Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 7,820 papers

Handling Metadata in a Neurophysiology Laboratory.

  • Lyuba Zehl‎ et al.
  • Frontiers in neuroinformatics‎
  • 2016‎

To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework.


Shielded Coaxial Optrode Arrays for Neurophysiology.

  • Jeffrey R Naughton‎ et al.
  • Frontiers in neuroscience‎
  • 2016‎

Recent progress in the study of the brain has been greatly facilitated by the development of new tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array (MEA), which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays evolve toward higher density and thus smaller pitch, electrical crosstalk increases. In the latter, finer control over light input is desirable, to enable improved studies of neuroelectronic pathways emanating from specific cell stimulation. Here, we introduce a coaxial electrode architecture that is uniquely suited to address these issues, as it can simultaneously be utilized as an optical waveguide and a shielded electrode in dense arrays. Using optogenetically-transfected cells on a coaxial MEA, we demonstrate the utility of the architecture by recording cellular currents evoked from optical stimulation. We also show the capability for network recording by radiating an area of seven individually-addressed coaxial electrode regions with cultured cells covering a section of the extent.


Autonomy Raises Productivity: An Experiment Measuring Neurophysiology.

  • Rebecca Johannsen‎ et al.
  • Frontiers in psychology‎
  • 2020‎

Employees have been given increasing autonomy to work from home, from virtual offices, and during travel. Understanding why autonomy affects work behaviors has relied to date on self-reported data in which employees may consciously or unconsciously misattribute their own causal actions. We designed a neuroscience experiment to investigate the mechanisms through which greater autonomy affects individual and team performance and if this had an effect on mood. Participants (N = 100) were shown a three-min video that described the productivity impact of greater autonomy at work (treatment) or the productivity benefits of work-flow management software. Electrodermal responses were captured to measure physiologic effort and were related to the video stimuli, productivity, and mood. The treatment group had a 5.2% (p = 0.047) greater average productivity and 31% (p = 0.000) higher positive affect after the video than the control group average. Productivity was directly related to the physiologic effort put into the task for both the treatment and control groups, but the video prime did not increase effort compared to the control. The impact of physiologic effort on productivity continued to hold when controlling for participants' intrinsic motivation. We also found that individual productivity was associated with an increase in positive affect, while group productivity increased positive affect only for those in the treatment group. Our findings indicate that increased perceived autonomy can significantly improve individual and group productivity and that this can have a salubrious impact on mood, but the neurologic mechanism through which this occurs remains to be identified.


The neurophysiology of continuous action monitoring.

  • Saskia Wilken‎ et al.
  • iScience‎
  • 2023‎

Monitoring actions is essential for goal-directed behavior. However, as opposed to short-lasting, and regularly reinstating monitoring functions, the neural processes underlying continuous action monitoring are poorly understood. We investigate this using a pursuit-tracking paradigm. We show that beta band activity likely maintains the sensorimotor program, while theta and alpha bands probably support attentional sampling and information gating, respectively. Alpha and beta band activity are most relevant during the initial tracking period, when sensorimotor calibrations are most intense. Theta band shifts from parietal to frontal cortices throughout tracking, likely reflecting a shift in the functional relevance from attentional sampling to action monitoring. This study shows that resource allocation mechanisms in prefrontal areas and stimulus-response mapping processes in the parietal cortex are crucial for adapting sensorimotor processes. It fills a knowledge gap in understanding the neural processes underlying action monitoring and suggests new directions for examining sensorimotor integration in more naturalistic experiments.


Genetic schemes and schemata in neurophysiology.

  • B V Zemelman‎ et al.
  • Current opinion in neurobiology‎
  • 2001‎

Information in nervous systems is often carried by neural ensembles--groups of neurons in transient functional linkage--and written in a code that involves the spatial locations of active neurons or synapses and the times at which activity occurs. Even in favorable neuroanatomical circumstances, studying neural ensemble function presents a serious experimental challenge. One recent strategy to overcome this challenge relies on protein-based sensors that provide direct optical images of neural activity, and on protein-based effectors that interfere with it. Because these molecules are encodable in DNA, they can be introduced into intact animals by genetic manipulation, and their expression pattern can be tailored to include--exclusively and at the same time comprehensively--the neurons of interest. Circumscribed populations of neurons can thus be studied in virtual isolation at defined stages of intact neural pathways.


Sharing neurophysiology data from the Allen Brain Observatory.

  • Saskia E J de Vries‎ et al.
  • eLife‎
  • 2023‎

Nullius in verba ('trust no one'), chosen as the motto of the Royal Society in 1660, implies that independently verifiable observations-rather than authoritative claims-are a defining feature of empirical science. As the complexity of modern scientific instrumentation has made exact replications prohibitive, sharing data is now essential for ensuring the trustworthiness of one's findings. While embraced in spirit by many, in practice open data sharing remains the exception in contemporary systems neuroscience. Here, we take stock of the Allen Brain Observatory, an effort to share data and metadata associated with surveys of neuronal activity in the visual system of laboratory mice. Data from these surveys have been used to produce new discoveries, to validate computational algorithms, and as a benchmark for comparison with other data, resulting in over 100 publications and preprints to date. We distill some of the lessons learned about open surveys and data reuse, including remaining barriers to data sharing and what might be done to address these.


Individualized recording chambers for non-human primate neurophysiology.

  • R M McAndrew‎ et al.
  • Journal of neuroscience methods‎
  • 2012‎

While neural recording chambers for non-human primates can be purchased commercially, these generic chambers do not contour to the animal's skull. In order to seal gaps, a cap of dental acrylic (methyl methacrylate) is often applied around the chamber. There are multiple disadvantages associated with this method. Applying acrylic delays and further complicates surgical procedure, and overheating during the curing process can cause damage to the bone. Post-surgery, acrylic margins can give rise to bacterial growth and infection. Here we describe a method to develop custom implants which conform to the individual's skull, thereby eliminating the need for acrylic. This method shortens surgery time and significantly improves the hygiene of chamber margins.


SWIMMY: Free Software for Teaching Neurophysiology of Neuronal Circuits.

  • William Grisham‎ et al.
  • Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience‎
  • 2008‎

To circumvent the many problems in teaching neurophysiology as a "wet lab," we developed SWIMMY, a virtual fish that swims by moving its virtual tail by means of a virtual neural circuit. SWIMMY diminishes the need for expensive equipment, troubleshooting, and manual skills that require practice. Also, SWIMMY effectively replaces live preparations, which some students find objectionable. Using SWIMMY, students (1) review the basics of neurophysiology, (2) identify the neurons in the circuit, (3) ascertain the neurons' synaptic interconnections, (4) discover which cells generate the motor pattern of swimming, (5) discover how the rhythm is generated, and finally (6) use an animation that corresponds to the activity of the motoneurons to discover the behavioral effects produced by various lesions and explain them in terms of their neural underpinnings. SWIMMY is a genuine inquiry-based exercise producing data that requires individual thought and interpretation. It is neither a cookbook exercise nor a demonstration. We have used SWIMMY for several terms with great success. SWIMMY solidifies students' understanding of material learned in traditional lecture courses because they must apply the concepts. Student ratings of SWIMMY have been very positive, particularly ratings from students who have also been exposed to a "wet" neurophysiology lab. Because SWIMMY requires only computers for implementation and makes minimal demands on instructional resources, it provides for a great deal of flexibility. Instructors could use SWIMMY as part of a traditional lab course, as a classroom exercise, in distance learning, or in blended instructional formats (internet with classroom). SWIMMY is now available for free online complete with student and instructor manuals at http://mdcune.psych.ucla.edu.


A Bottom-up Approach to Data Annotation in Neurophysiology.

  • Jan Grewe‎ et al.
  • Frontiers in neuroinformatics‎
  • 2011‎

Metadata providing information about the stimulus, data acquisition, and experimental conditions are indispensable for the analysis and management of experimental data within a lab. However, only rarely are metadata available in a structured, comprehensive, and machine-readable form. This poses a severe problem for finding and retrieving data, both in the laboratory and on the various emerging public data bases. Here, we propose a simple format, the "open metaData Markup Language" (odML), for collecting and exchanging metadata in an automated, computer-based fashion. In odML arbitrary metadata information is stored as extended key-value pairs in a hierarchical structure. Central to odML is a clear separation of format and content, i.e., neither keys nor values are defined by the format. This makes odML flexible enough for storing all available metadata instantly without the necessity to submit new keys to an ontology or controlled terminology. Common standard keys can be defined in odML-terminologies for guaranteeing interoperability. We started to define such terminologies for neurophysiological data, but aim at a community driven extension and refinement of the proposed definitions. By customized terminologies that map to these standard terminologies, metadata can be named and organized as required or preferred without softening the standard. Together with the respective libraries provided for common programming languages, the odML format can be integrated into the laboratory workflow, facilitating automated collection of metadata information where it becomes available. The flexibility of odML also encourages a community driven collection and definition of terms used for annotating data in the neurosciences.


Distributed Subnetworks of Depression Defined by Direct Intracranial Neurophysiology.

  • Katherine Wilson Scangos‎ et al.
  • Frontiers in human neuroscience‎
  • 2021‎

Major depressive disorder is a common and disabling disorder with high rates of treatment resistance. Evidence suggests it is characterized by distributed network dysfunction that may be variable across patients, challenging the identification of quantitative biological substrates. We carried out this study to determine whether application of a novel computational approach to a large sample of high spatiotemporal resolution direct neural recordings in humans could unlock the functional organization and coordinated activity patterns of depression networks. This group level analysis of depression networks from heterogenous intracranial recordings was possible due to application of a correlational model-based method for inferring whole-brain neural activity. We then applied a network framework to discover brain dynamics across this model that could classify depression. We found a highly distributed pattern of neural activity and connectivity across cortical and subcortical structures that was present in the majority of depressed subjects. Furthermore, we found that this depression signature consisted of two subnetworks across individuals. The first was characterized by left temporal lobe hypoconnectivity and pathological beta activity. The second was characterized by a hypoactive, but hyperconnected left frontal cortex. These findings have applications toward personalization of therapy.


Neurophysiology of swallowing: effects of age and bolus type.

  • Ianessa A Humbert‎ et al.
  • NeuroImage‎
  • 2009‎

This study examined age-related changes in swallowing from an integrated biomechanical and functional imaging perspective in order to more comprehensively characterize changes in swallowing associated with age. We examined swallowing-related fMRI brain activity and videoflouroscopic biomechanics of three bolus types (saliva, water and barium) in 12 young and 11 older adults. We found that age-related neurophysiological changes in swallowing are evident. The group of older adults recruited more cortical regions than young adults, including the pericentral gyri and inferior frontal gyrus pars opercularis and pars triangularis (primarily right-sided). Saliva swallows elicited significantly higher BOLD responses in regions important for swallowing compared to water and barium. In separate videofluoroscopy sessions, we obtained durational measures of supine swallowing. The older cohort had significantly longer delays before the onset of the pharyngeal swallow response and increased residue of ingested material in the pharynx. These findings suggest that older adults without neurological insult elicit more cortical involvement to complete the same swallowing tasks as younger adults.


Post-hypoxic Myoclonus: Current Concepts, Neurophysiology, and Treatment.

  • Harsh V Gupta‎ et al.
  • Tremor and other hyperkinetic movements (New York, N.Y.)‎
  • 2016‎

Myoclonus may occur after hypoxia. In 1963, Lance and Adams described persistent myoclonus with other features after hypoxia. However, myoclonus occurring immediately after hypoxia may demonstrate different syndromic features from classic Lance-Adams syndrome (LAS). The aim of this review is to provide up-to-date information about the spectrum of myoclonus occurring after hypoxia with emphasis on neurophysiological features.


The neurophysiology of biological motion perception in schizophrenia.

  • Carol Jahshan‎ et al.
  • Brain and behavior‎
  • 2015‎

The ability to recognize human biological motion is a fundamental aspect of social cognition that is impaired in people with schizophrenia. However, little is known about the neural substrates of impaired biological motion perception in schizophrenia. In the current study, we assessed event-related potentials (ERPs) to human and nonhuman movement in schizophrenia.


Neurodata Without Borders: Creating a Common Data Format for Neurophysiology.

  • Jeffery L Teeters‎ et al.
  • Neuron‎
  • 2015‎

The Neurodata Without Borders (NWB) initiative promotes data standardization in neuroscience to increase research reproducibility and opportunities. In the first NWB pilot project, neurophysiologists and software developers produced a common data format for recordings and metadata of cellular electrophysiology and optical imaging experiments. The format specification, application programming interfaces, and sample datasets have been released.


Frequency of Type-1 Berrettini's Connection in a Neurophysiology Laboratory.

  • Juan M Duarte‎ et al.
  • Journal of neurosciences in rural practice‎
  • 2021‎

Objective  This study aims to estimate the frequency of Berrettini's ulnar-median nerves communication in a neurophysiology laboratory. Materials and Methods  A total of 358 hands belonging to patients, both sexes, median age of 58 years, was studied. Antidromic sensory nerve conduction studies of the ulnar nerves, registered in digits III and IV were performed in search of the ulnar-median communication. A Berrettini's percentage was calculated in each communication: [(amplitude SAP digit III/amplitude SAP digit IV) × 100]. Results  Ulnar-median nerves communication (Berrettini's branch) was found in 37 hands (10.95%), with a female gender predominance. Bilaterality percentage was low (1.78%). Most communications encountered had a Berretini's percentage between 11 and 50%. Some of them exceeded 100%. Conclusions  Electromyographers should routinely search for this nerve communication, especially in those patients undergoing carpal tunnel syndrome or Dupuytren's contracture surgeries.


Taste quality and neural coding: implications from psychophysics and neurophysiology.

  • S S Schiffman‎
  • Physiology & behavior‎

Historically, taste research has often been guided by the concept that there are only four (or possibly five) basic taste qualities (sweet, sour, salty, and bitter, and possibly "umami"). All other tastes have been presumed to be combinations of these basic tastes. This psychophysical concept has been extended to electrophysiological data. That is, the neural code for each basic taste is hypothesized to be coded by a dedicated channel of neurons (the "Labeled-Line" theory); i.e., one group of neurons signals "salty" and another separate group signals "sweet." Numerous psychophysical and electrophysiological findings, however, cannot be accomodated by this quadripartite theory, which limits taste to four basic qualities and four basic neuron types. Rather, the data described in this article suggest that the range of taste is more extensive than four or five basic tastes, and that this breadth of taste quality results initially from the activation of a broad array of ion channels, receptors, and second messengers associated with taste cell membranes. These findings have implications for neural organization and provide support for the "Across-Fiber Pattern" theory in which the neural code for taste is represented by the pattern of activity across all of the neurons, i.e., neurons are not exclusively labeled for a particular sensation but cooperate with the others in the ensemble to encode taste quality.


Neurophysiology versus clinical genetics in Rett syndrome: A multicenter study.

  • Nicky Halbach‎ et al.
  • American journal of medical genetics. Part A‎
  • 2016‎

Many studies have attempted to establish the genotype-phenotype correlation in Rett syndrome (RTT). Cardiorespiratory measurements provide robust objective data, to correlate with each of the different clinical phenotypes. It has important implications for the management and treatment of this syndrome. The aim of this study was to correlate the genotype with the quantitative cardiorespiratory data obtained by neurophysiological measurement combined with a clinical severity score. This international multicenter study was conducted in four European countries from 1999 to 2012. The study cohort consisted of a group of 132 well-defined RTT females aged between 2 and 43 years with extended clinical, molecular, and neurophysiological assessments. Diagnosis of RTT was based on the consensus criteria for RTT and molecular confirmation. Genotype-phenotype analyses of clinical features and cardiorespiratory data were performed after grouping mutations by the same type and localization or having the same putative biological effect on the MeCP2 protein, and subsequently on eight single recurrent mutations. A less severe phenotype was seen in females with CTS, p.R133C, and p.R294X mutations. Autonomic disturbances were present in all females, and not restricted to nor influenced by one specific group or any single recurrent mutation. The objective information from non-invasive neurophysiological evaluation of the disturbed central autonomic control is of great importance in helping to organize the lifelong care for females with RTT. Further research is needed to provide insights into the pathogenesis of autonomic dysfunction, and to develop evidence-based management in RTT. © 2016 Wiley Periodicals, Inc.


Neural correlates of age-related changes in cortical neurophysiology.

  • P Talelli‎ et al.
  • NeuroImage‎
  • 2008‎

Functional imaging studies of cortical motor systems in humans have demonstrated age-related reorganisation often attributed to anatomical and physiological changes. In this study we investigated whether aspects of brain activity during a motor task were influenced not only by age, but also by neurophysiological parameters of the motor cortex contralateral to the moving hand. Twenty seven right-handed volunteers underwent functional magnetic resonance imaging whilst performing repetitive isometric right hand grips in which the target force was parametrically varied between 15 and 55% of each subject's own maximum grip force. For each subject we characterised two orthogonal parameters, B(G) (average task-related activity for all hand grips) and B(F) (the degree to which task-related activity co-varied with peak grip force). We used transcranial magnetic stimulation (TMS) to assess task-related changes in interhemispheric inhibition from left to right motor cortex (IHIc) and to perform measures relating to left motor cortex excitability during activation of the right hand. Firstly, we found that B(G) in right (ipsilateral) motor cortex was greater with increasing values of age(2) and IHIc. Secondly, B(F) in left ventral premotor cortex was greater in older subjects and in those in whom contralateral M1 was less responsive to TMS stimulation. In both cases, neurophysiological parameters accounted for variability in brain responses over and above that explained by ageing. These results indicate that neurophysiological markers may be better indicators of biological ageing than chronological age and point towards the mechanisms by which reconfiguration of distributed brain networks occurs in the face of degenerative changes.


Neurophysiology underlying influence of stimulus reliability on audiovisual integration.

  • Hannah Shatzer‎ et al.
  • The European journal of neuroscience‎
  • 2018‎

We tested the predictions of the dynamic reweighting model (DRM) of audiovisual (AV) speech integration, which posits that spectrotemporally reliable (informative) AV speech stimuli induce a reweighting of processing from low-level to high-level auditory networks. This reweighting decreases sensitivity to acoustic onsets and in turn increases tolerance to AV onset asynchronies (AVOA). EEG was recorded while subjects watched videos of a speaker uttering trisyllabic nonwords that varied in spectrotemporal reliability and asynchrony of the visual and auditory inputs. Subjects judged the stimuli as in-sync or out-of-sync. Results showed that subjects exhibited greater AVOA tolerance for non-blurred than blurred visual speech and for less than more degraded acoustic speech. Increased AVOA tolerance was reflected in reduced amplitude of the P1-P2 auditory evoked potentials, a neurophysiological indication of reduced sensitivity to acoustic onsets and successful AV integration. There was also sustained visual alpha band (8-14 Hz) suppression (desynchronization) following acoustic speech onsets for non-blurred vs. blurred visual speech, consistent with continuous engagement of the visual system as the speech unfolds. The current findings suggest that increased spectrotemporal reliability of acoustic and visual speech promotes robust AV integration, partly by suppressing sensitivity to acoustic onsets, in support of the DRM's reweighting mechanism. Increased visual signal reliability also sustains the engagement of the visual system with the auditory system to maintain alignment of information across modalities.


Temporal Limits of Visual Motion Processing: Psychophysics and Neurophysiology.

  • Bart G Borghuis‎ et al.
  • Vision (Basel, Switzerland)‎
  • 2019‎

Under optimal conditions, just 3-6 ms of visual stimulation suffices for humans to see motion. Motion perception on this timescale implies that the visual system under these conditions reliably encodes, transmits, and processes neural signals with near-millisecond precision. Motivated by in vitro evidence for high temporal precision of motion signals in the primate retina, we investigated how neuronal and perceptual limits of motion encoding relate. Specifically, we examined the correspondence between the time scale at which cat retinal ganglion cells in vivo represent motion information and temporal thresholds for human motion discrimination. The timescale for motion encoding by ganglion cells ranged from 4.6 to 91 ms, and depended non-linearly on temporal frequency, but not on contrast. Human psychophysics revealed that minimal stimulus durations required for perceiving motion direction were similarly brief, 5.6-65 ms, and similarly depended on temporal frequency but, above ~10%, not on contrast. Notably, physiological and psychophysical measurements corresponded closely throughout (r = 0.99), despite more than a 20-fold variation in both human thresholds and optimal timescales for motion encoding in the retina. The match in absolute values of the neurophysiological and psychophysical data may be taken to indicate that from the lateral geniculate nucleus (LGN) through to the level of perception little temporal precision is lost. However, we also show that integrating responses from multiple neurons can improve temporal resolution, and this potential trade-off between spatial and temporal resolution would allow for loss of temporal resolution after the LGN. While the extent of neuronal integration cannot be determined from either our human psychophysical or neurophysiological experiments and its contribution to the measured temporal resolution is unknown, our results demonstrate a striking similarity in stimulus dependence between the temporal fidelity established in the retina and the temporal limits of human motion discrimination.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: