Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 8,128 papers

Nanotechnology in Urology.

  • Sudhindra Jayasimha‎
  • Indian journal of urology : IJU : journal of the Urological Society of India‎
  • 2017‎

Nanotechnology has revolutionized our approach to medical diagnostics as well as therapeutics and has spanned an entirely new branch of research. This review addresses the potential applications of Nanotechnology in Urology. This article is based on the Dr. Sitharaman Best Essay award of the Urological Society of India for 2016.


Insights into atherosclerosis using nanotechnology.

  • Ashwath Jayagopal‎ et al.
  • Current atherosclerosis reports‎
  • 2010‎

A developing forefront in vascular disease research is the application of nanotechnology, the engineering of devices at the molecular scale, for diagnostic and therapeutic applications in atherosclerosis. Promising research in this field over the past decade has resulted in the preclinical validation of nanoscale devices that target cellular and molecular components of the atherosclerotic plaque, including one of its prominent cell types, the macrophage. Nanoscale contrast agents targeting constituents of plaque biology have been adapted for application in multiple imaging modalities, leading toward more detailed diagnostic readouts, whereas nanoscale drug delivery devices can be tailored for site-specific therapeutic activity. This review highlights recent progress in utilizing nanotechnology for the clinical management of atherosclerosis, drawing upon recent preclinical studies relevant to diagnosis and treatment of the plaque and promising future applications.


Nanotechnology: looking as we leap.

  • Ernie Hood‎
  • Environmental health perspectives‎
  • 2004‎

No abstract available


Nanotechnology-supported THz medical imaging.

  • Andreas Stylianou‎ et al.
  • F1000Research‎
  • 2013‎

Over the last few decades, the achievements and progress in the field of medical imaging have dramatically enhanced the early detection and treatment of many pathological conditions. The development of new imaging modalities, especially non-ionising ones, which will improve prognosis, is of crucial importance. A number of novel imaging modalities have been developed but they are still in the initial stages of development and serious drawbacks obstruct them from offering their benefits to the medical field. In the 21 (st) century, it is believed that nanotechnology will highly influence our everyday life and dramatically change the world of medicine, including medical imaging. Here we discuss how nanotechnology, which is still in its infancy, can improve Terahertz (THz) imaging, an emerging imaging modality, and how it may find its way into real clinical applications. THz imaging is characterised by the use of non-ionising radiation and although it has the potential to be used in many biomedical fields, it remains in the field of basic research. An extensive review of the recent available literature shows how the current state of this emerging imaging modality can be transformed by nanotechnology. Innovative scientific concepts that use nanotechnology-based techniques to overcome some of the limitations of the use of THz imaging are discussed. We review a number of drawbacks, such as a low contrast mechanism, poor source performance and bulky THz systems, which characterise present THz medical imaging and suggest how they can be overcome through nanotechnology. Better resolution and higher detection sensitivity can also be achieved using nanotechnology techniques.


Nanotechnology Approaches for Chloroplast Biotechnology Advancements.

  • Gregory M Newkirk‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Photosynthetic organisms are sources of sustainable foods, renewable biofuels, novel biopharmaceuticals, and next-generation biomaterials essential for modern society. Efforts to improve the yield, variety, and sustainability of products dependent on chloroplasts are limited by the need for biotechnological approaches for high-throughput chloroplast transformation, monitoring chloroplast function, and engineering photosynthesis across diverse plant species. The use of nanotechnology has emerged as a novel approach to overcome some of these limitations. Nanotechnology is enabling advances in the targeted delivery of chemicals and genetic elements to chloroplasts, nanosensors for chloroplast biomolecules, and nanotherapeutics for enhancing chloroplast performance. Nanotechnology-mediated delivery of DNA to the chloroplast has the potential to revolutionize chloroplast synthetic biology by allowing transgenes, or even synthesized DNA libraries, to be delivered to a variety of photosynthetic species. Crop yield improvements could be enabled by nanomaterials that enhance photosynthesis, increase tolerance to stresses, and act as nanosensors for biomolecules associated with chloroplast function. Engineering isolated chloroplasts through nanotechnology and synthetic biology approaches are leading to a new generation of plant-based biomaterials able to self-repair using abundant CO2 and water sources and are powered by renewable sunlight energy. Current knowledge gaps of nanotechnology-enabled approaches for chloroplast biotechnology include precise mechanisms for entry into plant cells and organelles, limited understanding about nanoparticle-based chloroplast transformations, and the translation of lab-based nanotechnology tools to the agricultural field with crop plants. Future research in chloroplast biotechnology mediated by the merging of synthetic biology and nanotechnology approaches can yield tools for precise control and monitoring of chloroplast function in vivo and ex vivo across diverse plant species, allowing increased plant productivity and turning plants into widely available sustainable technologies.


Emerging Applications of Nanotechnology in Dentistry.

  • Shiza Malik‎ et al.
  • Dentistry journal‎
  • 2023‎

Dentistry is a branch of healthcare where nanobiotechnology is reverberating in multiple ways to produce beneficial outcomes. The purpose of this review is to bring into the awareness of the readers the various practical dimensions of the nano-dental complex (nanodentistry) in healthcare and how novelties linked with the field are revolutionizing dentistry. A methodological approach was adopted to collect the latest data on nanotechnology and dentistry from sources, including PubMed, Google Scholar, Scopus, and official websites like the WHO. Nanodentistry is an emerging field in dentistry that involves the use of nanomaterials, nanorobots, and nanotechnology to diagnose, treat, and prevent dental diseases. The results summarize the descriptive analyses of the uses of nanodentistry within orthodontics, preventive dentistry, prosthodontics, restorative dentistry, periodontics, dental surgeries, dental restoration technologies, and other areas of dentistry. The future directions of nano-industries and nano-healthcare have been included to link them with the oral healthcare sector, treatment plans, and improved medical services which could be explored in the future for advanced healthcare regulation. The major limitations to the use of dental nanoproducts are their cost-effectiveness and accessibility, especially in financially constrained countries. These data will help the readers to experience a detailed analysis and comprehensive covering of the diverse achievements of nanodentistry with past analyses, present scenarios, and future implications.


Nanotechnology for mesenchymal stem cell therapies.

  • Bruna Corradetti‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2016‎

Mesenchymal stem cells (MSC) display great proliferative, differentiative, chemotactic, and immune-modulatory properties required to promote tissue repair. Several clinical trials based on the use of MSC are currently underway for therapeutic purposes. The aim of this article is to examine the current trends and potential impact of nanotechnology in MSC-driven regenerative medicine. Nanoparticle-based approaches are used as powerful carrier systems for the targeted delivery of bioactive molecules to ensure MSC long-term maintenance in vitro and to enhance their regenerative potential. Nanostructured materials have been developed to recapitulate the stem cell niche within a tissue and to instruct MSC toward the creation of regeneration-permissive environment. Finally, the capability of MSC to migrate toward the site of injury/inflammation has allowed for the development of diagnostic imaging systems able to monitor transplanted stem cell bio-distribution, toxicity, and therapeutic effectiveness.


Nanotechnology for Targeted Therapy of Atherosclerosis.

  • Seyedmehdi Hossaini Nasr‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Atherosclerosis is the major cause of heart attack and stroke that are the leading causes of death in the world. Nanomedicine is a powerful tool that can be engineered to target atherosclerotic plaques for therapeutic and diagnosis purposes. In this review, advances in designing nanoparticles with therapeutic effects on atherosclerotic plaques known as atheroprotective nanomedicine have been summarized to stimulate further development and future translation.


Nanotechnology Frontiers in γ-Herpesviruses Treatments.

  • Marisa Granato‎
  • International journal of molecular sciences‎
  • 2021‎

Epstein-Barr Virus (EBV) and Kaposi's sarcoma associated-herpesvirus (KSHV) are γ-herpesviruses that belong to the Herpesviridae family. EBV infections are linked to the onset and progression of several diseases, such as Burkitt lymphoma (BL), nasopharyngeal carcinoma (NPC), and lymphoproliferative malignancies arising in post-transplanted patients (PTDLs). KSHV, an etiologic agent of Kaposi's sarcoma (KS), displays primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Many therapeutics, such as bortezomib, CHOP cocktail medications, and natural compounds (e.g., quercetin or curcumin), are administrated to patients affected by γ-herpesvirus infections. These drugs induce apoptosis and autophagy, inhibiting the proliferative and cell cycle progression in these malignancies. In the last decade, many studies conducted by scientists and clinicians have indicated that nanotechnology and nanomedicine could improve the outcome of several treatments in γ-herpesvirus-associated diseases. Some drugs are entrapped in nanoparticles (NPs) expressed on the surface area of polyethylene glycol (PEG). These NPs move to specific tissues and exert their properties, releasing therapeutics in the cell target. To treat EBV- and KSHV-associated diseases, many studies have been performed in vivo and in vitro using virus-like particles (VPLs) engineered to maximize antigen and epitope presentations during immune response. NPs are designed to improve therapeutic delivery, avoiding dissolving the drugs in toxic solvents. They reduce the dose-limiting toxicity and reach specific tissue areas. Several attempts are ongoing to synthesize and produce EBV vaccines using nanosystems.


Cancer nanotechnology: current status and perspectives.

  • Jessica A Kemp‎ et al.
  • Nano convergence‎
  • 2021‎

Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.


Nanotechnology-based products for cancer immunotherapy.

  • Forough Shams‎ et al.
  • Molecular biology reports‎
  • 2022‎

Currently, nanoscale materials and scaffolds carrying antitumor agents to the tumor target site are practical approaches for cancer treatment. Immunotherapy is a modern approach to cancer treatment in which the body's immune system adjusts to deal with cancer cells. Immuno-engineering is a new branch of regenerative medicine-based therapies that uses engineering principles by using biological tools to stimulate the immune system. Therefore, this branch's final aim is to regulate distribution, release, and simultaneous placement of several immune factors at the tumor site, so then upgrade the current treatment methods and subsequently improve the immune system's handling. In this paper, recent research and prospects of nanotechnology-based cancer immunotherapy have been presented and discussed. Furthermore, different encouraging nanotechnology-based plans for targeting various innate and adaptive immune systems will also be discussed. Due to novel views in nanotechnology strategies, this field can address some biological obstacles, although studies are ongoing.


Current research on public perceptions of nanotechnology.

  • J Besley‎
  • Emerging health threats journal‎
  • 2010‎

This review explores research on public perceptions of nanotechnology. It highlights a recurring emphasis on some researchers' expectations that there will be a meaningful relationship between awareness of nanotechnology and positive views about nanotechnology. The review, however, also notes that this emphasis is tacitly and explicitly rejected by a range of multivariate studies that emphasize the key roles of non-awareness variables, such as, trust, general views about science, and overall worldview. The review concludes with a discussion of likely future research directions, including the expectation that social scientists will continue to focus on nanotechnology as a unique opportunity to study how individuals assess risk in the context of relatively low levels of knowledge.


Nanotechnology and stem cells in vascular biology.

  • Tomasz Jadczyk‎ et al.
  • Vascular biology (Bristol, England)‎
  • 2019‎

Nanotechnology and stem cells are one of the most promising strategies for clinical medicine applications. The article provides an up-to-date view on advances in the field of regenerative and targeted vascular therapies describing a molecular design (propulsion mechanism, composition, target identification) and applications of nanorobots. Stem cell paragraph presents current clinical application of various cell types involved in vascular biology including mesenchymal stem cells, very small embryonic-like stem cells, induced pluripotent stem cells, mononuclear stem cells, amniotic fluid-derived stem cells and endothelial progenitor cells. A possible bridging between the two fields is also envisioned, where bio-inspired, safe, long-lasting nanorobots can fully target the cellular specific cues and even drive vascular process in a timely manner.


Nanotechnology: An Untapped Resource for Food Packaging.

  • Chetan Sharma‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector.


Performing DNA nanotechnology operations on a zebrafish.

  • Jian Yang‎ et al.
  • Chemical science‎
  • 2018‎

Nanoscale engineering of surfaces is becoming an indispensable technique to modify membranes and, thus cellular behaviour. Here, such membrane engineering related was explored on the surface of a living animal using DNA nanotechnology. We demonstrate the immobilization of oligonucleotides functionalized with a membrane anchor on 2 day old zebrafish. The protruding single-stranded DNA on the skin of zebrafish served as a handle for complementary DNAs, which allowed the attachment of small molecule cargo, liposomes and dynamic relabeling by DNA hybridization protocols. Robust anchoring of the oligonucleotides was proven as DNA-based amplification processes were successfully performed on the outer membrane of the zebrafish enabling the multiplication of surface functionalities from a single DNA-anchoring unit and the dramatic improvement of fluorescent labeling of these animals. As zebrafish are becoming an alternative to animal models in drug development, toxicology and nanoparticles characterization, we believe the platform presented here allows amalgamation of DNA nanotechnology tools with live animals and this opens up yet unexplored avenues like efficient bio-barcoding as well as in vivo tracking.


Surveillance nanotechnology for multi-organ cancer metastases.

  • Harini Kantamneni‎ et al.
  • Nature biomedical engineering‎
  • 2017‎

The identification and molecular profiling of early metastases remains a major challenge in cancer diagnostics and therapy. Most in vivo imaging methods fail to detect small cancerous lesions, a problem that is compounded by the distinct physical and biological barriers associated with different metastatic niches. Here, we show that intravenously injected rare-earth-doped albumin-encapsulated nanoparticles emitting short-wave infrared light (SWIR) can detect targeted metastatic lesions in vivo, allowing for the longitudinal tracking of multi-organ metastases. In a murine model of basal human breast cancer, the nanoprobes enabled whole-body SWIR detection of adrenal gland microlesions and bone lesions that were undetectable via contrast-enhanced magnetic resonance imaging (CE-MRI) as early as, respectively, three weeks and five weeks post-inoculation. Whole-body SWIR imaging of nanoprobes functionalized to differentially target distinct metastatic sites and administered to a biomimetic murine model of human breast cancer resolved multi-organ metastases that showed varied molecular profiles at the lungs, adrenal glands and bones. Real-time surveillance of lesions in multiple organs should facilitate pre-therapy and post-therapy monitoring in preclinical settings.


Nanotechnology activities: environmental protection regulatory issues data.

  • Luciana Almeida‎ et al.
  • Heliyon‎
  • 2020‎

Nanotechnology is a fascinating technology that is revolutionizing science and bringing countless benefits to the population. The economic side linked to nanotechnology has grown in recent years, as have the lines of research. However, nanoparticles can be toxic when released into the environment. In this work, a scientometric study was carried out in order to identify and describe scientific research on environmental protection involving nanotechnology with respect to regulatory studies. The research period was from 2003 to 2020, the database selected was Scopus and the software used for the study was Microsoft Excel and VOSviewer. According to specified keywords, the result presented by Scopus was a total of 106 publications. The clustering figures shown by VOSviewer showed that nanotoxicity studies were mostly aimed at protecting human health, to the detriment of environmental protection. Another interesting fact is that toxicity of nanomaterials has been studied from the perspective of risk assessment, including by the regulatory sector.


Emerging Applications of Nanotechnology in Healthcare and Medicine.

  • Shiza Malik‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Knowing the beneficial aspects of nanomedicine, scientists are trying to harness the applications of nanotechnology in diagnosis, treatment, and prevention of diseases. There are also potential uses in designing medical tools and processes for the new generation of medical scientists. The main objective for conducting this research review is to gather the widespread aspects of nanomedicine under one heading and to highlight standard research practices in the medical field. Comprehensive research has been conducted to incorporate the latest data related to nanotechnology in medicine and therapeutics derived from acknowledged scientific platforms. Nanotechnology is used to conduct sensitive medical procedures. Nanotechnology is showing successful and beneficial uses in the fields of diagnostics, disease treatment, regenerative medicine, gene therapy, dentistry, oncology, aesthetics industry, drug delivery, and therapeutics. A thorough association of and cooperation between physicians, clinicians, researchers, and technologies will bring forward a future where there is a more calculated, outlined, and technically programed field of nanomedicine. Advances are being made to overcome challenges associated with the application of nanotechnology in the medical field due to the pathophysiological basis of diseases. This review highlights the multipronged aspects of nanomedicine and how nanotechnology is proving beneficial for the health industry. There is a need to minimize the health, environmental, and ethical concerns linked to nanotechnology.


Stable isotopic tracing-a way forward for nanotechnology.

  • Brian Gulson‎ et al.
  • Environmental health perspectives‎
  • 2006‎

Numerous publications and reports have expressed health and safety concerns about the production and use of nanoparticles, especially in areas of exposure monitoring, personal use, and environmental fate and transport. We suggest that stable isotopic tracers, which have been used widely in the earth sciences and in metabolic and other health-related studies for several decades, could be used to address many of these issues. One such example we are pursuing is the use of stable isotopes to monitor dermal absorption of zinc and titanium oxides in sunscreen preparations and other personal care products. Other potential applications of this tracing approach are discussed.


Use and potential of nanotechnology in cosmetic dermatology.

  • Pierfrancesco Morganti‎
  • Clinical, cosmetic and investigational dermatology‎
  • 2010‎

Biotechnology and nanotechnology are the key technologies of the twenty-first century, having enormous potential for innovation and growth. The academic and industrial goals for these technologies are the development of nanoscale biomolecular substances and analytical instruments for investigating cell biology at the cellular and molecular levels. Developments in nanotechnology will provide opportunities for cosmetic dermatology to develop new biocompatible and biodegradable therapeutics, delivery systems and more active compounds. Cosmetics have the primary function of keeping up a good appearance, changing the appearance, or correcting body odors, while maintaining the skin and its surroundings in good conditions. Thus cosmetic dermatology, recognizing the new realities of skin care products, has to emphasize the functional aspects of cosmetics through an understanding of their efficacy and safety in promoting good health. Nanoscience may help the scientific community to find more innovative and efficacious cosmetics. Understanding the physical model of the cell as a machine is essential to understand how all the cell components work together to accomplish a task. The efficacy and safety of new nanomaterials has to be deeply studied by ex vivo tests and innovative laboratory techniques. New delivery systems and natural nanocompounds, such as chitin nanofibrils for wound healing, are being used in cosmetic dermatology with good results, as are nanostructured TiO(2) and ZnO sunscreens. The challenge is open.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: