Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 186 papers

Characterization of NvLWamide-like neurons reveals stereotypy in Nematostella nerve net development.

  • Jamie A Havrilak‎ et al.
  • Developmental biology‎
  • 2017‎

The organization of cnidarian nerve nets is traditionally described as diffuse with randomly arranged neurites that show minimal reproducibility between animals. However, most observations of nerve nets are conducted using cross-reactive antibodies that broadly label neurons, which potentially masks stereotyped patterns produced by individual neuronal subtypes. Additionally, many cnidarians species have overt structures such as a nerve ring, suggesting higher levels of organization and stereotypy exist, but mechanisms that generated that stereotypy are unknown. We previously demonstrated that NvLWamide-like is expressed in a small subset of the Nematostella nerve net and speculated that observing a few neurons within the developing nerve net would provide a better indication of potential stereotypy. Here we document NvLWamide-like expression more systematically. NvLWamide-like is initially expressed in the typical neurogenic salt and pepper pattern within the ectoderm at the gastrula stage, and expression expands to include endodermal salt and pepper expression at the planula larval stage. Expression persists in both ectoderm and endoderm in adults. We characterized our NvLWamide-like::mCherry transgenic reporter line to visualize neural architecture and found that NvLWamide-like is expressed in six neural subtypes identifiable by neural morphology and location. Upon completing development the numbers of neurons in each neural subtype are minimally variable between animals and the projection patterns of each subtype are consistent. Furthermore, between the juvenile polyp and adult stages the number of neurons for each subtype increases. We conclude that development of the Nematostella nerve net is stereotyped between individuals. Our data also imply that one aspect of generating adult cnidarian nervous systems is to modify the basic structural architecture generated in the juvenile by increasing neural number proportionally with size.


Molecular Imaging-Derived Biomarker of Cardiac Nerve Integrity - Introducing High NET Affinity PET Probe 18F-AF78.

  • Xinyu Chen‎ et al.
  • Theranostics‎
  • 2022‎

Background: Radiolabeled agents that are substrates for the norepinephrine transporter (NET) can be used to quantify cardiac sympathetic nervous conditions and have been demonstrated to identify high-risk congestive heart failure (HF) patients prone to arrhythmic events. We aimed to fully characterize the kinetic profile of the novel 18F-labeled NET probe AF78 for PET imaging of the cardiac sympathetic nervous system (SNS) among various species. Methods:18F-AF78 was compared to norepinephrine (NE) and established SNS radiotracers by employing in vitro cell assays, followed by an in vivo PET imaging approach with healthy rats, rabbits and nonhuman primates (NHPs). Additionally, chase protocols were performed in NHPs with NET inhibitor desipramine (DMI) and the NE releasing stimulator tyramine (TYR) to investigate retention kinetics in cardiac SNS. Results: Relative to other SNS radiotracers, 18F-AF78 showed higher transport affinity via NET in a cell-based competitive uptake assay (IC50 0.42 ± 0.14 µM), almost identical to that of NE (IC50, 0.50 ± 0.16 µM, n.s.). In rabbits and NHPs, initial cardiac uptake was significantly reduced by NET inhibition. Furthermore, cardiac tracer retention was not affected by a DMI chase protocol but was markedly reduced by intermittent TYR chase, thereby suggesting that 18F-AF78 is stored and can be released via the synaptic vesicular turnover process. Computational modeling hypothesized the formation of a T-shaped π-π stacking at the binding site, suggesting a rationale for the high affinity of 18F-AF78. Conclusion:18F-AF78 demonstrated high in vitro NET affinity and advantageous in vivo radiotracer kinetics across various species, indicating that 18F-AF78 is an SNS imaging agent with strong potential to guide specific interventions in cardiovascular medicine.


The Spinal Extracellular Matrix Modulates a Multi-level Protein Net and Epigenetic Inducers Following Peripheral Nerve Injury.

  • Assunta Virtuoso‎ et al.
  • Neuroscience‎
  • 2020‎

The extracellular matrix (ECM) of the central nervous system (CNS) plays a pivotal role in the pathogenesis of several neurodegenerative and neuroinflammatory disorders. Among the major factors, matrix metalloproteinases (MMPs) are actively involved in ECM remodeling and directly affect neuro-glial interactions. Since disease-related functional alterations mostly rely on the proteome, modulation of MMPs activity may be a strategy to correct mechanisms behind neurological disorders. We here investigated modifications of signaling components related to the central pathways in spinal maladaptive plasticity following spared nerve injury (SNI) of the sciatic nerve, and after treatment with the MMPs inhibitor GM6001 for 3 or 8 days. We found that GM6001 reduced the massive astrocytic and microglial activation indicative of reactive gliosis. Functional activity of GM6001 was paralleled by its significant effect on expression levels of the purinergic P2X4 receptor (P2X4R), the transcription factors NFκB and RPBJ, as well as levels of the nerve growth factor (NGF) receptor TrkA. Moreover, we showed that histone deacetylases 1 and 2 (HDAC1, HDAC2) were differentially modulated after SNI and GM6001 treatments for 3 or 8 days. Our data suggest a multi-level network of interactions across ECM and the neuroglial network involving MMPs, the neurotrophin system, intracellular signaling, and epigenetic modifications.


Topical administration of a Rock/Net inhibitor promotes retinal ganglion cell survival and axon regeneration after optic nerve injury.

  • Peter X Shaw‎ et al.
  • Experimental eye research‎
  • 2017‎

Intraocular pressure (IOP)-lowering ophthalmic solutions that inhibit Rho-associated protein kinases (Rock) and norepinephrine transporters (Net) are currently under clinical evaluation. Here we evaluate topical application of one such drug for its effects on retinal ganglion cell (RGC) survival and axon regeneration after optic nerve crush injury. We performed unilateral optic nerve crush on young rats (P18) and topically applied Rock/Net inhibitor AR-13324 or placebo 3 times a day for 14 days. IOP was measured starting 3 days before and up to 9 days after injury. On day 12, cholera toxin B (CTB) was injected intravitreally to trace optic nerve regeneration. On day 14, retinas and optic nerves were collected. The retinas were flat-mounted and stained with RBPMS to quantify RGC survival and the optic nerves were sectioned for optic nerve axon quantification using fluorescent and confocal microscopy. Rock phosphorylation targets implicated in axon growth including cofilin and LIMK were examined by fluorescence microscopy and quantitative western blotting. AR-13324 lowered IOP as expected. RGC survival and optic nerve axon regeneration were significantly higher with Rock/Net inhibitor treatment compared with placebo. Furthermore, topical therapy decreased Rock target protein phosphorylation in the retinas and proximal optic nerves. These data suggest that topical administration of a Rock/Net inhibitor promotes RGC survival and regeneration after optic nerve injury, with associated molecular changes indicative of posterior drug activity. Coordinated IOP lowering and neuroprotective or regenerative effects may be advantageous in the treatment of patients with glaucoma.


Correction of Retinal Nerve Fiber Layer Thickness Measurement on Spectral-Domain Optical Coherence Tomographic Images Using U-net Architecture.

  • Ghazale Razaghi‎ et al.
  • Journal of ophthalmic & vision research‎
  • 2023‎

In this study, an algorithm based on deep learning was presented to reduce the retinal nerve fiber layer (RNFL) segmentation errors in spectral domain optical coherence tomography (SD-OCT) scans using ophthalmologists' manual segmentation as a reference standard.


Expression Analysis of Cnidarian-Specific Neuropeptides in a Sea Anemone Unveils an Apical-Organ-Associated Nerve Net That Disintegrates at Metamorphosis.

  • Hannah Zang‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

Neuropeptides are ancient neuronal signaling molecules that have diversified across Cnidaria (e.g., jellyfish, corals, and sea anemones) and its sister group Bilateria (e.g., vertebrates, insects, and worms). Over the course of neuropeptide evolution emerged lineage-specific neuropeptides, but their roles in the evolution and diversification of nervous system function remain enigmatic. As a step toward filling in this knowledge gap, we investigated the expression pattern of a cnidarian-specific neuropeptide-RPamide-during the development of the starlet sea anemone Nematostella vectensis, using in situ hybridization and immunohistochemistry. We show that RPamide precursor transcripts first occur during gastrulation in scattered epithelial cells of the aboral ectoderm. These RPamide-positive epithelial cells exhibit a spindle-shaped, sensory-cell-like morphology, and extend basal neuronal processes that form a nerve net in the aboral ectoderm of the free-swimming planula larva. At the aboral end, RPamide-positive sensory cells become integrated into the developing apical organ that forms a bundle of long cilia referred to as the apical tuft. Later during planula development, RPamide expression becomes evident in sensory cells in the oral ectoderm of the body column and pharynx, and in the developing endodermal nervous system. At metamorphosis into a polyp, the RPamide-positive sensory nerve net in the aboral ectoderm degenerates by apoptosis, and RPamide expression begins in ectodermal sensory cells of growing oral tentacles. In addition, we find that the expression pattern of RPamide in planulae differs from that of conserved neuropeptides that are shared across Cnidaria and Bilateria, indicative of distinct functions. Our results not only provide the anatomical framework necessary to analyze the function of the cnidarian-specific neuropeptides in future studies, but also reveal previously unrecognized features of the sea anemone nervous system-the apical organ neurons of the planula larva, and metamorphosis-associated reorganization of the ectodermal nervous system.


Catecholic Compounds in Ctenophore Colloblast and Nerve Net Proteins Suggest a Structural Role for DOPA-Like Molecules in an Early-Diverging Animal Lineage.

  • James P Townsend‎ et al.
  • The Biological bulletin‎
  • 2019‎

Ctenophores, or comb jellies, are among the earliest-diverging extant animal lineages. Several recent phylogenomic studies suggest that they may even be the sister group to all other animals. This unexpected finding remains difficult to contextualize, particularly given ctenophores' unique and sometimes poorly understood physiology. Colloblasts, a ctenophore-specific cell type found on the surface of these animals' tentacles, are emblematic of this difficulty. The exterior of the colloblast is dotted with granules that burst and release an adhesive on contact with prey, ensnaring it for consumption. To date, little is known about the fast-acting underwater adhesive that these cells secrete or its biochemistry. We present evidence that proteins in the colloblasts of the ctenophore Pleurobrachia bachei incorporate catecholic compounds similar to the amino acid l-3,4-dihydroxyphenylalanine. These compounds are associated with adhesive-containing granules on the surface of colloblasts, suggesting that they may play a role in prey capture, akin to dihydroxyphenylalanine-based adhesives in mussel byssus. We also present unexpected evidence of similar catecholic compounds in association with the subepithelial nerve net. There, catecholic compounds are present in spatial patterns similar to those of l-3,4-dihydroxyphenylalanine and its derivatives in cnidarian nerves, where they are associated with membranes and possess unknown functionality. This "structural" use of catecholic molecules in ctenophores represents the earliest-diverging animal lineage in which this trait has been observed, though it remains unclear whether structural catechols are deeply rooted in animals or whether they have arisen multiple times.


Corneal nerve healing after in situ laser nerve transection.

  • Joy Sarkar‎ et al.
  • PloS one‎
  • 2019‎

We have previously reported that lamellar dissection of the cornea transects stromal nerves, and that regenerating neurites form a dense net along the surgical plane. In these experiments, we have disrupted the stromal nerve trunks in situ, without incising the cornea, to determine the regeneration events in the absence of a surgical plane.


IMI2-PainCare-BioPain-RCT1: study protocol for a randomized, double-blind, placebo-controlled, crossover, multi-center trial in healthy subjects to investigate the effects of lacosamide, pregabalin, and tapentadol on biomarkers of pain processing observed by peripheral nerve excitability testing (NET).

  • Zahra Nochi‎ et al.
  • Trials‎
  • 2022‎

Few new drugs have been developed for chronic pain. Drug development is challenged by uncertainty about whether the drug engages the human target sufficiently to have a meaningful pharmacodynamic effect. IMI2-PainCare-BioPain-RCT1 is one of four similarly designed studies that aim to link different functional biomarkers of drug effects on the nociceptive system that could serve to accelerate the future development of analgesics. This study focusses on biomarkers derived from nerve excitability testing (NET) using threshold tracking of the peripheral nervous system.


Selective peripheral nerve recording using simulated human median nerve activity and convolutional neural networks.

  • Taseen Jawad‎ et al.
  • Biomedical engineering online‎
  • 2023‎

It is difficult to create intuitive methods of controlling prosthetic limbs, often resulting in abandonment. Peripheral nerve interfaces can be used to convert motor intent into commands to a prosthesis. The Extraneural Spatiotemporal Compound Action Potentials Extraction Network (ESCAPE-NET) is a convolutional neural network (CNN) that has previously been demonstrated to be effective at discriminating neural sources in rat sciatic nerves. ESCAPE-NET was designed to operate using data from multi-channel nerve cuff arrays, and use the resulting spatiotemporal signatures to classify individual naturally evoked compound action potentials (nCAPs) based on differing source fascicles. The applicability of this approach to larger and more complex nerves is not well understood. To support future translation to humans, the objective of this study was to characterize the performance of this approach in a computational model of the human median nerve.


QSAR analysis and molecular docking simulation of norepinephrine transporter (NET) inhibitors as anti-psychotic therapeutic agents.

  • Sabitu Babatunde Olasupo‎ et al.
  • Heliyon‎
  • 2019‎

The norepinephrine transporter (NET) is a Na+/Cl- coupled neurotransmitter transporter responsible for reuptake of released norepinephrine (NE) into nerve terminals in the brain, a key therapeutic used in the treatment of psychiatric disorders. A quantitative structural activity relationship (QSAR) study was performed on 50 compounds of NET inhibitors to investigate their inhibitory potencies against norepinephrine transporter as novel drugs for anti-psychotic disorders. The compounds were optimized by employing Density functional theory (DFT) with basis set of B3LYP/6-31G*. The genetic function Algorithm (GFA) approach was used to generate a highly predictive and statistically significant model with good correlation coefficient R2 Train = 0.952 Cross validated coefficient Q2 cv = 0.870 and adjusted squared correlation coefficient R2 adj = 0.898. The predictability and accuracy of the developed model was evaluated through external validation using test set compound, Y-randomization and applicability domain techniques. The results of Molecular docking analysis by using two neurotransmitter transporters PDB ID 2A65 (resolution = 1.65 Å) and PDB ID 4M48 (resolution = 2.955 Å) showed that two of the ligands (compound 12 and 44) having higher binding affinity were observed to inhibit the targets by forming hydrogen bonds and hydrophobic interactions with amino acids of the two receptors respectively. The results of these studies would provide important new insight into the molecular basis and structural requirements to design more potent and more specific therapeutic anti-psychotic drugs/agents.


Time course profiling of the retinal transcriptome after optic nerve transection and optic nerve crush.

  • Marta Agudo‎ et al.
  • Molecular vision‎
  • 2008‎

A time-course analysis of gene regulation in the adult rat retina after intraorbital nerve crush (IONC) and intraorbital nerve transection (IONT).


Effects of cage vs. net-floor mixed rearing system on goose spleen histomorphology and gene expression profiles.

  • Qingliang Chen‎ et al.
  • Frontiers in veterinary science‎
  • 2024‎

Due to the demands for both environmental protection and modernization of the goose industry in China, the traditional goose waterside rearing systems have been gradually transitioning to the modern intensive dryland rearing ones, such as the net-floor mixed rearing system (MRS) and cage rearing system (CRS). However, the goose immune responses to different dryland rearing systems remain poorly understood. This study aimed to investigate and compare the age-dependent effects of MRS and CRS on the splenic histomorphological characteristics and immune-related genes expression profiles among three economically important goose breeds, including Sichuan White goose (SW), Gang goose (GE), and Landes goose (LD). Morphological analysis revealed that the splenic weight and organ index of SW were higher under CRS than under MRS (p < 0.05). Histological observations showed that for SW and LD, the splenic corpuscle diameter and area as well as trabecular artery diameter were larger under MRS than under CRS at 30 or 43 weeks of age (p < 0.05), while the splenic red pulp area of GE was larger under CRS than under MRS at 43 weeks of age (p < 0.05). Besides, at 43 weeks of age, higher mRNA expression levels of NGF, SPI1, and VEGFA in spleens of SW were observed under MRS than under CRS (p < 0.05), while higher levels of HSPA2 and NGF in spleens of LD were observed under MRS than under CRS (p < 0.05). For GE, there were higher mRNA expression levels of MYD88 in spleens under CRS at 30 weeks of age (p < 0.05). Moreover, our correlation analysis showed that there appeared to be more pronounced positive associations between the splenic histological parameters and expression levels of several key immune-related genes under MRS than under CRS. Therefore, it is speculated that the geese reared under MRS might exhibit enhanced immune functions than those under CRS, particularly for SW and LD. Although these phenotypic differences are assumed to be associated with the age-dependent differential expression profiles of HSPA2, MYD88, NGF, SPI1, and VEGFA in the goose spleen, the underlying regulatory mechanisms await further investigations.


Intraportal infusion of ghrelin could inhibit glucose-stimulated GLP-1 secretion by enteric neural net in Wistar rat.

  • Xiyao Zhang‎ et al.
  • BioMed research international‎
  • 2014‎

As a regulator of food intake and energy metabolism, the role of ghrelin in glucose metabolism is still not fully understood. In this study, we determined the in vivo effect of ghrelin on incretin effect. We demonstrated that ghrelin inhibited the glucose-stimulated release of glucagon-like peptide-1 (GLP-1) when infused into the portal vein of Wistar rat. Hepatic vagotomy diminished the inhibitory effect of ghrelin on glucose-stimulated GLP-1 secretion. In addition, phentolamine, a nonselective α receptor antagonist, could recover the decrease of GLP-1 release induced by ghrelin infusion. Pralmorelin (an artificial growth hormone release peptide) infusion into the portal vein could also inhibit the glucose-stimulated release of GLP-1. And growth hormone secretagogue receptor antagonist, [D-lys3]-GHRP-6, infusion showed comparable increases of glucose stimulated GLP-1 release compared to ghrelin infusion into the portal vein. The data showed that intraportal infusion of ghrelin exerted an inhibitory effect on GLP-1 secretion through growth hormone secretagogue receptor 1α (GHS1α receptor), which indicated that the downregulation of ghrelin secretion after food intake was necessary for incretin effect. Furthermore, our results suggested that the enteric neural net involved hepatic vagal nerve and sympathetic nerve mediated inhibition effect of ghrelin on incretin effect.


ProNGF Drives Localized and Cell Selective Parvalbumin Interneuron and Perineuronal Net Depletion in the Dentate Gyrus of Transgenic Mice.

  • Luisa Fasulo‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2017‎

ProNGF, the precursor of mature Nerve Growth Factor (NGF), is the most abundant NGF form in the brain and increases markedly in the cortex in Alzheimer's Disease (AD), relative to mature NGF. A large body of evidence shows that the actions of ProNGF and mature NGF are often conflicting, depending on the receptors expressed in target cells. TgproNGF#3 mice, expressing furin-cleavage resistant proNGF in CNS neurons, directly reveal consequences of increased proNGF levels on brain homeostasis. Their phenotype clearly indicates that proNGF can be a driver of neurodegeneration, including severe learning and memory behavioral deficits, cholinergic deficits, and diffuse immunoreactivity for A-beta and A-beta-oligomers. In aged TgproNGF#3 mice spontaneous epileptic-like events are detected in entorhinal cortex-hippocampal slices, suggesting occurrence of excitatory/inhibitory (E/I) imbalance. In this paper, we investigate the molecular events linking increased proNGF levels to the epileptiform activity detected in hippocampal slices. The occurrence of spontaneous epileptiform discharges in the hippocampal network in TgproNGF#3 mice suggests an impaired inhibitory interneuron homeostasis. In the present study, we detect the onset of hippocampal epileptiform events at 1-month of age. Later, we observe a regional- and cellular-selective Parvalbumin interneuron and perineuronal net (PNN) depletion in the dentate gyrus (DG), but not in other hippocampal regions of TgproNGF#3 mice. These results demonstrate that, in the hippocampus, the DG is selectively vulnerable to altered proNGF/NGF signaling. Parvalbumin interneuron depletion is also observed in the amygdala, a region strongly connected to the hippocampus and likewise receiving cholinergic afferences. Transcriptome analysis of TgproNGF#3 hippocampus reveals a proNGF signature with broad down-regulation of transcription. The most affected mRNAs modulated at early times belong to synaptic transmission and plasticity and extracellular matrix (ECM) gene families. Moreover, alterations in the expression of selected BDNF splice variants were observed. Our results provide further mechanistic insights into the vicious negative cycle linking proNGF and neurodegeneration, confirming the regulation of E/I homeostasis as a crucial mediating mechanism.


Autophosphorylated CaMKII Facilitates Spike Propagation in Rat Optic Nerve.

  • Gloria J Partida‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

Repeated spike firing can transmit information at synapses and modulate spike timing, shape, and conduction velocity. These latter effects have been found to result from voltage-induced changes in ion currents and could alter the signals carried by axons. Here, we test whether Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates spike propagation in adult rat optic nerve. We find that small-, medium-, and large-diameter axons bind anti-Thr286-phosphorylated CaMKII (pT286) antibodies and that, in isolated optic nerves, electrical stimulation reduces pT286 levels, spike propagation is hastened by CaMKII autophosphorylation and slowed by CaMKII dephosphorylation, single and multiple spikes slow propagation of subsequently activated spikes, and more frequent stimulation produces greater slowing. Likewise, exposing freely moving animals to flickering illumination reduces pT286 levels in optic nerves and electrically eliciting spikes in vivo in either the optic nerve or optic chiasm slows subsequent spike propagation in the optic nerve. By increasing the time that elapses between successive spikes as they propagate, pT286 dephosphorylation and activity-induced spike slowing reduce the frequency of propagated spikes below the frequency at which they were elicited and would thus limit the frequency at which axons synaptically drive target neurons. Consistent with this, the ability of retinal ganglion cells to drive at least some lateral geniculate neurons has been found to increase when presented with light flashes at low and moderate temporal frequencies but less so at high frequencies. Activity-induced decreases in spike frequency may also reduce the energy required to maintain normal intracellular Na+ and Ca2+ levels.SIGNIFICANCE STATEMENT By propagating along axons at constant velocities, spikes could drive synapses as frequently as they are initiated. However, the onset of spiking has been found to alter the conduction velocity of subsequent ("follower") spikes in various preparations. Here, we find that spikes reduce spike frequency in rat optic nerve by slowing follower spike propagation and that electrically stimulated spiking ex vivo and spike-generating flickering illumination in vivo produce net decreases in axonal Ca2+/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation. Consistent with these effects, propagation speed increases and decreases, respectively, with CaMKII autophosphorylation and dephosphorylation. Lowering spike frequency by CaMKII dephosphorylation is a novel consequence of axonal spiking and light adaptation that could decrease synaptic gain as stimulus frequency increases and may also reduce energy use.


Assessment of Possible Contributions of Hyaluronan and Proteoglycan Binding Link Protein 4 to Differential Perineuronal Net Formation at the Calyx of Held.

  • Kojiro Nojima‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

The calyx of Held is a giant nerve terminal mediating high-frequency excitatory input to principal cells of the medial nucleus of the trapezoid body (MNTB). MNTB principal neurons are enwrapped by densely organized extracellular matrix structures, known as perineuronal nets (PNNs). Emerging evidence indicates the importance of PNNs in synaptic transmission at the calyx of Held. Previously, a unique differential expression of aggrecan and brevican has been reported at this calyceal synapse. However, the role of hyaluronan and proteoglycan binding link proteins (HAPLNs) in PNN formation and synaptic transmission at this synapse remains elusive. This study aimed to assess immunohistochemical evidence for the effect of HAPLN4 on differential PNN formation at the calyx of Held. Genetic deletion of Hapln4 exhibited a clear ectopic shift of brevican localization from the perisynaptic space between the calyx of Held terminals and principal neurons to the neuropil surrounding the whole calyx of Held terminals. In contrast, aggrecan expression showed a consistent localization at the surrounding neuropil, together with HAPLN1 and tenascin-R, in both gene knockout (KO) and wild-type (WT) mice. An in situ proximity ligation assay demonstrated the molecular association of brevican with HAPLN4 in WT and HAPLN1 in gene KO mice. Further elucidation of the roles of HAPLN4 may highlight the developmental and physiological importance of PNN formation in the calyx of Held.


Morphology of P2X3-immunoreactive basket-like afferent nerve endings surrounding serosal ganglia and close relationship with vesicular nucleotide transporter-immunoreactive nerve fibers in the rat gastric antrum.

  • Masato Hirakawa‎ et al.
  • The Journal of comparative neurology‎
  • 2021‎

We previously reported P2X3 purinoceptor (P2X3)-expressing vagal afferent nerve endings with large web-like structures in the subserosal tissue of the antral lesser curvature, suggesting that these nerve endings were one of the vagal mechanoreceptors. The present study investigated the morphological relationship between P2X3-immunoreactive nerve endings and serosal ganglia in the rat gastric antrum by immunohistochemistry of whole-mount preparations using confocal scanning laser microscopy. P2X3-immunoreactive basket-like subserosal nerve endings with new morphology were distributed laterally to the gastric sling muscles in the distal antrum of the lesser curvature. Parent axons ramified into numerous nerve fibers with pleomorphic flattened structures to form basket-like nerve endings, and the parent axons were originated from large net-like structures of vagal afferent nerve endings. Basket-like nerve endings wrapped around the whole serosal ganglia, which were characterized by neurofilament 200 kDa-immunoreactive neurons with or without neuronal nitric oxide synthase immunoreactivity and S100B-immunoreactive glial cells. Furthermore, basket-like nerve endings were localized in close apposition to dopamine beta-hydroxylase-immunoreactive sympathetic nerve fibers immunoreactive for vesicular nucleotide transporter. These results suggest that P2X3-immunoreactive basket-like nerve endings associated with serosal ganglia are the specialized ending structures of vagal subserosal mechanoreceptors in order to increase the sensitivity during antral peristalsis, and are activated by ATP from sympathetic nerve fibers and/or serosal ganglia for the regulation of mechanoreceptor function.


Automated detection of third molars and mandibular nerve by deep learning.

  • Shankeeth Vinayahalingam‎ et al.
  • Scientific reports‎
  • 2019‎

The approximity of the inferior alveolar nerve (IAN) to the roots of lower third molars (M3) is a risk factor for the occurrence of nerve damage and subsequent sensory disturbances of the lower lip and chin following the removal of third molars. To assess this risk, the identification of M3 and IAN on dental panoramic radiographs (OPG) is mandatory. In this study, we developed and validated an automated approach, based on deep-learning, to detect and segment the M3 and IAN on OPGs. As a reference, M3s and IAN were segmented manually on 81 OPGs. A deep-learning approach based on U-net was applied on the reference data to train the convolutional neural network (CNN) in the detection and segmentation of the M3 and IAN. Subsequently, the trained U-net was applied onto the original OPGs to detect and segment both structures. Dice-coefficients were calculated to quantify the degree of similarity between the manually and automatically segmented M3s and IAN. The mean dice-coefficients for M3s and IAN were 0.947 ± 0.033 and 0.847 ± 0.099, respectively. Deep-learning is an encouraging approach to segment anatomical structures and later on in clinical decision making, though further enhancement of the algorithm is advised to improve the accuracy.


Convolutional Neural Network Approaches in Median Nerve Morphological Assessment from Ultrasound Images.

  • Shion Ando‎ et al.
  • Journal of imaging‎
  • 2024‎

Ultrasound imaging has been used to investigate compression of the median nerve in carpal tunnel syndrome patients. Ultrasound imaging and the extraction of median nerve parameters from ultrasound images are crucial and are usually performed manually by experts. The manual annotation of ultrasound images relies on experience, and intra- and interrater reliability may vary among studies. In this study, two types of convolutional neural networks (CNNs), U-Net and SegNet, were used to extract the median nerve morphology. To the best of our knowledge, the application of these methods to ultrasound imaging of the median nerve has not yet been investigated. Spearman's correlation and Bland-Altman analyses were performed to investigate the correlation and agreement between manual annotation and CNN estimation, namely, the cross-sectional area, circumference, and diameter of the median nerve. The results showed that the intersection over union (IoU) of U-Net (0.717) was greater than that of SegNet (0.625). A few images in SegNet had an IoU below 0.6, decreasing the average IoU. In both models, the IoU decreased when the median nerve was elongated longitudinally with a blurred outline. The Bland-Altman analysis revealed that, in general, both the U-Net- and SegNet-estimated measurements showed 95% limits of agreement with manual annotation. These results show that these CNN models are promising tools for median nerve ultrasound imaging analysis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: