Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 406 papers

Identification and bioinformatic analysis of neprilysin and neprilysin-like metalloendopeptidases in Drosophila melanogaster.

  • Heiko Meyer‎ et al.
  • microPublication biology‎
  • 2021‎

The neprilysin (M13) family of metalloendopeptidases comprises highly conserved ectoenzymes that cleave and thereby inactivate many physiologically relevant peptides in the extracellular space. Impaired neprilysin activity is associated with numerous human diseases. Here, we present a comprehensive list and classification of M13 family members in Drosophila melanogaster. Seven Neprilysin (Nep) genes encode active peptidases, while 21 Neprilysin-like (Nepl) genes encode proteins predicted to be catalytically inactive. RNAseq data demonstrate that all 28 genes are expressed during development, often in a tissue-specific pattern. Most Nep proteins possess a transmembrane domain, whereas almost all Nepl proteins are predicted to be secreted.


Circulating neprilysin clears brain amyloid.

  • Yinxing Liu‎ et al.
  • Molecular and cellular neurosciences‎
  • 2010‎

The use of the peptidase neprilysin (NEP) as a therapeutic for lowering brain amyloid burden is receiving increasing attention. We have previously demonstrated that peripheral expression of NEP on the surface of hindlimb muscle lowers brain amyloid burden in a transgenic mouse model of Alzheimer's disease. In this study we now show that using adeno-associated virus expressing a soluble secreted form of NEP (secNEP-AAV8), NEP secreted into plasma is effective in clearing brain Abeta. Soluble NEP expression in plasma was sustained over the 3-month time period it was measured. Secreted NEP decreased plasma Abeta by 30%, soluble brain Abeta by approximately 28%, insoluble brain Abeta by approximately 55%, and Abeta oligomersby 12%. This secNEP did not change plasma levels of substance P or bradykinin, nor did it alter blood pressure. No NEP was detected in CSF, nor did the AAV virus produce brain expression of NEP. Thus the lowering of brain Abeta was due to plasma NEP which altered blood-brain Abeta transport dynamics. Expressing NEP in plasma provides a convenient way to monitor enzyme activity during the course of its therapeutic testing.


PKCε promotes HuD-mediated neprilysin mRNA stability and enhances neprilysin-induced Aβ degradation in brain neurons.

  • Chol Seung Lim‎ et al.
  • PloS one‎
  • 2014‎

Amyloid-beta (Aβ) peptide accumulation in the brain is a pathological hallmark of all forms of Alzheimer's disease. An imbalance between Aβ production and clearance from the brain may contribute to accumulation of neurotoxic Aβ and subsequent synaptic loss, which is the strongest correlate of the extent of memory loss in AD. The activity of neprilysin (NEP), a potent Aβ-degrading enzyme, is decreased in the AD brain. Expression of HuD, an mRNA-binding protein important for synaptogenesis and neuronal plasticity, is also decreased in the AD brain. HuD is regulated by protein kinase Cε (PKCε), and we previously demonstrated that PKCε activation decreases Aβ levels. We hypothesized that PKCε acts through HuD to stabilize NEP mRNA, modulate its localization, and support NEP activity. Conversely, loss of PKCε-activated HuD in AD leads to decreased NEP activity and accumulation of Aβ. Here we show that HuD is associated with NEP mRNA in cultures of human SK-N-SH cells. Treatment with bryostatin, a PKCε-selective activator, enhanced NEP association with HuD and increased NEP mRNA stability. Activation of PKCε also increased NEP protein levels, increased NEP phosphorylation, and induced cell surface expression. In addition, specific PKCε activation directly stimulated NEP activity, leading to degradation of a monomeric form of Aβ peptide and decreased Aβ neuronal toxicity, as measured by cell viability. Bryostatin treatment also rescued Aβ-mediated inhibition of HuD-NEP mRNA binding, NEP protein expression, and NEP cell membrane translocation. These results suggest that PKCε activation reduces Aβ by up-regulating, via the mRNA-binding protein HuD, Aβ-degrading enzymes such as NEP. Thus, PKCε activation may have therapeutic efficacy for AD by reducing neurotoxic Aβ accumulation as well as having direct anti-apoptotic and synaptogenic effects.


Neprilysin, obesity and the metabolic syndrome.

  • K F Standeven‎ et al.
  • International journal of obesity (2005)‎
  • 2011‎

Neprilysin (NEP), a zinc metalloendopeptidase, has a role in blood pressure control and lipid metabolism. The present study tested the hypothesis that NEP is associated with insulin resistance and features of the metabolic syndrome (MetS) in a study of 318 healthy human subjects and in murine obesity, and investigated NEP production by adipocytes in-vitro.


Neprilysin inhibition promotes corneal wound healing.

  • Rachel M Genova‎ et al.
  • Scientific reports‎
  • 2018‎

Neprilysin (NEP), an ectoenzyme that modulates inflammation by degrading neuropeptides, was recently identified in the human corneal epithelium. The cornea expresses many NEP substrates, but the function of NEP in homeostatic maintenance and wound healing of the cornea is unknown. We therefore investigated the role of this enzyme under naive and injured conditions using NEP-deficient (NEP-/-) and wild type (WT) control mice. In vivo ocular surface imaging and histological analysis of corneal tissue showed no differences in limbal vasculature or corneal anatomy between naive NEP-/- and WT mice. Histological examination revealed increased corneal innervation in NEP-/- mice. In an alkali burn model of corneal injury, corneal wound healing was significantly accelerated in NEP-/- mice compared to WT controls 3 days after injury. Daily intraperitoneal administration of the NEP inhibitor thiorphan also accelerated corneal wound healing after alkali injury in WT mice. Collectively, our data identify a previously unknown role of NEP in the cornea, in which pharmacologic inhibition of its activity may provide a novel therapeutic option for patients with corneal injury.


Urinary neprilysin in the critically ill patient.

  • Sahra Pajenda‎ et al.
  • BMC nephrology‎
  • 2017‎

Critically ill patients in intensive care face hazardous conditions. Among these, acute kidney injury (AKI) is frequently seen as a result of sepsis. Early diagnosis of kidney injury is of the utmost importance in the guidance of interventions or avoidance of treatment-induced kidney injury. On these grounds, we searched for markers that could indicate proximal tubular cell injury.


Active site mutations change the cleavage specificity of neprilysin.

  • Travis Sexton‎ et al.
  • PloS one‎
  • 2012‎

Neprilysin (NEP), a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants containing mutations at either one of two active site residues, Phe(563) and Ser(546). Among the mutants studied in detail we observed changes in their activity towards leucine(5)-enkephalin, insulin B chain, and amyloid β(1-40). For example, NEP(F563I) displayed an increase in preference towards cleaving leucine(5)-enkephalin relative to insulin B chain, while mutant NEP(S546E) was less discriminating than neprilysin. Mutants NEP(F563L) and NEP(S546E) exhibit different cleavage site preferences than neprilysin with insulin B chain and amyloid ß(1-40) as substrates. These data indicate that it is possible to alter the cleavage site specificity of neprilysin opening the way for the development of substrate specific or substrate exclusive forms of the enzyme with enhanced therapeutic potential.


Epigenetic suppression of neprilysin regulates breast cancer invasion.

  • H M Stephen‎ et al.
  • Oncogenesis‎
  • 2016‎

In women, invasive breast cancer is the second most common cancer and the second cause of cancer-related death. Therefore, identifying novel regulators of breast cancer invasion could lead to additional biomarkers and therapeutic targets. Neprilysin, a cell-surface enzyme that cleaves and inactivates a number of substrates including endothelin-1 (ET1), has been implicated in breast cancer, but whether neprilysin promotes or inhibits breast cancer cell progression and metastasis is unclear. Here, we asked whether neprilysin expression predicts and functionally regulates breast cancer cell invasion. RT-PCR and flow cytometry analysis of MDA-MB-231 and MCF-7 breast cancer cell lines revealed decreased neprilysin expression compared with normal epithelial cells. Expression was also suppressed in invasive ductal carcinoma (IDC) compared with normal tissue. In addition, in vtro invasion assays demonstrated that neprilysin overexpression decreased breast cancer cell invasion, whereas neprilysin suppression augmented invasion. Furthermore, inhibiting neprilysin in MCF-7 breast cancer cells increased ET1 levels significantly, whereas overexpressing neprilysin decreased extracellular-signal related kinase (ERK) activation, indicating that neprilysin negatively regulates ET1-induced activation of mitogen-activated protein kinase (MAPK) signaling. To determine whether neprilysin was epigenetically suppressed in breast cancer, we performed bisulfite conversion analysis of breast cancer cells and clinical tumor samples. We found that the neprilysin promoter was hypermethylated in breast cancer; chemical reversal of methylation in MDA-MB-231 cells reactivated neprilysin expression and inhibited cancer cell invasion. Analysis of cancer databases revealed that neprilysin methylation significantly associates with survival in stage I IDC and estrogen receptor-negative breast cancer subtypes. These results demonstrate that neprilysin negatively regulates the ET axis in breast cancer, and epigenetic suppression of neprilysin in invasive breast cancer cells enables invasion. Together, this implicates neprilysin as an important regulator of breast cancer invasion and clarifies its utility as a potential biomarker for invasive breast cancer.


Brain Shuttle Neprilysin reduces central Amyloid-β levels.

  • Christopher R Campos‎ et al.
  • PloS one‎
  • 2020‎

Reducing Amyloid β (Aβ) in the brain is of fundamental importance for advancing the therapeutics for Alzheimer`s disease. The endogenous metallopeptidase neprilysin (NEP) has been identified as one of the key Aβ-degrading enzymes. Delivery of NEP to the brain by utilizing the Brain Shuttle (BS) transport system offers a promising approach for clearing central Aβ. We fused the extracellular catalytic domain of NEP to an active or inactive BS module. The two BS-NEP constructs were used to investigate the pharmacokinetic/pharmacodynamics relationships in the blood and the cerebrospinal fluid (CSF) in dose-response and multiple dosing. As previously shown, NEP was highly effective at degrading Aβ in blood but not in the CSF compartment after systemic administration. In contrast, the NEP with an active BS module led to a significant CSF exposure of BS-NEP, followed by substantial Aβ reduction in CSF and brain parenchyma. Our data show that a BS module against the transferrin receptor facilitates the transport of an Aβ degrading enzyme across the blood-brain barriers to efficiently reduce Aβ levels in both CSF and brain.


Relevance of Neutrophil Neprilysin in Heart Failure.

  • Suriya Prausmüller‎ et al.
  • Cells‎
  • 2021‎

Significant expression of neprilysin (NEP) is found on neutrophils, which present the transmembrane integer form of the enzyme. This study aimed to investigate the relationship of neutrophil transmembrane neprilysin (mNEP) with disease severity, adverse remodeling, and outcome in HFrEF. In total, 228 HFrEF, 30 HFpEF patients, and 43 controls were enrolled. Neutrophil mNEP was measured by flow-cytometry. NEP activity in plasma and blood cells was determined for a subset of HFrEF patients using mass-spectrometry. Heart failure (HF) was characterized by reduced neutrophil mNEP compared to controls (p < 0.01). NEP activity on peripheral blood cells was almost 4-fold higher compared to plasma NEP activity (p = 0.031) and correlated with neutrophil mNEP (p = 0.006). Lower neutrophil mNEP was associated with increasing disease severity and markers of adverse remodeling. Higher neutrophil mNEP was associated with reduced risk for mortality, total cardiovascular hospitalizations, and the composite endpoint of both (p < 0.01 for all). This is the first report describing a significant role of neutrophil mNEP in HFrEF. The biological relevance of neutrophil mNEP and exact effects of angiotensin-converting-enzyme inhibitors (ARNi) at the neutrophil site have to be determined. However, the results may suggest early initiation of ARNi already in less severe HF disease, where effects of NEP inhibition may be more pronounced.


Neprilysin Inhibits Coagulation through Proteolytic Inactivation of Fibrinogen.

  • Matthew Burrell‎ et al.
  • PloS one‎
  • 2016‎

Neprilysin (NEP) is an endogenous protease that degrades a wide range of peptides including amyloid beta (Aβ), the main pathological component of Alzheimer's disease (AD). We have engineered NEP as a potential therapeutic for AD but found in pre-clinical safety testing that this variant increased prothrombin time (PT) and activated partial thromboplastin time (APTT). The objective of the current study was to investigate the effect of wild type NEP and the engineered variant on coagulation and define the mechanism by which this effect is mediated. PT and APTT were measured in cynomolgus monkeys and rats dosed with a human serum albumin fusion with an engineered variant of NEP (HSA-NEPv) as well as in control plasma spiked with wild type or variant enzyme. The coagulation factor targeted by NEP was determined using in vitro prothrombinase, calibrated automated thrombogram (CAT) and fibrin formation assays as well as N-terminal sequencing of fibrinogen treated with the enzyme. We demonstrate that HSA-NEP wild type and HSA-NEPv unexpectedly impaired coagulation, increasing PT and APTT in plasma samples and abolishing fibrin formation from fibrinogen. This effect was mediated through cleavage of the N-termini of the Aα- and Bβ-chains of fibrinogen thereby significantly impairing initiation of fibrin formation by thrombin. Fibrinogen has therefore been identified for the first time as a substrate for NEP wild type suggesting that the enzyme may have a role in regulating fibrin formation. Reductions in NEP levels observed in AD and cerebral amyloid angiopathy may contribute to neurovascular degeneration observed in these conditions.


The role of neprilysin in regulating the hair cycle.

  • Naoko Morisaki‎ et al.
  • PloS one‎
  • 2013‎

In most mammals, each hair follicle undergoes a cyclic process of growing, regressing and resting phases (anagen, catagen, telogen, respectively) called the hair cycle. Various biological factors have been reported to regulate or to synchronize with the hair cycle. Some factors involved in the extracellular matrix, which is a major component of skin tissue, are also thought to regulate the hair cycle. We have focused on an enzyme that degrades elastin, which is associated with skin elasticity. Since our previous study identified skin fibroblast elastase as neprilysin (NEP), we examined the fluctuation of NEP enzyme activity and its expression during the synchronized hair cycle of rats. NEP activity in the skin was elevated at early anagen, and decreased during catagen to telogen. The expression of NEP mRNA and protein levels was modulated similarly. Immunostaining showed changes in NEP localization throughout the hair cycle, from the follicular epithelium during early anagen to the dermal papilla during catagen. To determine whether NEP plays an important role in regulating the hair cycle, we used a specific inhibitor of NEP (NPLT). NPLT was applied topically daily to the dorsal skin of C3H mice, which had been depilated in advance. Mice treated with NPLT had significantly suppressed hair growth. These data suggest that NEP plays an important role in regulating the hair cycle by its increased expression and activity in the follicular epithelium during early anagen.


Effects of neprilysin-renin inhibition in comparison with neprilysin-angiotensin inhibition on the neurohumoral changes in rats with heart failure.

  • Kawa Dizaye‎ et al.
  • BMC pharmacology & toxicology‎
  • 2019‎

The activation of neurohumoral compensatory mechanisms is a common physiological phenomenon in heart failure in order to make up for a failing heart, which will usually have a deteriorating effect on overall health condition. Many medications, such as neprilysin and angiotensin inhibitors, have recently been introduced to remediate neurohumoral changes. This study was conducted to evaluate the efficacy of the sacubitril-aliskiren combination versus the sacubitril-ramipril combination in the treatment of neurohumoral changes in rats with experimentally induced heart failure.


Soluble Neprilysin - Cardiac Function and Outcome in Hypertrophic Cardiomyopathy.

  • Akiomi Yoshihisa‎ et al.
  • Circulation reports‎
  • 2019‎

Background: Circulating soluble neprilysin (sNEP) predicts outcome in heart failure (HF) patients with reduced ejection fraction (EF), but not in those with preserved EF. We examined sNEP in patients with hypertrophic cardiomyopathy (HCM), and their correlations with other biomarkers, cardiac function, and clinical outcome. Methods and Results: We examined the associations between sNEP and the laboratory and echocardiography parameters in the HCM patients (n=93). Regarding the laboratory data, sNEP had a significant positive correlation with B-type natriuretic peptide (BNP; R=0.326, P=0.003), but not with troponin I. As for the echocardiographic parameters, sNEP negatively correlated with left ventricular EF (R=-0.283, P=0.009) and right ventricular fractional area change (R=-0.277, P=0.012), but not with left ventricular mass. Next, we prospectively followed up on the patients for cardiac events, including worsening HF or cardiac death, and all-cause mortality. On Kaplan-Meier analysis (mean follow-up, 1,021 days), the cardiac event rate and all-cause mortality were similar between the higher sNEP group (sNEP ≥median level of 1.43 ng/mL, n=46) and lower sNEP group (sNEP <1.43 ng/mL, n=47). On Cox proportional hazard analysis, sNEP was not a predictor of cardiac event or all-cause mortality. Conclusions: Soluble neprilysin appears to correlate with BNP and cardiac systolic function, but it is not significantly associated with prognosis in HCM patients.


Angiotensin Receptor-Neprilysin Inhibitor (ARNI) and Cardiac Arrhythmias.

  • Henry Sutanto‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The renin-angiotensin-aldosterone system (RAAS) plays a major role in cardiovascular health and disease. Short-term RAAS activation controls water and salt retention and causes vasoconstriction, which are beneficial for maintaining cardiac output in low blood pressure and early stage heart failure. However, prolonged RAAS activation is detrimental, leading to structural remodeling and cardiac dysfunction. Natriuretic peptides (NPs) are activated to counterbalance the effect of RAAS and sympathetic nervous system by facilitating water and salt excretion and causing vasodilation. Neprilysin is a major NP-degrading enzyme that degrades multiple vaso-modulatory substances. Although the inhibition of neprilysin alone is not sufficient to counterbalance RAAS activation in cardiovascular diseases (e.g., hypertension and heart failure), a combination of angiotensin receptor blocker and neprilysin inhibitor (ARNI) was highly effective in several clinical trials and may modulate the risk of atrial and ventricular arrhythmias. This review summarizes the possible link between ARNI and cardiac arrhythmias and discusses potential underlying mechanisms, providing novel insights about the therapeutic role and safety profile of ARNI in the cardiovascular system.


Angiotensin receptor-neprilysin inhibitor improves coronary collateral perfusion.

  • Kangbo Li‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2022‎

We investigated the pleiotropic effects of an angiotensin receptor-neprilysin inhibitor (ARNi) on collateral-dependent myocardial perfusion in a rat model of coronary arteriogenesis, and performed comprehensive analyses to uncover the underlying molecular mechanisms.


Trans-trigeminal transport of masseter-derived neprilysin to hippocampus.

  • Yukinori Kuwajima‎ et al.
  • Archives of oral biology‎
  • 2020‎

To show the possible occurrence of exosomal transport of neprilysin from masseter muscle to hippocampus via trigeminal nerve in the living mouse.


Safety of the neprilysin/renin-angiotensin system inhibitor LCZ696.

  • Bo Li‎ et al.
  • Oncotarget‎
  • 2017‎

The combined neprilysin/rennin-angiotensin system inhibitor sacubitril/valsartan (LCZ696) has shown its superiority over ACEI/ARB therapy. In view of the existing concern of its adverse effects, we aimed to provide evidence of the safety of the new drug.


Soluble neprilysin does not correlate with prognosis in pulmonary hypertension.

  • Akiomi Yoshihisa‎ et al.
  • ESC heart failure‎
  • 2019‎

It has been reported that circulating soluble neprilysin (sNEP), which catalyses the degradation of several vasodilator peptides such as natriuretic peptides, predicts prognosis in heart failure patients with reduced ejection fraction. Hypoxia-induced decrease in NEP expression in lungs has been reported. However, the associations between sNEP and haemodynamic parameters, as well as the prognostic impact of sNEP in pulmonary hypertension (PH), remain unclear. We aimed to clarify the relationships between sNEP and natriuretic peptide, haemodynamics (e.g. parameters of echocardiography and right heart catheter) or prognosis in PH patients.


Meta-analysis of expression and function of neprilysin in Alzheimer's disease.

  • Huifeng Zhang‎ et al.
  • Neuroscience letters‎
  • 2017‎

Neprilysin (NEP) is one of the most important Aβ-degrading enzymes, and its expression and activity in Alzheimer's brain have been widely reported, but the results remain debatable. Thus, the meta-analysis was performed to elucidate the role of NEP in Alzheimer's disease (AD). The relevant case-control or cohort studies were retrieved according to our inclusion/exclusion criteria. Six studies with 123 controls and 141 AD cases, seven studies with 102 controls and 90 AD cases, and four studies with 93 controls and 132 AD cases were included in meta-analysis of NEP's protein, mRNA, and enzyme activity respectively. We conducted Meta regression to detect the sources of heterogeneity and further performed cumulative meta-analysis or subgroup analysis. Our meta-analysis revealed a significantly lower level of NEP mRNA (SMD=-0.44, 95%CI: -0.87, -0.00, p=0.049) in AD cases than in non-AD cases, and such pattern was not altered over time in the cumulative meta-analysis. However, the decrease of NEP protein (SMD=-0.18, 95%CI: -0.62, 0.25) and enzyme activity (SMD=-0.35, 95%CI: -1.03, 0.32) in AD cases did not pass the significance check, while the cumulative meta-analysis by average age showed the pooled effect became insignificant as adding the studies with younger subjects, which indicates that the protein expression and enzyme activity of NEP in the cortex are affected by age. Therefore, the present meta-analysis suggests the need of further investigation of roles of NEP in AD pathogenesis and treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: