Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 113 papers

Neuronal ceroid lipofuscinoses.

  • Anu Jalanko‎ et al.
  • Biochimica et biophysica acta‎
  • 2009‎

The neuronal ceroid lipofuscinoses (NCL) are severe neurodegenerative lysosomal storage disorders of childhood, characterized by accumulation of autofluorescent ceroid lipopigments in most cells. NCLs are caused by mutations in at least ten recessively inherited human genes, eight of which have been characterized. The NCL genes encode soluble and transmembrane proteins, localized to the endoplasmic reticulum (ER) or the endosomal/lysosomal organelles. The precise function of most of the NCL proteins has remained elusive, although they are anticipated to carry pivotal roles in the central nervous system. Common clinical features in NCL, including retinopathy, motor abnormalities, epilepsia and dementia, also suggest that the proteins may be functionally linked. All subtypes of NCLs present with selective neurodegeneration in the cerebral and cerebellar cortices. Animal models have provided valuable data about the pathological characteristics of NCL and revealed that early glial activation precedes neuron loss in the thalamocortical system. The mouse models have also been efficiently utilized for the evaluation of therapeutic strategies. The tools generated by the accomplishments in genomics have further substantiated global analyses and these have initially provided new insights into the NCL field. This review summarizes the current knowledge of the NCL proteins, basic characteristics of each disease and studies of pathogenetic mechanisms in animal models of these diseases.


Diagnosis of the neuronal ceroid lipofuscinoses: an update.

  • Ruth E Williams‎ et al.
  • Biochimica et biophysica acta‎
  • 2006‎

For the majority of families affected by one of the neuronal ceroid lipofuscinoses (NCLs), a biochemical and/or genetic diagnosis can be achieved. In an individual case this information not only increases understanding of the condition but also may influence treatment choices and options. The presenting clinical features prompt initial investigation and also guide clinical care. The clinical labels "infantile NCL", "late infantile NCL" and "juvenile NCL", therefore remain useful in practice. In unusual or atypical cases ultra-structural analysis of white blood cells or other tissue samples enables planning and prioritisation of biochemical and genetic tests. This review describes current methods available to achieve clinical, pathological, biochemical and genetic diagnosis in children presenting with symptoms suggestive of one of the NCLs.


Neuronal Ceroid Lipofuscinoses: Connecting Calcium Signalling through Calmodulin.

  • Sabateeshan Mathavarajah‎ et al.
  • Cells‎
  • 2018‎

Despite the increased focus on the role of calcium in the neuronal ceroid lipofuscinoses (NCLs, also known as Batten disease), links between calcium signalling and the proteins associated with the disease remain to be identified. A central protein in calcium signalling is calmodulin (CaM), which regulates many of the same cellular processes affected in the NCLs. In this study, we show that 11 of the 13 NCL proteins contain putative CaM-binding domains (CaMBDs). Many of the missense mutations documented from NCL patients overlap with the predicted CaMBDs and are often key residues of those domains. The two NCL proteins lacking such domains, CLN7 and CLN11, share a commonality in undergoing proteolytic processing by cathepsin L, which contains a putative CaMBD. Since CaM appears to have both direct and indirect roles in the NCLs, targeting it may be a valid therapeutic approach for treating the disease.


The neuronal ceroid-lipofuscinoses: from past to present.

  • Matti Haltia‎
  • Biochimica et biophysica acta‎
  • 2006‎

The neuronal ceroid-lipofuscinoses (NCLs) are inherited lysosomal storage diseases and constitute the most common group of children's progressive encephalopathies. Most childhood forms of NCL are clinically characterized by progressive loss of vision as well as mental and motor deterioration, epileptic seizures, and premature death, while the rare adult forms are dominated by dementia. All forms of NCL share common pathomorphological features. Autofluorescent, periodic acid-Schiff- and Sudan black B-positive granules, resistant to lipid solvents, accumulate in the cytoplasm of most nerve cells, and there is progressive and remarkably selective neuronal degeneration and loss. For a long time, the NCLs were grouped under the heading of the "amaurotic family idiocies" and conceived as lipidoses. However, in the late 1980s and 1990s the NCL storage cytosomes were shown to consist largely of two hydrophobic proteins: either subunit c of mitochondrial ATP synthase or sphingolipid activator proteins A and D. Since 1995 numerous mutations in at least seven different genes have been shown to underlie the multiple human and animal forms of NCL. This review discusses the historical evolution of the NCL concept and the impact of the recent biochemical and molecular genetic findings on our views on the classification and pathogenesis of these devastating brain disorders.


Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses.

  • Anil B Mukherjee‎ et al.
  • Molecular neurodegeneration‎
  • 2019‎

Neuronal Ceroid Lipofuscinoses (NCLs), commonly known as Batten disease, constitute a group of the most prevalent neurodegenerative lysosomal storage disorders (LSDs). Mutations in at least 13 different genes (called CLNs) cause various forms of NCLs. Clinically, the NCLs manifest early impairment of vision, progressive decline in cognitive and motor functions, seizures and a shortened lifespan. At the cellular level, all NCLs show intracellular accumulation of autofluorescent material (called ceroid) and progressive neuron loss. Despite intense studies the normal physiological functions of each of the CLN genes remain poorly understood. Consequently, the development of mechanism-based therapeutic strategies remains challenging. Endolysosomal dysfunction contributes to pathogenesis of virtually all LSDs. Studies within the past decade have drastically changed the notion that the lysosomes are merely the terminal degradative organelles. The emerging new roles of the lysosome include its central role in nutrient-dependent signal transduction regulating metabolism and cellular proliferation or quiescence. In this review, we first provide a brief overview of the endolysosomal and autophagic pathways, lysosomal acidification and endosome-lysosome and autophagosome-lysosome fusions. We emphasize the importance of these processes as their dysregulation leads to pathogenesis of many LSDs including the NCLs. We also describe what is currently known about each of the 13 CLN genes and their products and how understanding the emerging new roles of the lysosome may clarify the underlying pathogenic mechanisms of the NCLs. Finally, we discuss the current and emerging therapeutic strategies for various NCLs.


Flupirtine derivatives as potential treatment for the neuronal ceroid lipofuscinoses.

  • Joelle Makoukji‎ et al.
  • Annals of clinical and translational neurology‎
  • 2018‎

Neuronal Ceroid Lipofuscinoses (NCL) are fatal inherited neurodegenerative diseases with established neuronal cell death and increased ceramide levels in brain, hence, a need for disease-modifying drug candidates, with potential to enhance growth, reduce apoptosis and lower ceramide in neuronal precursor PC12 cells and human NCL cell lines using enhanced flupirtine aromatic carbamate derivatives in vitro.


The Genetic Basis of Phenotypic Heterogeneity in the Neuronal Ceroid Lipofuscinoses.

  • Emily Gardner‎ et al.
  • Frontiers in neurology‎
  • 2021‎

The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders that affect children and adults. They share some similar clinical features and the accumulation of autofluorescent storage material. Since the discovery of the first causative genes, more than 530 mutations have been identified across 13 genes in cases diagnosed with NCL. These genes encode a variety of proteins whose functions have not been fully defined; most are lysosomal enzymes, or transmembrane proteins of the lysosome or other organelles. Many mutations in these genes are associated with a typical NCL disease phenotype. However, increasing numbers of variant disease phenotypes are being described, affecting age of onset, severity or progression, and including some distinct clinical phenotypes. This data is collated by the NCL Mutation Database which allows analysis from many perspectives. This article will summarise and interpret current knowledge and understanding of their genetic basis and phenotypic heterogeneity.


Global Brain Transcriptome Analysis of a Tpp1 Neuronal Ceroid Lipofuscinoses Mouse Model.

  • Miriam S Domowicz‎ et al.
  • ASN neuro‎
  • 2019‎

In humans, homozygous mutations in the TPP1 gene results in loss of tripeptidyl peptidase 1 (TPP1) enzymatic activity, leading to late infantile neuronal ceroid lipofuscinoses disease. Using a mouse model that targets the Tpp1 gene and recapitulates the pathology and clinical features of the human disease, we analyzed end-stage (4 months) transcriptional changes associated with lack of TPP1 activity. Using RNA sequencing technology, Tpp1 expression changes in the forebrain/midbrain and cerebellum of 4-month-old homozygotes were compared with strain-related controls. Transcriptional changes were found in 510 and 1,550 gene transcripts in forebrain/midbrain and cerebellum, respectively, from Tpp1-deficient brain tissues when compared with age-matched controls. Analysis of the differentially expressed genes using the Ingenuity™ pathway software, revealed increased neuroinflammation activity in microglia and astrocytes that could lead to neuronal dysfunction, particularly in the cerebellum. We also observed upregulation in the production of nitric oxide and reactive oxygen species; activation of leukocyte extravasation signals and complement pathways; and downregulation of major transcription factors involved in control of circadian rhythm. Several of these expression changes were confirmed by independent quantitative polymerase chain reaction and histological analysis by mRNA in situ hybridization, which allowed for an in-depth anatomical analysis of the pathology and provided independent confirmation of at least two of the major networks affected in this model. The identification of differentially expressed genes has revealed new lines of investigation for this complex disorder that may lead to novel therapeutic targets.


Electroretinography data from ovine models of CLN5 and CLN6 neuronal ceroid lipofuscinoses.

  • Katharina N Russell‎ et al.
  • Data in brief‎
  • 2021‎

This article presents datasets associated with the research article entitled "Intravitreal gene therapy protects against retinal dysfunction and degeneration in sheep with CLN5 Batten disease" (Murray et al., [1]). The neuronal ceroid lipofuscinoses (NCL; Batten disease) are a group of fatal inherited diseases caused by mutations in a number of CLN genes that lead to degenerative and fatal encephalopathies in children. Naturally-occuring sheep models of NCL exist. Affected sheep share the clinical and pathological features of the human disease, including retinal degeneration. Electroretinography (ERG) was employed to characterise the physiological changes in the degenerating retina of CLN5 and CLN6 forms of ovine NCL. ERGs were performed every two months from 3 to 17 months of age in 11 NCL affected (6 CLN5-/ - and 5 CLN6-/- ) sheep and 12 clinically normal heterozygous controls (6 CLN5+/ - and 6 CLN6 +/-) under three different adaptation conditions. A-wave and b-wave amplitudes were collected from each eye using the Eickemeyer Veterinary ERG system. These are the first longitudinal datasets assessing the progression of retinal degeneration in ovine NCL, aiding in characterisation of the disease process and providing insight into optimal therapeutic windows for subsequent studies.


High diagnostic yield of direct Sanger sequencing in the diagnosis of neuronal ceroid lipofuscinoses.

  • Abdulhakim Jilani‎ et al.
  • JIMD reports‎
  • 2019‎

Neuronal ceroid lipofuscinoses are neurodegenerative disorders. To investigate the diagnostic yield of direct Sanger sequencing of the CLN genes, we reviewed Molecular Genetics Laboratory Database for molecular genetic test results of the CLN genes from a single clinical molecular diagnostic laboratory.


KCTD7 mutations impair the trafficking of lysosomal enzymes through CLN5 accumulation to cause neuronal ceroid lipofuscinoses.

  • Yalan Wang‎ et al.
  • Science advances‎
  • 2022‎

Lysosomes are central organelles for cellular degradation and energy metabolism. Neuronal ceroid lipofuscinoses (NCLs) are a group of the most common neurodegenerative lysosomal storage disorders characterized by intracellular accumulation of ceroid in neurons. Mutations in KCTD7, a gene encoding an adaptor of the CUL3-RING E3 ubiquitin ligase (CRL3) complex, are categorized as a unique NCL subtype. However, the underlying mechanisms remain elusive. Here, we report various lysosomal and autophagic defects in KCTD7-deficient cells. Mechanistically, the CRL3-KCTD7 complex degrades CLN5, whereas patient-derived KCTD7 mutations disrupt the interaction between KCTD7-CUL3 or KCTD7-CLN5 and ultimately lead to excessive accumulation of CLN5. The accumulated CLN5 disrupts the interaction between CLN6/8 and lysosomal enzymes at the endoplasmic reticulum (ER), subsequently impairing ER-to-Golgi trafficking of lysosomal enzymes. Our findings reveal previously unrecognized roles of KCTD7-mediated CLN5 proteolysis in lysosomal homeostasis and demonstrate that KCTD7 and CLN5 are biochemically linked and function in a common neurodegenerative pathway.


Induced Pluripotent Stem Cells Derived from a CLN5 Patient Manifest Phenotypic Characteristics of Neuronal Ceroid Lipofuscinoses.

  • Kristiina Uusi-Rauva‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Neuronal ceroid lipofuscinoses (NCLs) are autosomal recessive progressive encephalopathies caused by mutations in at least 14 different genes. Despite extensive studies performed in different NCL animal models, the molecular mechanisms underlying neurodegeneration in NCLs remain poorly understood. To model NCL in human cells, we generated induced pluripotent stem cells (iPSCs) by reprogramming skin fibroblasts from a patient with CLN5 (ceroid lipofuscinosis, neuronal, 5) disease, the late infantile variant form of NCL. These CLN5 patient-derived iPSCs (CLN5Y392X iPSCs) harbouring the most common CLN5 mutation, c.1175_1176delAT (p.Tyr392X), were further differentiated into neural lineage cells, the most affected cell type in NCLs. The CLN5Y392X iPSC-derived neural lineage cells showed accumulation of autofluorescent storage material and subunit C of the mitochondrial ATP synthase, both representing the hallmarks of many forms of NCLs, including CLN5 disease. In addition, we detected abnormalities in the intracellular organelles and aberrations in neuronal sphingolipid transportation, verifying the previous findings obtained from Cln5-deficient mouse macrophages. Therefore, patient-derived iPSCs provide a suitable model to study the mechanisms of NCL diseases.


Molecular networking in the neuronal ceroid lipofuscinoses: insights from mammalian models and the social amoeba Dictyostelium discoideum.

  • Robert J Huber‎
  • Journal of biomedical science‎
  • 2020‎

The neuronal ceroid lipofuscinoses (NCLs), commonly known as Batten disease, belong to a family of neurological disorders that cause blindness, seizures, loss of motor function and cognitive ability, and premature death. There are 13 different subtypes of NCL that are associated with mutations in 13 genetically distinct genes (CLN1-CLN8, CLN10-CLN14). Similar clinical and pathological profiles of the different NCL subtypes suggest that common disease mechanisms may be involved. As a result, there have been many efforts to determine how NCL proteins are connected at the cellular level. A main driving force for NCL research has been the utilization of mammalian and non-mammalian cellular models to study the mechanisms underlying the disease. One non-mammalian model that has provided significant insight into NCL protein function is the social amoeba Dictyostelium discoideum. Accumulated data from Dictyostelium and mammalian cells show that NCL proteins display similar localizations, have common binding partners, and regulate the expression and activities of one another. In addition, genetic models of NCL display similar phenotypes. This review integrates findings from Dictyostelium and mammalian models of NCL to highlight our understanding of the molecular networking of NCL proteins. The goal here is to help set the stage for future work to reveal the cellular mechanisms underlying the NCLs.


Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease).

  • Masato Koike‎ et al.
  • The American journal of pathology‎
  • 2005‎

In cathepsin D-deficient (CD-/-) and cathepsins B and L double-deficient (CB-/-CL-/-) mice, abnormal vacuolar structures accumulate in neurons of the brains. Many of these structures resemble autophagosomes in which part of the cytoplasm is retained but their precise nature and biogenesis remain unknown. We show here how autophagy contributes to the accumulation of these vacuolar structures in neurons deficient in cathepsin D or both cathepsins B and L by demonstrating an increased conversion of the molecular form of MAP1-LC3 for autophagosome formation from the cytosolic form (LC3-I) to the membrane-bound form (LC3-II). In both CD-/- and CB-/-CL-/- mouse brains, the membrane-bound LC3-II form predominated whereas MAP1-LC3 signals accumulated in granular structures located in neuronal perikarya and axons of these mutant brains and were localized to the membranes of autophagosomes, evidenced by immunofluorescence microscopy and freeze-fracture-replica immunoelectron microscopy. Moreover, as in CD-/- neurons, autofluorescence and subunit c of mitochondrial ATP synthase accumulated in CB-/-CL-/- neurons. This suggests that not only CD-/- but also CB-/-CL-/- mice could be useful animal models for neuronal ceroid-lipofuscinosis/Batten disease. These data strongly argue for a major involvement of autophagy in the pathogenesis of Batten disease/lysosomal storage disorders.


Implications of graded reductions in CLN6's anti-aggregate activity for the development of the neuronal ceroid lipofuscinoses.

  • Arisa Yamashita‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

CLN6, spanning the endoplasmic reticulum membrane, is a protein of unknown function. Mutations in the CLN6 gene are linked to an autosomal recessively inherited disorder termed CLN6 disease, classified as a form of the neuronal ceroid lipofuscinoses (NCL). The pathogenesis of CLN6 disease remains poorly understood due to a lack of information about physiological roles CLN6 plays. We previously demonstrated that CLN6 has the ability to prevent protein aggregate formation, and thus hypothesized that the abrogation of CLN6's anti-aggregate activity underlies the development of CLN6 disease. To test this hypothesis, we narrowed down the region vital for CLN6's anti-aggregate activity, and subsequently investigated if pathogenic mutations within the region attenuate CLN6's anti-aggregate activity toward four aggregation-prone αB-crystallin (αBC) mutants. None of the four αBC mutants was prevented from aggregating by the Arg106ProfsX truncated CLN6 mutant, the human counterpart of the nclf mutant identified in a naturally occurring mouse model of late infantile-onset CLN6 disease. In contrast, the Arg149Cys and the Arg149His CLN6 mutants, both associated with adult-onset CLN6 disease, blocked aggregation of two out of and all of the four αBC mutants, respectively, indicating that CLN6's anti-aggregate activity is differentially modulated according to the substitution pattern at the same amino acid position. Collectively, we here propose that the graded reduction in CLN6's anti-aggregate activity governs the clinical course of late infantile- and adult-onset NCL.


Neural stem cells for disease modeling and evaluation of therapeutics for infantile (CLN1/PPT1) and late infantile (CLN2/TPP1) neuronal ceroid lipofuscinoses.

  • Ni Sima‎ et al.
  • Orphanet journal of rare diseases‎
  • 2018‎

Infantile and late infantile neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage diseases affecting the central nervous system (CNS). The infantile NCL (INCL) is caused by mutations in the PPT1 gene and late-infantile NCL (LINCL) is due to mutations in the TPP1 gene. Deficiency in PPT1 or TPP1 enzyme function results in lysosomal accumulation of pathological lipofuscin-like material in the patient cells. There is currently no small-molecular drug treatment for NCLs.


Computed tomography provides enhanced techniques for longitudinal monitoring of progressive intracranial volume loss associated with regional neurodegeneration in ovine neuronal ceroid lipofuscinoses.

  • Katharina N Russell‎ et al.
  • Brain and behavior‎
  • 2018‎

The neuronal ceroid lipofuscinoses (NCLs; Batten disease) are a group of fatal neurodegenerative lysosomal storage diseases of children caused by various mutations in a range of genes. Forms associated with mutations in two of these, CLN5 and CLN6, are being investigated in well-established sheep models. Brain atrophy leading to psychomotor degeneration is among the defining features, as is regional progressive ossification of the inner cranium. Ongoing viral-mediated gene therapy trials in these sheep are yielding encouraging results. In vivo assessment of brain atrophy is integral to the longitudinal monitoring of individual animals and provides robust data for translation to treatments for humans.


Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis.

  • Jose Bras‎ et al.
  • Human molecular genetics‎
  • 2012‎

Neuronal ceroid lipofuscinoses (NCLs) comprise a heterogeneous group of metabolic storage diseases that present with the accumulation of autofluorescent lipopigment, neurodegeneration and premature death. Nine genes have been thus far identified as the cause of different types of NCL, with ages at onset ranging from around birth to adult, although the underlying etiology of the disease still remains elusive. We present a family with typical NCL pathology in which we performed exome sequencing and identified a single homozygous mutation in ATP13A2 that fully segregates with disease within the family. Mutations in ATP13A2 are a known cause of Kufor-Rakeb syndrome (KRS), a rare parkinsonian phenotype with juvenile onset. These data show that NCL and KRS may share etiological features and implicate the lysosomal pathway in Parkinson's disease.


Cell biology and function of neuronal ceroid lipofuscinosis-related proteins.

  • Katrin Kollmann‎ et al.
  • Biochimica et biophysica acta‎
  • 2013‎

Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.


Exacerbated neuronal ceroid lipofuscinosis phenotype in Cln1/5 double-knockout mice.

  • Tea Blom‎ et al.
  • Disease models & mechanisms‎
  • 2013‎

Both CLN1 and CLN5 deficiencies lead to severe neurodegenerative diseases of childhood, known as neuronal ceroid lipofuscinoses (NCLs). The broadly similar phenotypes of NCL mouse models, and the potential for interactions between NCL proteins, raise the possibility of shared or convergent disease mechanisms. To begin addressing these issues, we have developed a new mouse model lacking both Cln1 and Cln5 genes. These double-knockout (Cln1/5 dko) mice were fertile, showing a slight decrease in expected Mendelian breeding ratios, as well as impaired embryoid body formation by induced pluripotent stem cells derived from Cln1/5 dko fibroblasts. Typical disease manifestations of the NCLs, i.e. seizures and motor dysfunction, were detected at the age of 3 months, earlier than in either single knockout mouse. Pathological analyses revealed a similar exacerbation and earlier onset of disease in Cln1/5 dko mice, which exhibited a pronounced accumulation of autofluorescent storage material. Cortical demyelination and more pronounced glial activation in cortical and thalamic regions was followed by cortical neuron loss. Alterations in lipid metabolism in Cln1/5 dko showed a specific increase in plasma phospholipid transfer protein (PLTP) activity. Finally, gene expression profiling of Cln1/5 dko cortex revealed defects in myelination and immune response pathways, with a prominent downregulation of α-synuclein in Cln1/5 dko mouse brains. The simultaneous loss of both Cln1 and Cln5 genes might enhance the typical pathological phenotypes of these mice by disrupting or downregulating shared or convergent pathogenic pathways, which could potentially include interactions of CLN1 and CLN5.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: