Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Mice deficient in nuclear factor (NF)-kappa B/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture.

  • G Franzoso‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

p52 is a subunit of nuclear factor (NF)-kappa B transcription factors, most closely related to p50. Previously, we have shown that p52, but not p50 homodimers can form transactivating complexes when associated with Bcl-3, an unusual member of the I kappa B family. To determine nonredundant physiologic roles of p52, we generated mice deficient in p52. Null mutant mice were impaired in their ability to generate antibodies to T-dependent antigens, consistent with an absence of B cell follicles and follicular dendritic cell networks in secondary lymphoid organs, and an inability to form germinal centers. Furthermore, the splenic marginal zone was disrupted. These phenotypes are largely overlapping with those observed in Bcl-3 knockout animals, but distinct from those of p50 knockouts, supporting the notion of a physiologically relevant complex of p52 homodimers and Bcl-3. Adoptive transfer experiments further suggest that such a complex may be critical in accessory cell functions during antigen-specific immune reactions. Possible roles of p52 and Bcl-3 are discussed that may underlie the oncogenic potential of these proteins, as evidenced by recurrent chromosomal translocations of their genes in lymphoid tumors.


I kappa B epsilon, a novel member of the I kappa B family, controls RelA and cRel NF-kappa B activity.

  • S T Whiteside‎ et al.
  • The EMBO journal‎
  • 1997‎

We have isolated a human cDNA which encodes a novel I kappa B family member using a yeast two-hybrid screen for proteins able to interact with the p52 subunit of the transcription factor NF-kappa B. The protein is found in many cell types and its expression is up-regulated following NF-kappa B activation and during myelopoiesis. Consistent with its proposed role as an I kappa B molecule, I kappa B-epsilon is able to inhibit NF-kappa B-directed transactivation via cytoplasmic retention of rel proteins. I kappa B-epsilon translation initiates from an internal ATG codon to give rise to a protein of 45 kDa, which exists as multiple phosphorylated isoforms in resting cells. Unlike the other inhibitors, it is found almost exclusively in complexes containing RelA and/or cRel. Upon activation, I kappa B-epsilon protein is degraded with slow kinetics by a proteasome-dependent mechanism. Similarly to I kappa B-alpha and I kappa B, I kappa B-epsilon contains multiple ankyrin repeats and two conserved serines which are necessary for signal-induced degradation of the molecule. A unique lysine residue located N-terminal of the serines appears to be not strictly required for degradation. Unlike I kappa B- alpha and I kappa B-beta, I kappa B-epsilon does not contain a C-terminal PEST-like sequence. I kappa B-epsilon would, therefore, appear to regulate a late, transient activation of a subset of genes, regulated by RelA/cRel NF-kappa B complexes, distinct from those regulated by other I kappa B proteins.


Cell-intrinsic role for NF-kappa B-inducing kinase in peripheral maintenance but not thymic development of Foxp3+ regulatory T cells in mice.

  • Susan E Murray‎
  • PloS one‎
  • 2013‎

NF-κB inducing kinase (NIK, MAP3K14) is a key signaling molecule in non-canonical NF-κB activation, and NIK deficient mice have been instrumental in deciphering the immunologic role of this pathway. Global ablation of NIK prevents lymph node development, impairs thymic stromal development, and drastically reduces B cells. Despite altered thymic selection, T cell numbers are near normal in NIK deficient mice. The exception is CD4(+) regulatory T cells (Tregs), which are reduced in the thymus and periphery. Defects in thymic stroma are known to contribute to impaired Treg generation, but whether NIK also plays a cell intrinsic role in Tregs is unknown. Here, we compared intact mice with single and mixed BM chimeric mice to assess the intrinsic role of NIK in Treg generation and maintenance. We found that while NIK expression in stromal cells suffices for normal thymic Treg development, NIK is required cell-intrinsically to maintain peripheral Tregs. In addition, we unexpectedly discovered a cell-intrinsic role for NIK in memory phenotype conventional T cells that is masked in intact mice, but revealed in BM chimeras. These results demonstrate a novel role for NIK in peripheral regulatory and memory phenotype T cell homeostasis.


A Matter of Choice: Inhibition of c-Rel Shifts Neuronal to Oligodendroglial Fate in Human Stem Cells.

  • Lucia Mercedes Ruiz-Perera‎ et al.
  • Cells‎
  • 2020‎

The molecular mechanisms underlying fate decisions of human neural stem cells (hNSCs) between neurogenesis and gliogenesis are critical during neuronal development and neurodegenerative diseases. Despite its crucial role in the murine nervous system, the potential role of the transcription factor NF-κB in the neuronal development of hNSCs is poorly understood. Here, we analyzed NF-κB subunit distribution during glutamatergic differentiation of hNSCs originating from neural crest-derived stem cells. We observed several peaks of specific NF-κB subunits. The most prominent nuclear peak was shown by c-REL subunit during a period of 2-5 days after differentiation onset. Furthermore, c-REL inhibition with pentoxifylline (PTXF) resulted in a complete shift towards oligodendroglial fate, as demonstrated by the presence of OLIG2+/O4+-oligodendrocytes, which showed PDGFRα, NG2 and MBP at the transcript level. In addition c-REL impairment further produced a significant decrease in neuronal survival. Transplantation of PTXF-treated predifferentiated hNSCs into an ex vivo oxidative-stress-mediated demyelination model of mouse organotypic cerebellar slices further led to integration in the white matter and differentiation into MBP+ oligodendrocytes, validating their functionality and therapeutic potential. In summary, we present a human cellular model of neuronal differentiation exhibiting a novel essential function of NF-κB-c-REL in fate choice between neurogenesis and oligodendrogenesis which will potentially be relevant for multiple sclerosis and schizophrenia.


NFE2L3 Controls Colon Cancer Cell Growth through Regulation of DUX4, a CDK1 Inhibitor.

  • Marina Bury‎ et al.
  • Cell reports‎
  • 2019‎

Constitutive nuclear factor κB (NF-κB) activation is a hallmark of colon tumor growth. Cyclin-dependent kinases (CDKs) are critical cell-cycle regulators, and inhibition of CDK activity has been used successfully as anticancer therapy. Here, we show that the NFE2L3 transcription factor functions as a key regulator in a pathway that links NF-κB signaling to the control of CDK1 activity, thereby driving colon cancer cell proliferation. We found that NFE2L3 expression is regulated by the RELA subunit of NF-κB and that NFE2L3 levels are elevated in patients with colon adenocarcinoma when compared with normal adjacent tissue. Silencing of NFE2L3 significantly decreases colon cancer cell proliferation in vitro and tumor growth in vivo. NFE2L3 knockdown results in increased levels of double homeobox factor 4 (DUX4), which functions as a direct inhibitor of CDK1. The discovered oncogenic pathway governing cell-cycle progression may open up unique avenues for precision cancer therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: