Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

BCRP expression in schwannoma, plexiform neurofibroma and MPNST.

  • Maurits de Vries‎ et al.
  • Oncotarget‎
  • 2017‎

peripheral nerve sheath tumors comprise a broad spectrum of neoplasms. Vestibular schwannomas and plexiform neurofibromas are symptomatic albeit benign, but a subset of the latter pre-malignant lesions will transform to malignant peripheral nerve sheath tumors (MPNST). Surgery and radiotherapy are the primary strategies to treat these tumors. Intrinsic resistance to drug therapy characterizes all three tumor subtypes. The breast cancer resistance protein BCRP is a transmembrane efflux transporter considered to play a key role in various biological barriers such as the blood brain barrier. At the same time it is associated with drug resistance in various tumors. Its potential role in drug resistant tumors of the peripheral nervous system is largely unknown.


MicroRNA-155 contributes to plexiform neurofibroma growth downstream of MEK.

  • Youjin Na‎ et al.
  • Oncogene‎
  • 2021‎

MicroRNAs (miRs) are small non-coding RNAs that can have large impacts on oncogenic pathways. Possible functions of dysregulated miRs have not been studied in neurofibromatosis type 1 (NF1) plexiform neurofibromas (PNFs). In PNFs, Schwann cells (SCs) have biallelic NF1 mutations necessary for tumorigenesis. We analyzed a miR microarray comparing with normal and PNF SCs and identified differences in miR expression, and we validated in mouse PNFs versus normal mouse SCs by qRT-PCR. Among these, miR-155 was a top overexpressed miR, and its expression was regulated by RAS/MAPK signaling. Overexpression of miR-155 increased mature Nf1-/- mouse SC proliferation. In SC precursors, which model tumor-initiating cells, pharmacological and genetic inhibition of miR-155 decreased PNF-derived sphere numbers in vitro, and we identified Maf as a miR-155 target. In vivo, global deletion of miR-155 significantly decreased tumor number and volume, increasing mouse survival. Fluorescent nanoparticles entered PNFs, suggesting that an anti-miR might have therapeutic potential. However, treatment of established PNFs using anti-miR-155 peptide nucleic acid-loaded nanoparticles marginally decreased tumor numbers and did not reduce tumor growth. These results suggest that miR-155 plays a functional role in PNF growth and/or SC proliferation, and that targeting neurofibroma miRs is feasible, and might provide novel therapeutic opportunities.


Multiple Nf1 Schwann cell populations reprogram the plexiform neurofibroma tumor microenvironment.

  • Leah J Kershner‎ et al.
  • JCI insight‎
  • 2022‎

To define alterations early in tumor formation, we studied nerve tumors in neurofibromatosis 1 (NF1), a tumor predisposition syndrome. Affected individuals develop neurofibromas, benign tumors driven by NF1 loss in Schwann cells (SCs). By comparing normal nerve cells to plexiform neurofibroma (PN) cells using single-cell and bulk RNA sequencing, we identified changes in 5 SC populations, including a de novo SC progenitor-like (SCP-like) population. Long after Nf1 loss, SC populations developed PN-specific expression of Dcn, Postn, and Cd74, with sustained expression of the injury response gene Postn and showed dramatic expansion of immune and stromal cell populations; in corresponding human PNs, the immune and stromal cells comprised 90% of cells. Comparisons between injury-related and tumor monocytes/macrophages support early monocyte recruitment and aberrant macrophage differentiation. Cross-species analysis verified each SC population and unique conserved patterns of predicted cell-cell communication in each SC population. This analysis identified PROS1-AXL, FGF-FGFR, and MIF-CD74 and its effector pathway NF-κB as deregulated in NF1 SC populations, including SCP-like cells predicted to influence other types of SCs, stromal cells, and/or immune cells in mouse and human. These findings highlight remarkable changes in multiple types of SCs and identify therapeutic targets for PN.


Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma.

  • Zhiguo Chen‎ et al.
  • Cancer cell‎
  • 2014‎

Neurofibromatosis type 1 is a tumor-predisposing genetic disorder. Plexiform neurofibromas are common NF1 tumors carrying a risk of malignant transformation, which is typically fatal. Little is known about mechanisms mediating initiation and identity of specific cell type that gives rise to neurofibromas. Using cell-lineage tracing, we identify a population of GAP43(+) PLP(+) precursors in embryonic nerve roots as the cells of origin for these tumors and report a non-germline neurofibroma model for preclinical drug screening to identify effective therapies. The identity of the tumor cell of origin and facility for isolation and expansion provides fertile ground for continued analysis to define factors critical for neurofibromagenesis. It also provides unique approaches to develop therapies to prevent neurofibroma formation in NF1 patients.


Pharmacological and genomic profiling of neurofibromatosis type 1 plexiform neurofibroma-derived schwann cells.

  • Marc Ferrer‎ et al.
  • Scientific data‎
  • 2018‎

Neurofibromatosis type I (NF1) is an autosomal dominant genetic condition characterized by peripheral nervous system tumors (PNSTs), including plexiform neurofibromas (pNFs) that cause nerve dysfunction, deformity, pain damage to adjacent structures, and can undergo malignant transformation. There are no effective therapies to prevent or treat pNFs. Drug discovery efforts are slowed by the 'benign' nature of the Schwann cells that are the progenitor cells of pNF. In this work we characterize a set of pNF-derived cell lines at the genomic level (via SNP Arrays, RNAseq, and Whole Exome- Sequencing), and carry out dose response-based quantitative high-throughput screening (qHTS) with a collection of 1,912 oncology-focused compounds in a 1536-well microplate cell proliferation assays. Through the characterization and screening of NF1-/-, NF1+/+ and NF1+/- Schwann cell lines, this resource introduces novel therapeutic avenues for the development for NF1 associated pNF as well as all solid tumors with NF1 somatic mutations. The integrated data sets are openly available for further analysis at http://www.synapse.org/pnfCellCulture.


Preclinical assessment of the anticancer drug response of plexiform neurofibroma tissue using primary cultures.

  • Wei Jiang‎ et al.
  • Journal of clinical neurology (Seoul, Korea)‎
  • 2015‎

Individualized drug testing for tumors using a strategy analogous to antibiotic tests for infectious diseases would be highly desirable for personalized and individualized cancer care.


Inhibition of YAP Sensitizes the Selumetinib Treatment for Neurofibromatosis Type 1 Related Plexiform Neurofibroma.

  • Zhuowei Tian‎ et al.
  • International journal of medical sciences‎
  • 2023‎

Background: Targeted therapy of Neurofibromatosis type 1 (NF1) related plexiform neurofibroma (pNF) aiming at MEK molecule has not demonstrated a convincing result for complete disease inhibition, probably due to other signal pathways crosstalk. Our previous study revealed an increased nuclear translocation of YAP molecule in NF1 related pNF. Herein, we decided to further investigate the therapeutic relations of YAP interference during the MEK treatment against NF1 related pNF. Methods: By means of selumetinib (MEK-inhibitor), RNA-sequencing was firstly performed to identify the changes of signal pathways in pNF Schwann cells, which was probably related to YAP regulation. Nuclear-cytoplasmic fractionation and western blotting were performed to show the intracellular YAP changes under selumetinib treatment. Thirdly, a series of in vitro assays were performed including flow cytometry, CCK-8, and colony/sphere formation under dual treatment of selumetinib and verteporfin (YAP-inhibitor). In addition, Chou-Talalay method was adopted to evaluate the synergistic inhibiting effects of such drug combination. Xenograft study was also used to detect the combining effects in vivo. Results: RNA-sequencing revealed that selumetinib treatment might be associated with the undesirable activation of Hippo pathway in NF1 related pNF tumor cells, which might reduce its pharmaceutic effects. Next, nuclear-cytoplasmic fractionation and further studies demonstrated that selumetinib could promote the nuclear translocation and transcriptional activation of YAP in vitro, which might cause the aforementioned resistance to selumetinib treatment. Additionally, when combined treatments were performed based on verteporfin and selumetinib, synergistic effects were observed on cytotoxicity of NF1 related pNF tumor cells in vitro and in vivo xenograft models. Conclusion: YAP inhibition can effectively sensitize NF1 related pNF tumor cells to selumetinib. Dual targeting of YAP and MEK might be a promising therapeutic strategy for treating NF1 related pNF.


Nilotinib is more potent than imatinib for treating plexiform neurofibroma in vitro and in vivo.

  • Jiang Wei‎ et al.
  • PloS one‎
  • 2014‎

Plexiform neurofibromas (PNFs) are benign nerve sheath tumors mostly associated with neurofibromatosis type 1. They often extend through multiple layers of tissue and therefore cannot be treated satisfactorily by surgery. Nilotinib is a tyrosine kinase inhibitor used to treat leukemia, with advantages over the prototype imatinib in terms of potency and selectivity towards BCR-ABL, and the DDR, PDGFR, and KIT receptor kinases. In this study, we compared efficacies of the two drugs on cultured cells of PNF in vitro and on xenografted tumor fragments on sciatic nerve of athymic nude mice. Xenografts were monitored weekly using a high resolution ultrasound measurement. Treatment with nilotinib at a daily dose of 100 mg/kg for four weeks led to a reduction of the graft sizesstd by 68±7% in the 8 treated mice, significantly more than the 33±8% reduction in the 8 untreated mice (P<0.05) and the 47±15% in the 7 mice treated with imatinib (P<0.05). The peak plasma nilotinib concentration 6.6±1.1 µM is within the pharmacological range of clinical application. Imatinib, but not nilotinib significantly hindered body weight increase of the mice and elevated cytotoxicity of mouse spleen cells (P<0.05). Our results suggest that nilotinib may be more potent than imatinib for treating PNFs and may also be better tolerated. Imatinib seems to have some off-target effect in elevating immunity.


Increased nuclear translation of YAP might act as a potential therapeutic target for NF1-related plexiform neurofibroma.

  • Jia-Liang Liu‎ et al.
  • International journal of medical sciences‎
  • 2021‎

Plexiform neurofibroma (pNF) in the head and neck is a characteristic feature in patients with neurofibromatosis type 1 (NF1) and is associated with significant disfigurement and psychological distress. Yes-associated protein (YAP), the key molecule involved in the Hippo pathway, is a vital transductor that regulates the proliferation and remyelinating of Schwann cells. The functional status of YAP and its feasibility as a potential target are still unknown in pNF. A total of 17 pNF tumor tissue specimens from the head and neck were collected at the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. Histologically, diagnosis of the Schwann cell region in pNF was achieved with hematoxylin-eosin staining, positive reactions for S100, SOX10, ERK and p-ERK, and low identification of Ki67 and SMA. Compared with normal nerve tissue, obviously increased nuclear YAP was detected in the Schwann cell region of pNF, with a mean nuclear staining rate of 67.11%. Based on the shNF1 Schwann cell model (the RSC96 cell line), with upregulated expression of RAS, ERK and p-ERK, p-YAP (Ser127) and p-YAP (Ser397) were significantly decreased and total YAP and nuclear YAP were increased. According to a confocal assay, the interference of shNF1 substantially promoted YAP nuclear translocation. Compared with control Schwann cells, the YAP inhibitor CA3 might have a more sensitive effect (IC50: NC=0.96±0.04, shNF1=0.71±0.02, P<0.05) on the shNF1 Schwann cell model than the classic MEK1/2 inhibitor selumetinib (IC50: NC=14.36±0.95, shNF1=24.83±0.98, P>0.05). For in vivo inhibition, the CA3 group and the selumetinib group displayed a similar inhibition effect with no significant difference. Increased nuclear translation and the functional state of YAP implies that the YAP-Hippo pathway might play an important role in the formation and remyelination of pNF. Compared with selumetinib, the YAP inhibitor can exhibit a similar but more sensitive effect on NF1-/- Schwann cells. These observations imply that YAP as a novel or adjuvant therapy target in the treatment of pNF.


Clinical and humanistic burden among pediatric patients with neurofibromatosis type 1 and plexiform neurofibroma in the USA.

  • Xiaoqin Yang‎ et al.
  • Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery‎
  • 2022‎

To assess clinical and humanistic burden among pediatric patients with neurofibromatosis type 1 (NF1) and plexiform neurofibroma (PN) in the USA.


Development of 3D culture models of plexiform neurofibroma and initial application for phenotypic characterization and drug screening.

  • Janice M Kraniak‎ et al.
  • Experimental neurology‎
  • 2018‎

Plexiform neurofibromas (PNs), which may be present at birth in up to half of children with type 1 neurofibromatosis (NF1), can cause serious loss of function, such as quadriparesis, and can undergo malignant transformation. Surgery is the first line treatment although the invasive nature of these tumors often prevents complete resection. Recent clinical trials have shown promising success for some drugs, notably selumetinib, an inhibitor of MAP kinase kinase (MEK). We have developed three-dimensional (3D) cell culture models of immortalized cells from NF1 PNs and of control Schwann cells (SCs) that we believe mimic more closely the in vivo condition than conventional two-dimensional (2D) cell culture. Our goal is to facilitate pre-clinical identification of potential targeted therapeutics for these tumors. Three drugs, selumetinib (a MEK inhibitor), picropodophyllin (an IGF-1R inhibitor) and LDN-193189 (a BMP2 inhibitor) were tested with dose-response design in both 2D and 3D cultures for their abilities to block net cell growth. Cell lines grown in 3D conditions showed varying degrees of resistance to the inhibitory actions of all three drugs. For example, control SCs became resistant to growth inhibition by selumetinib in 3D culture. LDN-193189 was the most effective drug in 3D cultures, with only slightly reduced potency compared to the 2D cultures. Characterization of these models also demonstrated increased proteolysis of collagen IV in the matrix by the PN driver cells as compared to wild-type SCs. The proteolytic capacity of the PN cells in the model may be a clinically significant property that can be used for testing the ability of drugs to inhibit their invasive phenotype.


Modeling iPSC-derived human neurofibroma-like tumors in mice uncovers the heterogeneity of Schwann cells within plexiform neurofibromas.

  • Helena Mazuelas‎ et al.
  • Cell reports‎
  • 2022‎

Plexiform neurofibromas (pNFs) are developmental tumors that appear in neurofibromatosis type 1 individuals, constituting a major source of morbidity and potentially transforming into a highly metastatic sarcoma (MPNST). pNFs arise after NF1 inactivation in a cell of the neural crest (NC)-Schwann cell (SC) lineage. Here, we develop an iPSC-based NC-SC in vitro differentiation system and construct a lineage expression roadmap for the analysis of different 2D and 3D NF models. The best model consists of generating heterotypic spheroids (neurofibromaspheres) composed of iPSC-derived differentiating NF1(-/-) SCs and NF1(+/-) pNF-derived fibroblasts (Fbs). Neurofibromaspheres form by maintaining highly proliferative NF1(-/-) cells committed to the NC-SC axis due to SC-SC and SC-Fb interactions, resulting in SC linage cells at different maturation points. Upon engraftment on the mouse sciatic nerve, neurofibromaspheres consistently generate human NF-like tumors. Analysis of expression roadmap genes in human pNF single-cell RNA-seq data uncovers the presence of SC subpopulations at distinct differentiation states.


Dual mTORC1/2 inhibition induces anti-proliferative effect in NF1-associated plexiform neurofibroma and malignant peripheral nerve sheath tumor cells.

  • Jennifer Varin‎ et al.
  • Oncotarget‎
  • 2016‎

Approximately 30-50% of individuals with Neurofibromatosis type 1 develop benign peripheral nerve sheath tumors, called plexiform neurofibromas (PNFs). PNFs can undergo malignant transformation to highly metastatic malignant peripheral nerve sheath tumors (MPNSTs) in 5-10% of NF1 patients, with poor prognosis. No effective systemic therapy is currently available for unresectable tumors. In tumors, the NF1 gene deficiency leads to Ras hyperactivation causing the subsequent activation of the AKT/mTOR and Raf/MEK/ERK pathways and inducing multiple cellular responses including cell proliferation. In this study, three NF1-null MPNST-derived cell lines (90-8, 88-14 and 96-2), STS26T sporadic MPNST cell line and PNF-derived primary Schwann cells were used to test responses to AZD8055, an ATP-competitive "active-site" mTOR inhibitor. In contrast to rapamycin treatment which only partially affected mTORC1 signaling, AZD8055 induced a strong inhibition of mTORC1 and mTORC2 signaling in MPNST-derived cell lines and PNF-derived Schwann cells. AZD8055 induced full blockade of mTORC1 leading to an efficient decrease of global protein synthesis. A higher cytotoxic effect was observed with AZD8055 compared to rapamycin in the NF1-null MPNST-derived cell lines with IC50 ranging from 70 to 140 nM and antiproliferative effect was confirmed in PNF-derived Schwann cells. Cell migration was impaired by AZD8055 treatment and cell cycle analysis showed a G0/G1 arrest. Combined effects of AZD8055 and PD0325901 MEK inhibitor as well as BRD4 (BromoDomain-containing protein 4) inhibitors showed a synergistic antiproliferative effect. These data suggest that NF1-associated peripheral nerve sheath tumors are an ideal target for AZD8055 as a single molecule or in combined therapies.


A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01.

  • Sébastien Perreault‎ et al.
  • BMC cancer‎
  • 2019‎

Pediatric low-grade gliomas (PLGG) are the most frequent brain tumors in children. Up to 50% will be refractory to conventional chemotherapy. It is now known that the majority of PLGG have activation of the MAPK/ERK pathway. The same pathway is also activated in plexiform neurofibromas (PNs) which are low-grade tumors involving peripheral nerves in patients with neurofibromatosis type 1 (NF1). These lesions are known to be refractory to chemotherapy. Specific MEK inhibitors such as trametinib are now available and have been approved for other cancers harboring mutations in the MAPK/ERK pathway such as melanoma. We have observed significant responses to trametinib in patients with refractory PLGG in our institutions and results from the phase I study are promising. The treatment appears not only efficacious but is also usually well tolerated. We hypothesize that we will observe responses in the majority of refractory PLGG and PN treated with trametinib in this phase 2 study.


Differential gene methylation and expression of HOX transcription factor family in orbitofacial neurofibroma.

  • Antje Arnold‎ et al.
  • Acta neuropathologica communications‎
  • 2020‎

Although most commonly benign, neurofibromas (NFs) can have devastating functional and cosmetic effects in addition to the possibility of malignant transformation. In orbitofacial neurofibromatosis type 1, NFs may cause progressive, disfiguring tumors of the lid, brow, temple, face and orbit. The purpose of this study was to identify biological differences between orbitofacial NFs and those occurring at other anatomic sites. We used Illumina Methylation EPIC BeadChip to study DNA methylation differences between orbitofacial NFs (N = 20) and NFs at other sites (N = 4). Global methylation differences were detected between the two groups and the top differentially methylated genes were part of the HOX (Homebox) family of transcription factors (HOXC8, HOXC4, HOXC6, HOXA6 and HOXD4), which were hypomethylated in orbitofacial NFs compared to the non-orbital NFs. Conversely, LTF (lactoferrin) was relatively hypermethylated in orbitofacial NF compared to non-orbitofacial NF. HOXC8 protein levels were higher in orbitofacial plexiform NFs (p = 0.04). We found no significant differences in the expression of HOXC4, HOXA6, or HOXD4 between the two groups. HOXC8 mRNA levels were also higher in orbitofacial NFs and HOXC8 overexpression in a non-neoplastic human Schwann cell line resulted in increased growth. In summary, we identified gene methylation and expression differences between orbitofacial NF and NFs occurring at other locations. Further investigation may be warranted, given that the HOX family of genes play an important role during development, are dysregulated in a variety of cancers, and may provide novel insights into therapeutic approaches.


Basement membrane proteins in extracellular matrix characterize NF1 neurofibroma development and response to MEK inhibitor.

  • Chunhui Jiang‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

Neurofibromatosis type 1 (NF1) is one of the most common tumor-predisposing genetic disorders. Neurofibromas are NF1-associated benign tumors. A hallmark feature of neurofibromas is an abundant collagen-rich extracellular matrix (ECM) that constitutes more than 50% of the tumor dry weight. However, little is known about the mechanism underlying ECM deposition during neurofibroma development and treatment response. We performed a systematic investigation of ECM enrichment during plexiform neurofibroma (pNF) development and identified basement membrane (BM) proteins, rather than major collagen isoforms, as the most upregulated ECM component. Following MEK inhibitor treatment, the ECM profile displayed an overall downregulation signature, suggesting ECM reduction as a therapeutic benefit of MEK inhibition. Through these proteomic studies, TGF-β1 signaling was identified as playing a role in ECM dynamics. Indeed, TGF-β1 overexpression promoted pNF progression in vivo. Furthermore, by integrating single-cell RNA sequencing, we found that immune cells including macrophages and T cells produce TGF-β1 to induce Schwann cells to produce and deposit BM proteins for ECM remodeling. Following Nf1 loss, neoplastic Schwann cells further increased BM protein deposition in response to TGF-β1. Our data delineate the regulation governing ECM dynamics in pNF and suggest that BM proteins could serve as biomarkers for disease diagnosis and treatment response.


Clinical characteristics and mutation Spectrum of NF1 in 12 Chinese families with orbital/periorbital plexiform Neurofibromatosis type 1.

  • Peiwei Chai‎ et al.
  • BMC medical genetics‎
  • 2019‎

Orbital/periorbital plexiform neurofibroma (OPPN) can compromise physical appearance and visual function. However, the clinical characteristics and NF1 mutation landscape in patients with heritable OPPN have not been reported.


Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis.

  • Syed J Kazmi‎ et al.
  • The American journal of pathology‎
  • 2013‎

Patients with neurofibromatosis type 1 (NF1) develop benign plexiform neurofibromas that frequently progress to become malignant peripheral nerve sheath tumors (MPNSTs). A genetically engineered mouse model that accurately models plexiform neurofibroma-MPNST progression in humans would facilitate identification of somatic mutations driving this process. We previously reported that transgenic mice overexpressing the growth factor neuregulin-1 in Schwann cells (P(0)-GGFβ3 mice) develop MPNSTs. To determine whether P(0)-GGFβ3 mice accurately model human neurofibroma-MPNST progression, cohorts of these animals were monitored through death and were necropsied; 94% developed multiple neurofibromas, with 70% carrying smaller numbers of MPNSTs. Nascent MPNSTs were identified within neurofibromas, suggesting that these sarcomas arise from neurofibromas. Although neurofibromin expression was maintained, P(0)-GGFβ3 MPNSTs exhibited Ras hyperactivation, as in human NF1-associated MPNSTs. P(0)-GGFβ3 MPNSTs also exhibited abnormalities in the p16(INK4A)-cyclin D/CDK4-Rb and p19(ARF)-Mdm-p53 pathways, analogous to their human counterparts. Array comparative genomic hybridization (CGH) demonstrated reproducible chromosomal alterations in P(0)-GGFβ3 MPNST cells (including universal chromosome 11 gains) and focal gains and losses affecting 39 neoplasia-associated genes (including Pten, Tpd52, Myc, Gli1, Xiap, and Bbc3/PUMA). Array comparative genomic hybridization also identified recurrent focal copy number variations affecting genes not previously linked to neurofibroma or MPNST pathogenesis. We conclude that P(0)-GGFβ3 mice represent a robust model of neurofibroma-MPNST progression useful for identifying novel genes driving neurofibroma and MPNST pathogenesis.


Integration of single-nuclei RNA-sequencing, spatial transcriptomics and histochemistry defines the complex microenvironment of NF1-associated plexiform neurofibromas.

  • Vladimir Amani‎ et al.
  • Acta neuropathologica communications‎
  • 2023‎

Plexiform neurofibroma (PN) is a leading cause of morbidity in children with the genetic condition Neurofibromatosis Type 1 (NF1), often disfiguring or threatening vital structures. During formation of PN, a complex tumor microenvironment (TME) develops, with recruitment of neoplastic and non-neoplastic cell types being critical for growth and progression. Due to the cohesive cellularity of PN, single-cell RNA-sequencing is difficult and may result in a loss of detection of critical cellular subpopulations. To bypass this barrier, we performed single-nuclei RNA-sequencing (snRNA-seq) on 8 frozen PN samples, and integrated this with spatial transcriptomics (ST) in 4 PN samples and immunohistochemistry to provide morphological context to transcriptomic data. SnRNA-seq analysis definitively charted the heterogeneous cellular subpopulations in the PN TME, with the predominant fraction being fibroblast subtypes. PN showed a remarkable amount of inter-sample homogeneity regarding cellular subpopulation proportions despite being resected from a variety of anatomical locations. ST analysis identified distinct cellular subpopulations which were annotated using snRNA-seq data and correlated with histological features. Schwann cell/fibroblast interactions were identified by receptor/ligand interaction analysis demonstrating a high probability of Neurexin 1/Neuroligin 1 (NRXN1/NLGN1) receptor-ligand cross-talk predicted between fibroblasts and non-myelinated Schwann cells (NM-SC) and subtypes, respectively. We observed aberrant expression of NRXN1 and NLGN1 in our PN snRNA-seq data compared to a normal mouse sciatic nerve single-cell RNA-seq dataset. This pathway has never been described in PN and may indicate a clear and direct communication pathway between putative NM-SC cells of origin and surrounding fibroblasts, potentially driving disease progression. SnRNA-seq integrated with spatial transcriptomics advances our understanding of the complex cellular heterogeneity of PN TME and identify potential novel communication pathways that may drive disease progression, a finding that could provide translational therapy options for patients with these devastating tumors of childhood and early adulthood.


Two simple and inexpensive methods for preparing DNA suitable for digital PCR from a small number of cells in 96-well plates.

  • Ziang Zou‎ et al.
  • Journal of clinical laboratory analysis‎
  • 2021‎

Although DNA of high quality can be easily prepared from cultured cells with commercially available kits, many studies involve a large number of samples which increases the cost drastically. We optimized two simple and inexpensive methods for preparing DNA suitable for digital PCR from a small number of cells directly from wells of 96-well plates.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: