Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Axonal collateral-collateral transport of tract tracers in brain neurons: false anterograde labelling and useful tool.

  • S Chen‎ et al.
  • Neuroscience‎
  • 1998‎

It is well established that some neuroanatomical tracers may be taken up by local axonal terminals and transported to distant axonal collaterals (e.g., transganglionic transport in dorsal root ganglion cells). However, such collateral-collateral transport of tracers has not been systematically examined in the central nervous system. We addressed this issue with four neuronal tracers--biocytin, biotinylated dextran amine, cholera toxin B subunit, and Phaseolus vulgaris-leucoagglutinin--in the cerebellar cortex. Labelling of distant axonal collaterals in the cerebellar cortex (indication of collateral-collateral transport) was seen after focal iontophoretic microinjections of each of the four tracers. However, collateral-collateral transport properties differed among these tracers. Injection of biocytin or Phaseolus vulgaris-leucoagglutinin in the cerebellar cortex yielded distant collateral labelling only in parallel fibres. In contrast, injection of biotinylated dextran amine or cholera toxin B subunit produced distant collateral labelling of climbing fibres and mossy fibres, as well as parallel fibres. The present study is the first systematic examination of collateral-collateral transport following injection of anterograde tracers in brain. Such collateral-collateral transport may produce false-positive conclusions regarding neural connections when using these tracers for anterograde transport. However, this property may also be used as a tool to determine areas that are innervated by common distant afferents. In addition, these results may indicate a novel mode of chemical communication in the nervous system.


The modulation of striatonigral and nigrotectal pathways by CB1 signalling in the substantia nigra pars reticulata regulates panic elicited in mice by urutu-cruzeiro lancehead pit vipers.

  • Rafael Carvalho Almada‎ et al.
  • Behavioural brain research‎
  • 2021‎

Cannabinoid receptor type 1 (CB1R) is widely distributed in the substantia nigra pars reticulata (SNpr). However, the role of CB1R at the SNpr level in threatening situations is poorly understood. We investigated the role of CB1R in the SNpr on the expression of fear responses in mice confronted with urutu-cruzeiro pit vipers. First, a bidirectional neurotracer was injected into the SNpr; then, immunostaining of the vesicular GABA transporter was conducted at the levels of the striatum (CPu) and deep layers of the superior colliculus (dlSC). In addition, CB1R immunostaining and GABA labelling were performed in the SNpr. Using a prey-versus-snake paradigm, mice were pretreated with the CB1R antagonist AM251 (100 pmol) and treated with the endocannabinoid anandamide (AEA, 5 pmol) in the SNpr, followed by bicuculline (40 ng) in the dlSC, and were then confronted with a snake. Bidirectional neural tract tracers associated with immunofluorescence showed the GABAergic striatonigral disinhibitory and nigrotectal inhibitory pathways. Furthermore, we showed that CB1R labelling was restricted to axonal fibres surrounding SNpr GABAergic cells. We also demonstrated a decrease in the defensive behaviours of mice treated with AEA in the SNpr, but this effect was blocked by pre-treatment with AM251 in this structure. Taken together, our results show that the panicolytic consequences of the AEA enhancement in the SNpr are signalled by CB1R, suggesting that CB1R localised in axon terminals of CPu GABAergic neurons in the SNpr modulates the activity of the nigrotectal GABAergic pathway during the expression of defensive behaviours in threatening situations.


A systematic review on the quantitative relationship between structural and functional network connectivity strength in mammalian brains.

  • Milou Straathof‎ et al.
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism‎
  • 2019‎

The mammalian brain is composed of densely connected and interacting regions, which form structural and functional networks. An improved understanding of the structure-function relation is crucial to understand the structural underpinnings of brain function and brain plasticity after injury. It is currently unclear how functional connectivity strength relates to structural connectivity strength. We obtained an overview of recent papers that report on correspondences between quantitative functional and structural connectivity measures in the mammalian brain. We included network studies in which functional connectivity was measured with resting-state fMRI, and structural connectivity with either diffusion-weighted MRI or neuronal tract tracers. Twenty-seven of the 28 included studies showed a positive structure-function relationship. Large inter-study variations were found comparing functional connectivity strength with either quantitative diffusion-based (correlation coefficient (r) ranges: 0.18-0.82) or neuronal tracer-based structural connectivity measures (r = 0.24-0.74). Two functional datasets demonstrated lower structure-function correlations with neuronal tracer-based (r = 0.22 and r = 0.30) than with diffusion-based measures (r = 0.49 and r = 0.65). The robust positive quantitative structure-function relationship supports the hypothesis that structural connectivity provides the hardware from which functional connectivity emerges. However, methodological differences between the included studies complicate the comparison across studies, which emphasize the need for validation and standardization in brain structure-function studies.


Transneuronal circuit analysis with pseudorabies viruses.

  • J P Card‎ et al.
  • Current protocols in neuroscience‎
  • 2001‎

Over the past decade there has been a dramatic increase in the use of viruses as transneuronal tracers of neuronal circuitry. The method exploits the propensity of neurotropic viruses to invade neurons and then produce infectious progeny that cross synapses to infect other neurons within a circuit. The protocols and commentaries included in this unit focus upon the use of the swine alpha herpesvirus known as pseudorabies virus (PRV) for polysynaptic analysis. Here, the aspects of experimental design that have the greatest import for successful use of viruses in circuit definition are presented. Accordingly, the protocols included in this unit can be applied in concert with methods in which the use of classical tract tracers has been detailed. A procedure for retrograde infection of CNS circuits in the rat CNS by peripheral injection of virus is detailed, while transneuronal analysis by intracerebral injection is also described. A variant of these procedures, transneuronal analysis with multiple recombinant strains, is also described along with methods for growing and titering viral stocks, and procedures for single and dual immunohistochemical localization of viral antigens in fixed brain tissue.


Assessment of the AAV-mediated expression of channelrhodopsin-2 and halorhodopsin in brainstem neurons mediating auditory signaling.

  • T Shimano‎ et al.
  • Brain research‎
  • 2013‎

The physiology and circuitry associated with dorsal cochlear nucleus neurons (DCN) have been well described. The ability to remotely manipulate neuronal activity in these neurons would represent a step forward in the ability to understand the specific function of DCN neurons in hearing. Although, optogenetics has been used to study the function of pathways in other systems for several years, in the auditory system only neurons in the auditory cortex have been studied using this technique. Adeno-associated viral vectors with either channelrhodopsin-2 fused with GFP (ChR2-GFP) or halorhodopsin fused with mCherry (HaloR-mCherry), capable of expressing light sensitive cation channels or chloride pumps, respectively, were delivered into the dorsal cochlear nucleus (DCN). One to 18 months later, expression of ChR2 and HaloR was observed throughout the DCN. Rhodopsin distribution within the DCN was determined to be within several cell types identified based on morphology and location within the DCN. Expression of ChR2-GFP and HaloR-mCherry was found at both the injection site as well as in regions receiving projections from the site. Wavelength appropriate optical stimulation in vivo resulted in neuronal activity that was significantly increased over pre-stimulation levels with no return to baseline levels during the time of the light exposure. We also examined the effects of optically driven neuronal activity on subsequent tone driven responses in the DCN. In the DCN 75% of the 16 electrode sites showed decreased neuronal activity in response to a tone immediately following light stimulation while six percent were decreased following tone stimulation and 19% of the electrode sites showed no change. This is in contrast to tone driven neuronal activity prior to the light exposure in which the majority of electrode sites showed increased neuronal activity. Our results indicate that expression and activation of rhodopsin within neurons involved in auditory processing does not appear to have deleterious effects on hearing even 18 months following expression. In addition, virally targeted rhodopsins may be useful as tract tracers to delineate as well as modulate the activity of pathways and specific neurons. In the future rhodopsins can be targeted to specific subpopulations of auditory neurons. Ultimately, photostimulation may provide a physiologically relevant method for modulating the function of auditory neurons and affecting hearing outcomes. This article is part of a Special Issue entitled Optogenetics (7th BRES).


Interhemispheric connections of the ventral premotor cortex in a new world primate.

  • Numa Dancause‎ et al.
  • The Journal of comparative neurology‎
  • 2007‎

This study describes the pattern of interhemispheric connections of the ventral premotor cortex (PMv) distal forelimb representation (DFL) in squirrel monkeys. Our objectives were to describe qualitatively and quantitatively the connections of PMv with contralateral cortical areas. Intracortical microstimulation techniques (ICMS) guided the injection of the neuronal tract tracers biotinylated dextran amine or Fast blue into PMv DFL. We classified the interhemispheric connections of PMv into three groups. Major connections were found in the contralateral PMv and supplementary motor area (SMA). Intermediate interhemispheric connections were found in the rostral portion of the primary motor cortex, the frontal area immediately rostral and ventral to PMv (FR), cingulate motor areas (CMAs), and dorsal premotor cortex (PMd). Minor connections were found inconsistently across cases in the anterior operculum (AO), posterior operculum/inferior parietal cortex (PO/IP), and posterior parietal cortex (PP), areas that consistently show connections with PMv in the ipsilateral hemisphere. Within-case comparisons revealed that the percentage of PMv connections with contralateral SMA and PMd are higher than the percentage of PMv connections with these areas in the ipsilateral hemisphere; percentages of PMv connections with contralateral M1 rostral, FR, AO, and the primary somatosensory cortex are lower than percentages of PMv connections with these areas in the ipsilateral hemisphere. These studies increase our knowledge of the pattern of interhemispheric connection of PMv. They help to provide an anatomical foundation for understanding PMv's role in motor control of the hand and interhemispheric interactions that may underlie the coordination of bimanual movements.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: