding of these relationships, including improvement in the accuracy of exposure assessments; focusing on specific toxicants and their relationships to specific health endpoints, such as neurodevelopmental disorders and neurodegenerative diseases; investigating the combined neurological effects of multiple air pollutants; and further exploration of genetic susceptibility for neurotoxicity of air pollution. In order to achieve these goals collaborative efforts are needed from multidisciplinary teams, including experts in toxicology, biostatistics, geographical science, epidemiology, and neurology.


TRPV4 disrupts mitochondrial transport and causes axonal degeneration via a CaMKII-dependent elevation of intracellular Ca2.

  • Brian M Woolums‎ et al.
  • Nature communications‎
  • 2020‎

The cation channel transient receptor potential vanilloid 4 (TRPV4) is one of the few identified ion channels that can directly cause inherited neurodegeneration syndromes, but the molecular mechanisms are unknown. Here, we show that in vivo expression of a neuropathy-causing TRPV4 mutant (TRPV4R269C) causes dose-dependent neuronal dysfunction and axonal degeneration, which are rescued by genetic or pharmacological blockade of TRPV4 channel activity. TRPV4R269C triggers increased intracellular Ca2+ through a Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated mechanism, and CaMKII inhibition prevents both increased intracellular Ca2+ and neurotoxicity in Drosophila and cultured primary mouse neurons. Importantly, TRPV4 activity impairs axonal mitochondrial transport, and TRPV4-mediated neurotoxicity is modulated by the Ca2+-binding mitochondrial GTPase Miro. Our data highlight an integral role for CaMKII in neuronal TRPV4-associated Ca2+ responses, the importance of tightly regulated Ca2+ dynamics for mitochondrial axonal transport, and the therapeutic promise of TRPV4 antagonists for patients with TRPV4-related neurodegenerative diseases.


Biomarkers Associated with Cognitive Impairment in Treated Cancer Patients: Potential Predisposition and Risk Factors.

  • Hélène Castel‎ et al.
  • Frontiers in pharmacology‎
  • 2017‎

Purpose: Cognitive impairment in cancer patients induced, at least in part, by treatment are frequently observed and likely have negative impacts on patient quality of life. Such cognitive dysfunctions can affect attention, executive functions, and memory and processing speed, can persist after treatment, and their exact causes remain unclear. The aim of this review was to create an inventory and analysis of clinical studies evaluating biological markers and risk factors for cognitive decline in cancer patients before, during, or after therapy. The ultimate objectives were to identify robust markers and to determine what further research is required to develop original biological markers to enable prevention or adapted treatment management of patients at risk. Method: This review was guided by the PRISMA statement and included a search strategy focused on three components: "cognition disorders," "predictive factors"/"biological markers," and "neoplasms," searched in PubMed since 2005, with exclusion criteria concerning brain tumors, brain therapy, and imaging or animal studies. Results: Twenty-three studies meeting the criteria were analyzed. Potential associations/correlations were identified between cognitive impairments and specific circulating factors, cerebral spinal fluid constituents, and genetic polymorphisms at baseline, during, and at the end of treatment in cancer populations. The most significant results were associations between cognitive dysfunctions and genetic polymorphisms, including APOE-4 and COMT-Val; increased plasma levels of the pro-inflammatory cytokine, IL-6; anemia; and hemoglobin levels during chemotherapy. Plasma levels of specific hormones of the hypothalamo-pituitary-adrenal axis are also modified by treatment. Discussion: It is recognized in the field of cancer cognition that cancer and comorbidities, as well as chemotherapy and hormone therapy, can cause persistent cognitive dysfunction. A number of biological circulating factors and genetic polymorphisms, can predispose to the development of cognitive disorders. However, many predictive factors remain unproven and discordant findings are frequently reported, warranting additional clinical and preclinical longitudinal cohort studies, with goals of better characterization of potential biomarkers and identification of patient populations at risk and/or particularly deleterious treatments. Research should focus on prevention and personalized cancer management, to improve the daily lives, autonomy, and return to work of patients.


Potential neuroprotective and anti-inflammatory effects provided by omega-3 (DHA) against Zika virus infection in human SH-SY5Y cells.

  • Heloísa Antoniella Braz-De-Melo‎ et al.
  • Scientific reports‎
  • 2019‎

Zika virus (ZIKV) has a strong tropism for the nervous system and has been related to post-infection neurological syndromes. Once neuronal cells are infected, the virus is capable of modulating cell metabolism, leading to neurotoxicity and cellular death. The negative effect of ZIKV in neuron cells has been characterized. However, the description of molecules capable of reversing these cytotoxic effects is still under investigation. In this context, it has been largely demonstrated that docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, is highly neuroprotective. Here, we hypothesized that DHA's neuroprotective proprieties could have an influence on ZIKV-induced neurotoxicity in SH-SY5Y cells. Our data showed that pre-treatment of SH-SY5Y cells with DHA increased the cell viability and proliferation in ZIKV-infected cells. Moreover, DHA triggered an anti-inflammatory response in those infected cells. Besides, DHA was capable of restoring mitochondria function and number in ZIKV-infected SH-SY5Y cells. In addition, cells pre-treated with DHA prior to ZIKV infection presented a lower viral load at different times of infection. Taking together, these results demonstrated that DHA has a potential anti-inflammatory and neuroprotective effect against ZIKV infection in these neuron-like cells and could be a useful tool in the treatment against this virus.


From CAR-T Cells to CAR-NK Cells: A Developing Immunotherapy Method for Hematological Malignancies.

  • Hui Lu‎ et al.
  • Frontiers in oncology‎
  • 2021‎

The approval of CD19 chimeric antigen receptor (CAR)-engineered T (CAR-T) cell products in B-cell malignancies represents a breakthrough in CAR-T cell immunotherapy. However, the remaining limitations concerning the graft-versus-host disease (GVHD) and other adverse effects (e.g., cytokine release syndromes [CRS] and neurotoxicity) still restrict their wider applications. Natural killer (NK) cells have been identified as promising candidates for CAR-based cellular immunotherapy because of their unique characteristics. No HLA-matching restriction and abundant sources make CAR-engineered NK (CAR-NK) cells potentially available to be off-the-shelf products that could be readily available for immediate clinical use. Therefore, researchers have gradually shifted their focus from CAR-T cells to CAR-NK cells in hematological malignancies. This review discusses the current status and applications of CAR-NK cells in hematological malignancies, as well as the unique advantages of CAR-NK cells compared with CAR-T cells. It also discusses challenges and prospects regarding clinical applications of CAR-NK cells.


Manganese causes neurotoxic iron accumulation via translational repression of amyloid precursor protein and H-Ferritin.

  • Vivek Venkataramani‎ et al.
  • Journal of neurochemistry‎
  • 2018‎

For more than 150 years, it is known that occupational overexposure of manganese (Mn) causes movement disorders resembling Parkinson's disease (PD) and PD-like syndromes. However, the mechanisms of Mn toxicity are still poorly understood. Here, we demonstrate that Mn dose- and time-dependently blocks the protein translation of amyloid precursor protein (APP) and heavy-chain Ferritin (H-Ferritin), both iron homeostatic proteins with neuroprotective features. APP and H-Ferritin are post-transcriptionally regulated by iron responsive proteins, which bind to homologous iron responsive elements (IREs) located in the 5'-untranslated regions (5'-UTRs) within their mRNA transcripts. Using reporter assays, we demonstrate that Mn exposure repressed the 5'-UTR-activity of APP and H-Ferritin, presumably via increased iron responsive proteins-iron responsive elements binding, ultimately blocking their protein translation. Using two specific Fe2+ -specific probes (RhoNox-1 and IP-1) and ion chromatography inductively coupled plasma mass spectrometry (IC-ICP-MS), we show that loss of the protective axis of APP and H-Ferritin resulted in unchecked accumulation of redox-active ferrous iron (Fe2+ ) fueling neurotoxic oxidative stress. Enforced APP expression partially attenuated Mn-induced generation of cellular and lipid reactive oxygen species and neurotoxicity. Lastly, we could validate the Mn-mediated suppression of APP and H-Ferritin in two rodent in vivo models (C57BL6/N mice and RjHan:SD rats) mimicking acute and chronic Mn exposure. Together, these results suggest that Mn-induced neurotoxicity is partly attributable to the translational inhibition of APP and H-Ferritin resulting in impaired iron metabolism and exacerbated neurotoxic oxidative stress. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


The expression of Troponin T1 gene is induced by ketamine in adult mouse brain.

  • Xiu R Lowe‎ et al.
  • Brain research‎
  • 2007‎

The glutamatergic system has been implicated in neuropsychiatric disorders, such as schizophrenia, bipolar disorder and Alzheimer's disease, which also have a high prevalence of metabolic syndrome. Treatment with ketamine, a non-competitive glutamate N-methyl-d-aspartic acid (NMDA) receptor antagonist, is known to have paradoxical effects of neuroprotection and neurotoxicity. We investigated gene expression in brain tissue of adult mice treated with ketamine to characterize the expression profiles and to identify the affected metabolic pathways. Adult male mice were treated by a single intraperitoneal (i.p.) injection of either s(+)ketamine (80 mg/kg) or distilled water (as the control). Fifty genes were differentially expressed in ketamine-treated mouse brains compared with control mice using oligonucleotide microarray analysis, and the expression of Troponin T1 (Tnnt1) gene was consistently elevated (2- to 4-fold) (p<0.001). Ketamine-induced Tnnt1 expression was confirmed and characterized using RNA in situ hybridization techniques in paraffin embedded brain tissue sections. Tnnt1 expression was induced in the granule layer of the hippocampus, amygdala, hypothalamus, Purkinje cells of cerebellum (p<0.0001), and cerebral cortex. Tnnt1 gene is known to interact directly with FoxO1, which is involved in multiple peripheral metabolic pathways and central energy homeostasis. Our findings suggest that the induction of Tnnt1 gene expression in adult mouse brains by ketamine may illustrate the genes involved in the metabolic syndromes observed in neuropsychiatric disorders.


Common Dysregulation of Innate Immunity Pathways in Human Primary Astrocytes Infected With Chikungunya, Mayaro, Oropouche, and Zika Viruses.

  • Victor Emmanuel Viana Geddes‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2021‎

Arboviruses pose a major threat throughout the world and represent a great burden in tropical countries of South America. Although generally associated with moderate febrile illness, in more severe cases they can lead to neurological outcomes, such as encephalitis, Guillain-Barré syndrome, and Congenital Syndromes. In this context astrocytes play a central role in production of inflammatory cytokines, regulation of extracellular matrix, and control of glutamate driven neurotoxicity in the central nervous system. Here, we presented a comprehensive genome-wide transcriptome analysis of human primary astrocytes infected with Chikungunya, Mayaro, Oropouche, or Zika viruses. Analyses of differentially expressed genes (DEGs), pathway enrichment, and interactomes have shown that Alphaviruses up-regulated genes related to elastic fiber formation and N-glycosylation of glycoproteins, with down-regulation of cell cycle and DNA stability and chromosome maintenance genes. In contrast, Oropouche virus up-regulated cell cycle and DNA maintenance and condensation pathways while down-regulated extracellular matrix, collagen metabolism, glutamate and ion transporters pathways. Zika virus infection only up-regulated eukaryotic translation machinery while down-regulated interferon pathways. Reactome and integration analysis revealed a common signature in down-regulation of innate immune response, antiviral response, and inflammatory cytokines associated to interferon pathway for all arboviruses tested. Validation of interferon stimulated genes by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) corroborated our transcriptome findings. Altogether, our results showed a co-evolution in the mechanisms involved in the escape of arboviruses to antiviral immune response mediated by the interferon (IFN) pathway.


Reduced expression of PARK2 in manganese-exposed smelting workers.

  • Ximin Fan‎ et al.
  • Neurotoxicology‎
  • 2017‎

Manganese (Mn) is widely used in modern industries. Occupational exposure to Mn is known to cause clinical syndromes similar, but not identical to, Parkinson's disease. This human cohort study was designed to investigate if workers exposed to Mn altered the PARK2 gene expression, leading to Mn-induced neurotoxicity. Workers (n=26) occupationally exposed to Mn were recruited from a Mn-iron (Fe) alloy smelter, and control workers (n=20) without Mn-exposure were from an Fe smelter from Zunyi City in China. Subjects were matched with socioeconomic status and background for environmental factors. Metal concentrations were determined by atomic absorption spectrophotometry (AAS). Total RNA from the blood samples was isolated and analyzed by RT-PCR to quantify PARK2. The data showed that Mn concentrations in plasma, red blood cell (RBC) and saliva, and the cumulative Mn-exposure were about 2.2, 2.0, 1.7 and 3.0 fold higher, respectively, in Mn-exposed workers than those in control subjects (p<0.01). The expression of PARK2 in Mn-exposed workers was significantly decreased by 42% as compared to controls (p<0.01). Linear regression analysis further established that the expression of PARK2 mRNA was inversely correlated with Mn levels in plasma, RBC and saliva, as well as the cumulative Mn exposure (p<0.01). Taken together, it seems likely that Mn exposure among smelters may lead to a reduced expression of PARK2, which may partly explain the Mn-induced Parkinsonian disorder.


Comparative functional observational battery study of twelve commercial pyrethroid insecticides in male rats following acute oral exposure.

  • Myra L Weiner‎ et al.
  • Neurotoxicology‎
  • 2009‎

Twelve commercial pyrethroid insecticides (technical-grade active ingredients) were evaluated individually for acute neurobehavioral manifestations of toxicity under conditions suited to assist with determining whether they act by a common mechanism of toxicity. The pyrethroids that were tested reflect a diversity of structures, including six with an alpha-cyano phenoxybenzyl moiety (beta-cyfluthrin, lambda-cyhalothrin, cypermethrin, deltamethrin, esfenvalerate and fenpropathrin) and six without this moiety (bifenthrin, S-bioallethrin, permethrin, pyrethrins, resmethrin and tefluthrin). These chemicals also present a variety of behavioral effects, including ones that are historically classified as causing a T (tremor), CS (choreoathetosis with salivation) or intermediate syndrome of intoxication, and others that have not previously been classified. Each pyrethroid that was tested consisted of the complement of isomers that occur in commercial products--a key factor for relevance for environmental and human exposure and for comparisons, since the biological activity of the individual isomers can vary tremendously. Young-adult male Sprague-Dawley rats (10 per dose group) were administered a single dose of pyrethroid by oral gavage, in corn oil, at a volume of 5 ml/kg. Each was tested at a range of two or three dose levels, including a minimally toxic dose, to establish the more sensitive manifestations of toxicity, and a more toxic dose, to establish a more complete spectrum of neurobehavioral manifestations. Animals were evaluated using a functional observational battery (FOB) that was designed to characterize and distinguish effects classically associated with T or CS syndromes of intoxication. The FOB was performed when manifestations of toxicity were most apparent at the time of peak effect (2, 4, or 8 h post-dosing) by observers who were blinded to dose group assignment, thus avoiding possible bias. The results from this study indicate that some pyrethroids clearly exhibit the historic classification symptoms of the T and CS syndromes while others do so less obviously. Use of the statistical technique of Principal Component Analysis (PCA) further helped interpret the study findings, as described in the accompanying paper (Breckenridge et al., 2009). These results establish manifestations of neurotoxicity in vivo that can be used as weight of evidence to determine whether pyrethroid insecticides act through a common mechanism of toxicity in mammals. Based on a review of the FOB data, analyzed by PCA, and other published data, two common mechanism groups are proposed. Group 1 would include pyrethrins, bifenthrin, resmethrin, permethrin, S-bioallethrin and tefluthrin. Group 2 would include cypermethrin, deltamethrin, esfenvalerate, beta-cyfluthrin and lambda-cyhalothrin. Fenpropathrin exhibited features of both groups.


Varespladib (LY315920) and Methyl Varespladib (LY333013) Abrogate or Delay Lethality Induced by Presynaptically Acting Neurotoxic Snake Venoms.

  • José María Gutiérrez‎ et al.
  • Toxins‎
  • 2020‎

The phospholipase A2 (PLA2) inhibitor Varespladib (LY315920) and its orally bioavailable prodrug, methyl-Varespladib (LY333013) inhibit PLA2 activity of a wide variety of snake venoms. In this study, the ability of these two forms of Varespladib to halt or delay lethality of potent neurotoxic snake venoms was tested in a mouse model. The venoms of Notechis scutatus, Crotalus durissus terrificus, Bungarus multicinctus, and Oxyuranus scutellatus, all of which have potent presynaptically acting neurotoxic PLA2s of variable quaternary structure, were used to evaluate simple dosing regimens. A supralethal dose of each venom was injected subcutaneously in mice, followed by the bolus intravenous (LY315920) or oral (LY333013) administration of the inhibitors, immediately and at various time intervals after envenoming. Control mice receiving venom alone died within 3 h of envenoming. Mice injected with O. scutellatus venom and treated with LY315920 or LY333013 survived the 24 h observation period, whereas those receiving C. d. terrificus and B. multicinctus venoms survived at 3 h or 6 h with a single dose of either form of Varespladib, but not at 24 h. In contrast, mice receiving N. scutatus venom and then the inhibitors died within 3 h, similarly to the control animals injected with venom alone. LY315920 was able to reverse the severe paralytic manifestations in mice injected with venoms of O. scutellatus, B. multicinctus, and C. d. terrificus. Overall, results suggest that the two forms of Varespladib are effective in abrogating, or delaying, neurotoxic manifestations induced by some venoms whose neurotoxicity is mainly dependent on presynaptically acting PLA2s. LY315920 is able to reverse paralytic manifestations in severely envenomed mice, but further work is needed to understand the significance of species-specific differences in animal models as they compare to clinical syndromes in human and for potential use in veterinary medicine.


Antidepressant activity of fingolimod in mice.

  • Luigi di Nuzzo‎ et al.
  • Pharmacology research & perspectives‎
  • 2015‎

Recent findings indicate that fingolimod, the first oral drug approved for the treatment of multiple sclerosis (MS), acts as a direct inhibitor of histone deacetylases (HDACs) and enhances the production of brain-derived neurotrophic factor (BDNF) in the CNS. Both mechanisms are relevant to the pathophysiology and treatment of major depression. We examined the antidepressant activity of fingolimod in mice subjected to chronic unpredictable stress (CUS), a model of reactive depression endowed with face and pharmacological validity. Chronic treatment with fingolimod (3 mg kg(-1), i.p., once a day for 4 weeks) reduced the immobility time in the forced swim test (FST) in a large proportion of CUS mice. This treatment also caused anxiogenic-like effects in the social interaction test without affecting anxiety-like behavior in the elevated plus maze or spatial learning in the water maze. CUS mice showed reduced BDNF levels and enhanced HDAC2 levels in the hippocampus. These changes were reversed by fingolimod exclusively in mice that showed a behavioral response to the drug in the FST. Fingolimod treatment also enhanced H3 histone K14-acetylation and adult neurogenesis in the hippocampus of CUS mice. Fingolimod did not affect most of the parameters we have tested in unstressed control mice. The antidepressant-like activity of fingolimod was confirmed in mice chronically treated with corticosterone. These findings show for the first time that fingolimod exerts antidepressant-like effect acting in a "disease-dependent" manner, and raise the interesting possibility that the drug could relieve depressive symptoms in MS patients independently of its disease-modifying effect on MS.


Association between harm reduction strategies and healthcare utilization in patients on long-term prescribed opioid therapy presenting to acute healthcare settings: a protocol for a systematic review and meta-analysis.

  • Jean Deschamps‎ et al.
  • Systematic reviews‎
  • 2019‎

Opioids are routinely used to treat a variety of chronic conditions associated with pain. However, they are a class of medications with a significant potential for adverse health effects, with and without misuse. Opioid misuse, as defined as inappropriate use of appropriately prescribed opioids, is becoming more well-recognized publicly but does not have clear treatment options. Opioid misuse has been linked to variety of poor outcomes and its consequences have a significant impact on healthcare resource utilization. The evidence on harm reduction strategies to mitigate adverse events prompting presentation to acute care settings for patients presenting with long-term opioid use is sparse.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: