Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,342 papers

Plasma protein biomarkers for the detection of pancreatic neuroendocrine tumors and differentiation from small intestinal neuroendocrine tumors.

  • Espen Thiis-Evensen‎ et al.
  • Journal of neuroendocrinology‎
  • 2022‎

There is an unmet need for novel biomarkers to diagnose and monitor patients with neuroendocrine neoplasms. The EXPLAIN study explores a multi-plasma protein and supervised machine learning strategy to improve the diagnosis of pancreatic neuroendocrine tumors (PanNET) and differentiate them from small intestinal neuroendocrine tumors (SI-NET). At time of diagnosis, blood samples were collected and analyzed from 39 patients with PanNET, 135 with SI-NET (World Health Organization Grade 1-2) and 144 controls. Exclusion criteria were other malignant diseases, chronic inflammatory diseases, reduced kidney or liver function. Prosed Oncology-II (i.e., OLink) was used to measure 92 cancer related plasma proteins. Chromogranin A was analyzed separately. Median age in all groups was 65-67 years and with a similar sex distribution (females: PanNET, 51%; SI-NET, 42%; controls, 42%). Tumor grade (G1/G2): PanNET, 39/61%; SI-NET, 46/54%. Patients with liver metastases: PanNET, 78%; SI-NET, 63%. The classification model of PanNET versus controls provided a sensitivity (SEN) of 0.84, specificity (SPE) 0.98, positive predictive value (PPV) of 0.92 and negative predictive value (NPV) of 0.95, and area under the receiver operating characteristic curve (AUROC) of 0.99; the model for the discrimination of PanNET versus SI-NET providing a SEN 0.61, SPE 0.96, PPV 0.83, NPV 0.90 and AUROC 0.98. These results suggest that a multi-plasma protein strategy can significantly improve diagnostic accuracy of PanNET and SI-NET.


Molecular pathogenesis of pancreatic neuroendocrine tumors.

  • Florian Ehehalt‎ et al.
  • Cancers‎
  • 2010‎

Pancreatic neuroendocrine tumors (PNETs) are rare primary neoplasms of the pancreas and arise sporadically or in the context of genetically determined syndromes. Depending on hormone production and sensing, PNETs clinically manifest due to a hormone-related syndrome (functional PNET) or by symptoms related to tumor bulk effects (non-functional PNET). So far, radical surgical excision is the only therapy to cure the disease. Development of tailored non-surgical approaches has been impeded by the lack of experimental laboratory models and there is, therefore, a limited understanding of the complex cellular and molecular biology of this heterogeneous group of neoplasm. This review aims to summarize current knowledge of tumorigenesis of familial and sporadic PNETs on a cellular and molecular level. Open questions in the field of PNET research are discussed with specific emphasis on the relevance of disease management.


Pangenomic Classification of Pituitary Neuroendocrine Tumors.

  • Mario Neou‎ et al.
  • Cancer cell‎
  • 2020‎

Pituitary neuroendocrine tumors (PitNETs) are common, with five main histological subtypes: lactotroph, somatotroph, and thyrotroph (POU1F1/PIT1 lineage); corticotroph (TBX19/TPIT lineage); and gonadotroph (NR5A1/SF1 lineage). We report a comprehensive pangenomic classification of PitNETs. PitNETs from POU1F1/PIT1 lineage showed an epigenetic signature of diffuse DNA hypomethylation, with transposable elements expression and chromosomal instability (except for GNAS-mutated somatotrophs). In TPIT lineage, corticotrophs were divided into three classes: the USP8-mutated with overt secretion, the USP8-wild-type with increased invasiveness and increased epithelial-mesenchymal transition, and the large silent tumors with gonadotroph transdifferentiation. Unexpected expression of gonadotroph markers was also found in GNAS-wild-type somatotrophs (SF1 expression), challenging the current definition of SF1/gonadotroph lineage. This classification improves our understanding and affects the clinical stratification of patients with PitNETs.


Whole-exome sequencing of rectal neuroendocrine tumors.

  • Yuanliang Li‎ et al.
  • Endocrine-related cancer‎
  • 2023‎

The genetic characteristics of rectal neuroendocrine tumors (R-NETs) were poorly understood. Depicting the genetic characteristics may provide a biological basis for prognosis prediction and novel treatment development. Tissues of 18 R-NET patients were analyzed using whole-exome sequencing. The median tumor mutation burden (TMB) and microsatellite instability (MSI) were 1.15 Muts/MB (range, 0.03-23.28) and 0.36 (range, 0.00-10.97), respectively. Genes involved in P53 signaling, PI3K-AKT signaling, DNA damage repair, WNT signaling, etc. were frequently altered. Higher TMB (P = 0.078), higher CNV (P = 0.110), somatic mutation of CCDC168 (P = 0.049), HMCN1 (P = 0.040), MYO10 (P = 0.007), and amplification of ZC3H13 (P < 0.001) were associated with shorter OS. Potentially targetable gene alterations (PTGAs) were seen in 72% of the patients. FGFR1 amplification (22%) was the most common PTGA followed by BARD1 and BRCA2 mutation (each 17%). As for gene variations associated with the efficacy of immune checkpoint blockade (ICB), FAT1 alteration (39%) and PTEN depletion (28%) were commonly observed. In conclusion, frequently altered oncogenic pathways might contribute to the development and progression of R-NETs. Gene alterations significantly associated with prognosis might be potential novel targets. Targeted therapy might be a promising strategy as targetable alterations were prevalent in R-NETs. FAT1 alteration and PTEN depletion might be the main genetic alterations influencing the response to ICB besides overall low TMB and MSI in R-NETs.


SMAD4 haploinsufficiency in small intestinal neuroendocrine tumors.

  • Tobias Hofving‎ et al.
  • BMC cancer‎
  • 2021‎

Patients with small intestinal neuroendocrine tumors (SINETs) frequently present with lymph node and liver metastases at the time of diagnosis, but the molecular changes that lead to the progression of these tumors are largely unknown. Sequencing studies have only identified recurrent point mutations at low frequencies with CDKN1B being the most common harboring heterozygous mutations in less than 10% of all tumors. Although SINETs are genetically stable tumors with a low frequency of point mutations and indels, they often harbor recurrent hemizygous copy number alterations (CNAs) yet the functional implications of these CNA are unclear.


Low Grade Neuroendocrine Tumors of the Lung.

  • Barbara Melosky‎
  • Frontiers in oncology‎
  • 2017‎

The lung is the second most common site of neuroendocrine tumors (NETs). Typical and atypical carcinoids are low-grade NETs of the lung. They present a favorable prognosis comported to the more common high-grade NETs. The low- and high-grade NETs require different treatment strategies; effective management of these tumors is essential to prolong survival and to manage the symptoms in patients with secretory or functional tumors. These rare tumors have received little attention and education is needed for treating physicians. This mini-review will concentrate mainly on advanced low-grade lung NETs. The article describes the classification of lung NETs and the diagnostic work-up. Different treatment methods including somatostatin analogs, peptide receptor radioligand therapy, and biologic systemic therapy are discussed. Promising results from recent trials are presented and discussed in the context of the lung primary site.


Pancreatic neuroendocrine tumors in glucagon receptor-deficient mice.

  • Run Yu‎ et al.
  • PloS one‎
  • 2011‎

Inhibition of glucagon signaling causes hyperglucagonemia and pancreatic α cell hyperplasia in mice. We have recently demonstrated that a patient with an inactivating glucagon receptor mutation (P86S) also exhibits hyperglucagonemia and pancreatic α cell hyperplasia but further develops pancreatic neuroendocrine tumors (PNETs). To test the hypothesis that defective glucagon signaling causes PNETs, we studied the pancreata of mice deficient in glucagon receptor (Gcgr(-/-)) from 2 to 12 months, using WT and heterozygous mice as controls. At 2-3 months, Gcgr(-/-) mice exhibited normal islet morphology but the islets were mostly composed of α cells. At 5-7 months, dysplastic islets were evident in Gcgr(-/-) mice but absent in WT or heterozygous controls. At 10-12 months, gross PNETs (≥1 mm) were detected in most Gcgr(-/-) pancreata and micro-PNETs (<1 mm) were found in all (n = 14), whereas the islet morphology remained normal and no PNETs were found in any WT (n = 10) or heterozygous (n = 25) pancreata. Most PNETs in Gcgr(-/-) mice were glucagonomas, but some were non-functioning. No tumors predominantly expressed insulin, pancreatic polypeptide, or somatostatin, although some harbored focal aggregates of tumor cells expressing one of those hormones. The PNETs in Gcgr(-/-) mice were well differentiated and occasionally metastasized to the liver. Menin expression was aberrant in most dysplatic islets and PNETs. Vascular endothelial growth factor (VEGF) was overexpressed in PNET cells and its receptor Flk-1 was found in the abundant blood vessels or blood islands inside the tumors. We conclude that defective glucagon signaling causes PNETs in the Gcgr(-/-) mice, which may be used as a model of human PNETs. Our results further suggest that completely inhibiting glucagon signaling may not be a safe approach to treat diabetes.


"Present and future of immunotherapy in Neuroendocrine Tumors".

  • Manuela Albertelli‎ et al.
  • Reviews in endocrine & metabolic disorders‎
  • 2021‎

Immunotherapy, so promising in many neoplasms, still does not have a precise role in the treatment of neuroendocrine neoplasms (NENs). In this article, we provide an overview on the current knowledge about immunotherapy with immune checkpoint inhibitors (ICIs) applied to NENs, evaluating future perspectives in this setting of tumors.Evidence so far available for ICIs in gastroenteropancreatic (GEP)-NENs is definitively not as robust as for other tumors such as Small Cell Lung Cancer or Merkel Cell Carcinoma. In fact, with regard to the well-differentiated forms of NENs (NETs), the results obtained nowadays have been disappointing. However, the near future, might reserve interesting results for ICIs in GEP-NEN from a total of nine different ICI drugs, used throughout 19 randomised controlled trials. Such numbers highlight the growing attention gathering around NENs and ICIs, in response to the need of stronger evidences supporting such therapy.For the future, the most important aspect will be to study strategies that can make NETs more susceptible to response to ICI and, thus, enhance the effectiveness of these treatments. Therefore, the combination of conventional therapy, target therapy and immunotherapy deserve attention and warrant to be explored. A sequential chemotherapy, possibly inducing an increase in tumor mutational burden and tested before immunotherapy, could be a hypothesis deserving more consideration. A radiation treatment that increases tumor-infiltrating lymphocytes, could be another approach to explore before ICIs in NENs. Equally essential will be the identification of biomarkers useful for selecting patients potentially responsive to this type of treatment.


Pancreatic neuroendocrine tumors: Therapeutic challenges and research limitations.

  • Gabriel Benyomo Mpilla‎ et al.
  • World journal of gastroenterology‎
  • 2020‎

Pancreatic neuroendocrine tumors (PNETs) are known to be the second most common epithelial malignancy of the pancreas. PNETs can be listed among the slowest growing as well as the fastest growing human cancers. The prevalence of PNETs is deceptively low; however, its incidence has significantly increased over the past decades. According to the American Cancer Society's estimate, about 4032 (> 7% of all pancreatic malignancies) individuals will be diagnosed with PNETs in 2020. PNETs often cause severe morbidity due to excessive secretion of hormones (such as serotonin) and/or overall tumor mass. Patients can live for many years (except for those patients with poorly differentiated G3 neuroendocrine tumors); thus, the prevalence of the tumors that is the number of patients actually dealing with the disease at any given time is fairly high because the survival is much longer than pancreatic ductal adenocarcinoma. Due to significant heterogeneity, the management of PNETs is very complex and remains an unmet clinical challenge. In terms of research studies, modest improvements have been made over the past decades in the identification of potential oncogenic drivers in order to enhance the quality of life and increase survival for this growing population of patients. Unfortunately, the majority of systematic therapies approved for the management of advanced stage PNETs lack objective response or at most result in modest benefits in survival. In this review, we aim to discuss the broad challenges associated with the management and the study of PNETs.


Aldolase C in neuroendocrine tumors: an immunohistochemical study.

  • H Inagaki‎ et al.
  • Virchows Archiv. B, Cell pathology including molecular pathology‎
  • 1993‎

The expression of cerebral type aldolase C was investigated immunohistochemically in six varieties of neuroendocrine (n = 57) and six types of non-endocrine tumor (n = 76) using the avidin-biotin complex method. Aldolase C expression in the neuroendocrine tumors was also compared with those of chromogranin and gamma enolase. Aldolase C was detected in all the islet cell (7/7) and carcinoid tumors (10/10), thyroid medullary carcinomas (7/7), and pheochromocytomas (10/10), as well as in the majority of neuronal tumors (8/10) and bronchial small cell carcinomas (10/13). Chromogranin immunoreactivity was restricted to the tumors with abundant neuroendocrine granules. Gamma enolase positivity was generally similar to that of aldolase C, but there were some differences. Amongst the bronchial small cell carcinomas, three tumors negative for gamma enolase were positive for aldolase C, while another three tumors were positive for gamma enolase only. However all the small cell carcinomas were positive for at least one of these two enzymes. Aldolase C was detected in 28 (37%) of the 76 non-endocrine tumors and tended to be expressed preferentially in the differentiated portions of these tumors. Although aldolase C was expressed in many bronchial squamous cell carcinomas, the immunoreactivity was localized mainly in keratinizing foci and the less differentiated parts of these tumors expressed the enzyme only occasionally. Thus aldolase C, in conjunction with other neuroendocrine-associated markers, may be of value in identifying tumors of neuroendocrine type.


Economics of gastroenteropancreatic neuroendocrine tumors: a systematic review.

  • Enrique Grande‎ et al.
  • Therapeutic advances in endocrinology and metabolism‎
  • 2019‎

Despite current interest, enthusiasm and progress in the development of therapies for gastroenteropancreatic (GEP) neuroendocrine tumors (NETs), there are substantial gaps in the published literature regarding cost-of-illness analyses, economic evaluation and budget impact analyses. Compounding the issue is that data on resource utilization and cost-effectiveness of different diagnostic and therapeutic modalities for GEP-NETs are scarce.


Demonstration of neuroendocrine cells in ovarian mucinous tumors.

  • E Sasaki‎ et al.
  • International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists‎
  • 1989‎

The frequency of argyrophil cells in mucinous cystadenocarcinomas, borderline tumors (MBT) and cystadenomas was 29.8% (14 of 47), 46.7% (7 of 15) and 11.1% (2 of 18), respectively. These were statistically higher than the frequencies in 17 clear cell carcinomas, 43 serous cystadenocarcinomas, and 24 metastatic carcinomas. Immunoreactive cells for serotonin, somatostatin, gastrin, pancreatic polypeptide, growth hormone-releasing hormone, metenkephalin, neuron-specific enolase, and chromogranin-A were detected in almost all these cases with argyrophil cells. However, immunoreactivities for glucagon, vasoactive intestinal polypeptide, and adrenocorticotropic hormone were negative in ovarian mucinous tumors. Immunohistochemical multiplicity of neurohormones was remarkable in 15 MBT (including 5 müllerian and 10 intestinal MBT) and it was not related to the number of argyrophil cells per unit tumor cells. Individual hormones demonstrated here seemed to be present in different cells, but certain cells were immunoreactive for both gastrin and somatostatin by double immunostaining. Based on the high frequency of endocrine cells, borderline tumors seemed to be unique in the spectrum of mucinous ovarian tumors.


Neuroendocrine tumors in Panama: A nationwide database analysis.

  • Moises Cukier‎ et al.
  • Molecular and clinical oncology‎
  • 2021‎

Neuroendocrine tumors (NETs) comprise a heterogenous group of rare malignancies, which are increasing in incidence worldwide. To further understand the epidemiology of NETs in the Republic of Panama, the present study used two study groups, which included patients from several hospitals and clinics throughout the country, who were referred to the three largest national reference centers: The Complejo Hospitalario Metropolitano, Hospital Santo Tomas and Instituto Oncologico Nacional. These two groups comprised a retrospective cohort, which included cases reported between 2016 and 2017, and a second cohort, which was retrospective, but data were continuously collected from patients diagnosed with NETs between 2018 and 2019. Data from 157 patients with NETs reported that 83% of patients were in the 40-80 years old age group. The majority of cases (46%) presented as grade G1 tumors, while 29% were G3. Computerized tomography scans with contrast, and analysis of the Ki-67 biomarker and immunohistology markers (chromogranin A and synaptophysin) was performed in the majority of the cases. The results revealed that the most frequent anatomical sites for the primary tumor were the colorectum (17.2%), pancreas (12.7%) and stomach (12.1%), and the most frequent organ with metastasis was the liver, accounting for 34% of all cases. In conclusion, the present study is the first comprehensive study of NET in Panama to the best of our knowledge, which provides evidence of the demographic characteristics of the population, clinical features and overall survival for the affected population in this Central American country.


MicroRNA analysis of gastroenteropancreatic neuroendocrine tumors and metastases.

  • Nadine Zimmermann‎ et al.
  • Oncotarget‎
  • 2018‎

The incidence of neuroendocrine neoplasias (NEN) continues to increase. Since the primary tumor cannot be diagnosed in some cases of metastatic disease, new biomarkers are clearly needed to find the most probable site of origin. Tissue samples from 79 patients were analyzed and microRNA profiles were generated from a total of 76 primary tumors, 31 lymph node and 14 solid organ metastases. NEN metastases were associated with elevated levels of miR-30a-5p, miR-210, miR-339-3p, miR-345 and miR-660. Three microRNAs showed a strong correlation between proliferation index and metastatic disease in general (miR-150, miR-21 and miR-660). Further, each anatomic location (primary or metastatic) had one or more site-specific microRNAs more highly expressed in these tissues. Comparison between primary tumors and metastases revealed an overlap only in pancreatic (miR-127) and ileal tumors (let-7g, miR-200a and miR-331). This thorough analysis of gastroenteropancreatic neuroendocrine tumors demonstrates site-specific microRNA profiles, correlation with proliferation indices as well as corresponding nodal and distant metastases. Using microRNA profiling might improve NEN diagnostics by linking metastases to a most probable site of origin.


DNA methylation reveals distinct cells of origin for pancreatic neuroendocrine carcinomas and pancreatic neuroendocrine tumors.

  • Tincy Simon‎ et al.
  • Genome medicine‎
  • 2022‎

Pancreatic neuroendocrine neoplasms (PanNENs) fall into two subclasses: the well-differentiated, low- to high-grade pancreatic neuroendocrine tumors (PanNETs), and the poorly-differentiated, high-grade pancreatic neuroendocrine carcinomas (PanNECs). While recent studies suggest an endocrine descent of PanNETs, the origin of PanNECs remains unknown.


Loss of YAP1 defines neuroendocrine differentiation of lung tumors.

  • Takeshi Ito‎ et al.
  • Cancer science‎
  • 2016‎

YAP1, the main Hippo pathway effector, is a potent oncogene and is overexpressed in non-small-cell lung cancer (NSCLC); however, the YAP1 expression pattern in small-cell lung cancer (SCLC) has not yet been elucidated in detail. We report that the loss of YAP1 is a special feature of high-grade neuroendocrine lung tumors. A hierarchical cluster analysis of 15 high-grade neuroendocrine tumor cell lines containing 14 SCLC cell lines that depended on the genes of Hippo pathway molecules and neuroendocrine markers clearly classified these lines into two groups: the YAP1-negative and neuroendocrine marker-positive group (n = 11), and the YAP1-positive and neuroendocrine marker-negative group (n = 4). Among the 41 NSCLC cell lines examined, the loss of YAP1 was only observed in one cell line showing the strong expression of neuroendocrine markers. Immunostaining for YAP1, using the sections of 189 NSCLC, 41 SCLC, and 30 large cell neuroendocrine carcinoma (LCNEC) cases, revealed that the loss of YAP1 was common in SCLC (40/41, 98%) and LCNEC (18/30, 60%), but was rare in NSCLC (6/189, 3%). Among the SCLC and LCNEC cases tested, the loss of YAP1 correlated with the expression of neuroendocrine markers, and a survival analysis revealed that YAP1-negative cases were more chemosensitive than YAP1-positive cases. Chemosensitivity test for cisplatin using YAP1-positive/YAP1-negative SCLC cell lines also showed compatible results. YAP1-sh-mediated knockdown induced the neuroendocrine marker RAB3a, which suggested the possible involvement of YAP1 in the regulation of neuroendocrine differentiation. Thus, we showed that the loss of YAP1 has potential as a clinical marker for predicting neuroendocrine features and chemosensitivity.


Time-trend and recurrence analysis of pancreatic neuroendocrine tumors.

  • Hanbaro Kim‎ et al.
  • Endocrine connections‎
  • 2019‎

This study aimed to evaluate the evolving trends in clinicopathological features of pancreatic neuroendocrine tumors and to analyze the predictors of recurrence after curative resection. Data collected retrospectively from a single center between January 1990 and December 2017 were analyzed. Patients were categorized chronologically into three groups for evolving time-trend analysis. Overall, 542 patients (300 female, 55.4%) underwent surgical resection for pancreatic neuroendocrine tumors, including 435 (80.3%) with non-functional tumors. Time-trend analysis revealed that the surgically resected pancreatic neuroendocrine tumor number increased consistently; however, the incidental non-functional pancreatic neuroendocrine tumor number also increased over time (P < 0.001). The 5- and 10-year disease-free survival rates were 86.4 and 81.3%, respectively. The overall recurrence rate was 13.7%, and the most common site of recurrence was the liver. The median time to recurrence after primary surgery was 19.0 (range 0.8-236.3) months, and the median survival time after recurrence was 22.6 (range 0.4-126.9) months. On multivariate analysis, grade G3 pancreatic neuroendocrine tumors (hazard ratio 4.51; P < 0.001), lymph node metastasis (hazard ratio 2.46; P = 0.009), lymphovascular invasion (hazard ratio 3.62; P = 0.004), perineural invasion (hazard ratio 2.61; P = 0.004) and resection margin (hazard ratio 4.20; P = 0.003) were independent prognostic factors of disease-free survival. The surgically resected pancreatic neuroendocrine tumor number increased over time mainly because of an increase in incidentally discovered non-functional pancreatic neuroendocrine tumors. Grade G3 pancreatic neuroendocrine tumors, lymph node metastasis, lymphovascular invasion, perineural invasion and a positive resection margin were significant predictors of worse disease-free survival in patients with surgically resected pancreatic neuroendocrine tumors.


FOXM1: A novel drug target in gastroenteropancreatic neuroendocrine tumors.

  • Franziska Briest‎ et al.
  • Oncotarget‎
  • 2015‎

Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are heterogeneous tumors that need to be molecularly defined to obtain novel therapeutic options. Forkheadbox protein M1 (FOXM1) is a crucial transcription factor in neoplastic cells and has been associated with differentiation and proliferation. We found that FOXM1 is strongly associated with tumor differentiation and occurrence of metastases in gastrointestinal NENs. In vitro inhibition by the FOXM1 inhibitor siomycin A led to down-regulation of mitotic proteins and resulted in a strong inhibitory effect. Siomycin A decreased mitosis rate, induced apoptosis in GEP-NEN cell lines and exerts synergistic effects with chemotherapy. FOXM1 is associated with clinical outcome and FOXM1 inhibition impairs survival in vitro. We therefore propose FOXM1 as novel therapeutic target in GEP-NENs.


A single-center experience with pancreatic cystic neuroendocrine tumors.

  • Ange Khalil‎ et al.
  • World journal of surgical oncology‎
  • 2020‎

Pancreatic neuroendocrine tumors (PNET) are rare, with a significant malignant potential. This study aimed to determine outcomes of patients with resected PNETs according to the cystic component and confirm the accuracy of preoperative staging.


Bone metastases and skeletal-related events from neuroendocrine tumors.

  • Katherine Van Loon‎ et al.
  • Endocrine connections‎
  • 2015‎

Neuroendocrine tumors (NETs) metastasize to bone; however, a multi-institution evaluation of the natural history and complications of bone metastases across multiple NET subtypes has not, to our knowledge, previously been conducted. At two tertiary academic centers, we identified patients with bone metastases from databases of patients with a diagnosis of NET between 2004 and 2008. Detection of bone metastases, occurrence of skeletal-related events (SREs), and interventions were analyzed using summary statistics and categorical methods. Time-to-event data were assessed using Kaplan-Meier estimates and log-rank tests. Between 2004 and 2008, 82 out of 691 NET patients (12%) were reported to have bone metastases. Of the 82 patients with bone metastases, 55% were men and their median age was 49. Bone metastases occurred in 25% of pheochromocytomas and paragangliomas, 20% of high-grade neuroendocrine carcinomas, 9% of carcinoid tumors, and 8% of pancreatic NETs. At time of detection of bone metastases, 60% reported symptoms, including pain; 10% developed cord compression, 9% suffered a pathological fracture, and 4% developed hypercalcemia. Occurrence of SREs did not differ significantly with regard to tumor histology. Of patients with bone metastases, 67 (82%) received at least one form of bone-directed treatment, 50% received radiation, 45% received a bisphosphonate, 18% underwent surgery, 11% received (131)I-MIBG, 5% received denosumab, and 46% were treated with more than one treatment modality. Bone metastases occur in a substantial number of patients diagnosed with NETs. Patients are often symptomatic and many develop SREs. Given the recent therapeutic advances and increasing life expectancy of patients with NETs, development of guidelines for surveillance and clinical care of bone metastases from NETs is needed.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: