Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 83 papers

The voltage-gated sodium channel nav1.8 is expressed in human sperm.

  • Antonio Cejudo-Roman‎ et al.
  • PloS one‎
  • 2013‎

The role of Na(+) fluxes through voltage-gated sodium channels in the regulation of sperm cell function remains poorly understood. Previously, we reported that several genes encoding voltage-gated Na(+) channels were expressed in human testis and mature spermatozoa. In this study, we analyzed the presence and function of the TTX-resistant VGSC α subunit Nav1.8 in human capacitated sperm cells. Using an RT-PCR assay, we found that the mRNA of the gene SCN10A, that encode Na v1.8, was abundantly and specifically expressed in human testis and ejaculated spermatozoa. The Na v1.8 protein was detected in capacitated sperm cells using three different specific antibodies against this channel. Positive immunoreactivity was mainly located in the neck and the principal piece of the flagellum. The presence of Na v1.8 in sperm cells was confirmed by Western blot. Functional studies demonstrated that the increases in progressive motility produced by veratridine, a voltage-gated sodium channel activator, were reduced in sperm cells preincubated with TTX (10 μM), the Na v1.8 antagonist A-803467, or a specific Na v1.8 antibody. Veratridine elicited similar percentage increases in progressive motility in sperm cells maintained in Ca(2+)-containing or Ca(2+)-free solution and did not induce hyperactivation or the acrosome reaction. Veratridine caused a rise in sperm intracellular Na(+), [Na(+)]i, and the sustained phase of the response was inhibited in the presence of A-803467. These results verify that the Na(+) channel Na v1.8 is present in human sperm cells and demonstrate that this channel participates in the regulation of sperm function.


Functional modulation of the human voltage-gated sodium channel NaV1.8 by auxiliary β subunits.

  • S T Nevin‎ et al.
  • Channels (Austin, Tex.)‎
  • 2021‎

The voltage-gated sodium channel Nav1.8 mediates the tetrodotoxin-resistant (TTX-R) Na+ current in nociceptive primary sensory neurons, which has an important role in the transmission of painful stimuli. Here, we describe the functional modulation of the human Nav1.8 α-subunit in Xenopus oocytes by auxiliary β subunits. We found that the β3 subunit down-regulated the maximal Na+ current amplitude and decelerated recovery from inactivation of hNav1.8, whereas the β1 and β2 subunits had no such effects. The specific regulation of Nav1.8 by the β3 subunit constitutes a potential novel regulatory mechanism of the TTX-R Na+ current in primary sensory neurons with potential implications in chronic pain states. In particular, neuropathic pain states are characterized by a down-regulation of Nav1.8 accompanied by increased expression of the β3 subunit. Our results suggest that these two phenomena may be correlated, and that increased levels of the β3 subunit may directly contribute to the down-regulation of Nav1.8. To determine which domain of the β3 subunit is responsible for the specific regulation of hNav1.8, we created chimeras of the β1 and β3 subunits and co-expressed them with the hNav1.8 α-subunit in Xenopus oocytes. The intracellular domain of the β3 subunit was shown to be responsible for the down-regulation of maximal Nav1.8 current amplitudes. In contrast, the extracellular domain mediated the effect of the β3 subunit on hNav1.8 recovery kinetics.


The voltage-gated sodium channel NaV1.8 blocker A-803467 inhibits cough in the guinea pig.

  • M Brozmanova‎ et al.
  • Respiratory physiology & neurobiology‎
  • 2019‎

Cough in respiratory diseases is attributed to the activation of airway C-fibers by inflammation. Inflammatory mediators can act on multiple receptors expressed in airway C-fibers, nonetheless, the action potential initiation in C-fibers depends on a limited number of voltage-gated sodium channel (NaV1) subtypes. We have recently demonstrated that NaV1.8 substantially contributes to the action potential initiation in the airway C-fiber subtype implicated in cough. We therefore hypothesized that the NaV1.8 blocker A-803467 inhibits cough. We evaluated the cough evoked by the inhalation of C-fiber activator capsaicin in awake guinea pigs. Compared to vehicle, intraperitoneal or inhaled A-803467 caused 30-50% inhibition of cough at the doses that did not alter respiratory rate. We conclude that the NaV1.8 blocker A-803467 inhibits cough in a manner consistent with its action on the C-fiber nerve terminals in the airways. Targeting voltage-gated sodium channels mediating action potential initiation in airway C-fibers may offer a means of cough inhibition that is independent of the stimulus.


Identification of the sensory neuron specific regulatory region for the mouse gene encoding the voltage-gated sodium channel NaV1.8.

  • Henry L Puhl‎ et al.
  • Journal of neurochemistry‎
  • 2008‎

Voltage-gated sodium channels (VGSC) are critical membrane components that participate in the electrical activity of excitable cells. The type one VGSC family includes the tetrodotoxin insensitive sodium channel, Na(V)1.8, encoded by the Scn10a gene. Na(V)1.8 expression is restricted to small and medium diameter nociceptive sensory neurons of the dorsal root ganglia and cranial sensory ganglia. To understand the stringent transcriptional regulation of the Scn10a gene, the sensory neuron specific promoter was functionally identified. While identifying the mRNA 5'-end, alternative splicing within the 5'-UTR was observed to create heterogeneity in the RNA transcript. Four kilobases of upstream genomic DNA was cloned and the presence of tissue specific promoter activity was tested by microinjection and adenoviral infection of fluorescent protein reporter constructs into primary mouse and rat neurons, and cell lines. The region contained many putative transcription factor-binding sites and strong homology with the predicted rat ortholog. Homology to the predicted human ortholog was limited to the proximal end and several conserved cis elements were noted. Two regulatory modules were identified by microinjection of reporter constructs into dorsal root ganglia and superior cervical ganglia neurons: a neuron specific proximal promoter region between -1.6 and -0.2 kb of the transcription start site cluster, and a distal sensory neuron switch region beyond -1.6 kb that restricted fluorescent protein expression to a subset of primary sensory neurons.


Relationship of axonal voltage-gated sodium channel 1.8 (NaV1.8) mRNA accumulation to sciatic nerve injury-induced painful neuropathy in rats.

  • Supanigar Ruangsri‎ et al.
  • The Journal of biological chemistry‎
  • 2011‎

Painful peripheral neuropathy is a significant clinical problem; however, its pathological mechanism and effective treatments remain elusive. Increased peripheral expression of tetrodotoxin-resistant voltage-gated sodium channel 1.8 (NaV1.8) has been shown to associate with chronic pain symptoms in humans and experimental animals. Sciatic nerve entrapment (SNE) injury was used to develop neuropathic pain symptoms in rats, resulting in increased NaV1.8 mRNA in the injured nerve but not in dorsal root ganglia (DRG). To study the role of NaV1.8 mRNA in the pathogenesis of SNE-induced painful neuropathy, NaV1.8 shRNA vector was delivered by subcutaneous injection of cationized gelatin/plasmid DNA polyplex into the rat hindpaw and its subsequent retrograde transport via sciatic nerve to DRG. This in vivo NaV1.8 shRNA treatment reversibly and repeatedly attenuated the SNE-induced pain symptoms, an effect that became apparent following a distinct lag period of 3-4 days and lasted for 4-6 days before returning to pretreatment levels. Surprisingly, apparent knockdown of NaV1.8 mRNA occurred only in the injured nerve, not in the DRG, during the pain alleviation period. Levels of heteronuclear NaV1.8 RNA were unaffected by SNE or shRNA treatments, suggesting that transcription of the Scn10a gene encoding NaV1.8 was unchanged. Based on these data, we postulate that increased axonal mRNA transport results in accumulation of functional NaV1.8 protein in the injured nerve and the development of painful neuropathy symptoms. Thus, targeted delivery of agents that interfere with axonal NaV1.8 mRNA may represent effective neuropathic pain treatments.


Loss-of-function mutations of SCN10A encoding NaV1.8 α subunit of voltage-gated sodium channel in patients with human kidney stone disease.

  • Choochai Nettuwakul‎ et al.
  • Scientific reports‎
  • 2018‎

Human kidney stone disease (KSD) causes significant morbidity and public health burden worldwide. The etiology of KSD is heterogeneous, ranging from monogenic defects to complex interaction between genetic and environmental factors. However, the genetic defects causing KSD in the majority of affected families are still unknown. Here, we report the discovery of mutations of SCN10A, encoding NaV1.8 α subunit of voltage-gated sodium channel, in families with KSD. The region on chromosome 3 where SCN10A locates was initially identified in a large family with KSD by genome-wide linkage analysis and exome sequencing. Two mutations (p.N909K and p.K1809R) in the same allele of SCN10A co-segregated with KSD in the affected family. Additional mutation (p.V1149M) of SCN10A was identified in another affected family, strongly supporting the causal role of SCN10A for KSD. The amino acids at these three positions, N909, K1809, and V1149, are highly conserved in vertebrate evolution, indicating their structural and functional significances. NaV1.8 α subunit mRNA and protein were found to express in human kidney tissues. The mutant proteins expressed in cultured cells were unstable and causing reduced current density as analyzed by whole-cell patch-clamp technique. Thus, loss-of-function mutations of SCN10A were associated with KSD in the families studied.


The Tarantula Venom Peptide Eo1a Binds to the Domain II S3-S4 Extracellular Loop of Voltage-Gated Sodium Channel NaV1.8 to Enhance Activation.

  • Jennifer R Deuis‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Venoms from cone snails and arachnids are a rich source of peptide modulators of voltage-gated sodium (NaV) channels, however relatively few venom-derived peptides with activity at the mammalian NaV1.8 subtype have been isolated. Here, we describe the discovery and functional characterisation of β-theraphotoxin-Eo1a, a peptide from the venom of the Tanzanian black and olive baboon tarantula Encyocratella olivacea that modulates NaV1.8. Eo1a is a 37-residue peptide that increases NaV1.8 peak current (EC50 894 ± 146 nM) and causes a large hyperpolarising shift in both the voltage-dependence of activation (ΔV50-20.5 ± 1.2 mV) and steady-state fast inactivation (ΔV50-15.5 ± 1.8 mV). At a concentration of 10 μM, Eo1a has varying effects on the peak current and channel gating of NaV1.1-NaV1.7, although its activity is most pronounced at NaV1.8. Investigations into the binding site of Eo1a using NaV1.7/NaV1.8 chimeras revealed a critical contribution of the DII S3-S4 extracellular loop of NaV1.8 to toxin activity. Results from this work may form the basis for future studies that lead to the rational design of spider venom-derived peptides with improved potency and selectivity at NaV1.8.


Identification and Characterization of Novel Proteins from Arizona Bark Scorpion Venom That Inhibit Nav1.8, a Voltage-Gated Sodium Channel Regulator of Pain Signaling.

  • Tarek Mohamed Abd El-Aziz‎ et al.
  • Toxins‎
  • 2021‎

The voltage-gated sodium channel Nav1.8 is linked to neuropathic and inflammatory pain, highlighting the potential to serve as a drug target. However, the biophysical mechanisms that regulate Nav1.8 activation and inactivation gating are not completely understood. Progress has been hindered by a lack of biochemical tools for examining Nav1.8 gating mechanisms. Arizona bark scorpion (Centruroides sculpturatus) venom proteins inhibit Nav1.8 and block pain in grasshopper mice (Onychomys torridus). These proteins provide tools for examining Nav1.8 structure-activity relationships. To identify proteins that inhibit Nav1.8 activity, venom samples were fractioned using liquid chromatography (reversed-phase and ion exchange). A recombinant Nav1.8 clone expressed in ND7/23 cells was used to identify subfractions that inhibited Nav1.8 Na+ current. Mass-spectrometry-based bottom-up proteomic analyses identified unique peptides from inhibitory subfractions. A search of the peptides against the AZ bark scorpion venom gland transcriptome revealed four novel proteins between 40 and 60% conserved with venom proteins from scorpions in four genera (Centruroides, Parabuthus, Androctonus, and Tityus). Ranging from 63 to 82 amino acids, each primary structure includes eight cysteines and a "CXCE" motif, where X = an aromatic residue (tryptophan, tyrosine, or phenylalanine). Electrophysiology data demonstrated that the inhibitory effects of bioactive subfractions can be removed by hyperpolarizing the channels, suggesting that proteins may function as gating modifiers as opposed to pore blockers.


Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes NaV1.9, NaV1.7 and NaV1.1.

  • Filip Touska‎ et al.
  • Marine drugs‎
  • 2017‎

Ciguatoxins (CTXs) are marine toxins that cause ciguatera fish poisoning, a debilitating disease dominated by sensory and neurological disturbances that include cold allodynia and various painful symptoms as well as long-lasting pruritus. Although CTXs are known as the most potent mammalian sodium channel activator toxins, the etiology of many of its neurosensory symptoms remains unresolved. We recently described that local application of 1 nM Pacific Ciguatoxin-1 (P-CTX-1) into the skin of human subjects induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective in releasing calcitonin-gene related peptide (CGRP) from nerve terminals. In this study, we used mouse and rat skin preparations and enzyme-linked immunosorbent assays (ELISA) to study the molecular mechanism by which P-CTX-1 induces CGRP release. We show that P-CTX-1 induces CGRP release more effectively in mouse as compared to rat skin, exhibiting EC50 concentrations in the low nanomolar range. P-CTX-1-induced CGRP release from skin is dependent on extracellular calcium and sodium, but independent from the activation of various thermosensory transient receptor potential (TRP) ion channels. In contrast, lidocaine and tetrodotoxin (TTX) reduce CGRP release by 53-75%, with the remaining fraction involving L-type and T-type voltage-gated calcium channels (VGCC). Using transgenic mice, we revealed that the TTX-resistant voltage-gated sodium channel (VGSC) NaV1.9, but not NaV1.8 or NaV1.7 alone and the combined activation of the TTX-sensitive VGSC subtypes NaV1.7 and NaV1.1 carry the largest part of the P-CTX-1-caused CGRP release of 42% and 34%, respectively. Given the contribution of CGRP to nociceptive and itch sensing pathways, our findings contribute to a better understanding of sensory symptoms of acute and chronic ciguatera that may help in the identification of potential therapeutics.


A gain-of-function voltage-gated sodium channel 1.8 mutation drives intense hyperexcitability of A- and C-fiber neurons.

  • Sheldon R Garrison‎ et al.
  • Pain‎
  • 2014‎

Therapeutic use of general sodium channel blockers, such as lidocaine, can substantially reduce the enhanced activity in sensory neurons that accompanies chronic pain after nerve or tissue injury. However, because these general blockers have significant side effects, there is great interest in developing inhibitors that specifically target subtypes of sodium channels. Moreover, some idiopathic small-fiber neuropathies are driven by gain-of-function mutations in specific sodium channel subtypes. In the current study, we focus on one subtype, the voltage-gated sodium channel 1.8 (Nav1.8). Nav1.8 is preferentially expressed in nociceptors, and gain-of-function mutations in Nav1.8 result in painful mechanical hypersensitivity in humans. Here, we used the recently developed gain-of-function Nav1.8 transgenic mouse strain, Possum, to investigate Nav1.8-mediated peripheral afferent hyperexcitability. This gain-of-function mutation resulted in markedly increased mechanically evoked action potential firing in subclasses of Aβ, Aδ, and C fibers. Moreover, mechanical stimuli initiated bursts of action potential firing in specific subpopulations that continued for minutes after removal of the force and were not susceptible to conduction failure. Surprisingly, despite the intense afferent firing, the behavioral effects of the Nav1.8 mutation were quite modest, as only frankly noxious stimuli elicited enhanced pain behavior. These data demonstrate that a Nav1.8 gain-of-function point mutation contributes to intense hyperexcitability along the afferent axon within distinct sensory neuron subtypes.


Role of auxiliary beta1-, beta2-, and beta3-subunits and their interaction with Na(v)1.8 voltage-gated sodium channel.

  • Kausalia Vijayaragavan‎ et al.
  • Biochemical and biophysical research communications‎
  • 2004‎

The nociceptive C-fibers of the dorsal root ganglion express several sodium channel isoforms that associate with one or more regulatory beta-subunits (beta1-beta4). To determine the effects of individual and combinations of the beta-subunit isoforms, we co-expressed Nav1.8 in combination with these beta-subunits in Xenopus oocytes. Whole-cell inward sodium currents were recorded using the two-microelectrode voltage clamp method. Our studies revealed that the co-expression beta1 alone or in combination with other beta-subunits enhanced current amplitudes, accelerated current decay kinetics, and negatively shifted the steady-state curves. In contrast, beta2 alone and in combination with beta1 altered steady-state inactivation of Nav1.8 to more depolarized potentials. Co-expression of beta3 shifted steady-state inactivation to more depolarized potentials; however, combined beta1beta3 expression caused no shift in channel availability. The results in this study suggest that the functional behavior of Nav1.8 will vary depending on the type of beta-subunit that expressed under normal and disease states.


Menthol pain relief through cumulative inactivation of voltage-gated sodium channels.

  • Christelle Gaudioso‎ et al.
  • Pain‎
  • 2012‎

Menthol is a natural compound of plant origin known to produce cool sensation via the activation of the TRPM8 channel. It is also frequently part of topical analgesic drugs available in a pharmacy, although its mechanism of action is still unknown. Compelling evidence indicates that voltage-gated Na(+) channels are critical for experiencing pain sensation. We tested the hypothesis that menthol may block voltage-gated Na(+) channels in dorsal root ganglion (DRG) neurons. By use of a patch clamp, we evaluated the effects of menthol application on tetrodotoxin (TTX)-resistant Nav1.8 and Nav1.9 channel subtypes in DRG neurons, and on TTX-sensitive Na(+) channels in immortalized DRG neuron-derived F11 cells. The results indicate that menthol inhibits Na(+) channels in a concentration-, voltage-, and frequency-dependent manner. Menthol promoted fast and slow inactivation states, causing use-dependent depression of Na(+) channel activity. In current clamp recordings, menthol inhibited firing at high-frequency stimulation with minimal effects on normal neuronal activity. We found that low concentrations of menthol cause analgesia in mice, relieving pain produced by a Na(+) channel-targeting toxin. We conclude that menthol is a state-selective blocker of Nav1.8, Nav1.9, and TTX-sensitive Na(+) channels, indicating a role for Na(+) channel blockade in the efficacy of menthol as topical analgesic compound.


The insecticide deltamethrin enhances sodium channel slow inactivation of human Nav1.9, Nav1.8 and Nav1.7.

  • Stefanie Nicole Bothe‎ et al.
  • Toxicology and applied pharmacology‎
  • 2021‎

The insecticide deltamethrin of the pyrethroid class mainly targets voltage-gated sodium channels (Navs). Deltamethrin prolongs the opening of Navs by slowing down fast inactivation and deactivation. Pyrethroids are supposedly safe for humans, however, they have also been linked to the gulf-war syndrome, a neuropathic pain condition that can develop following exposure to certain chemicals. Inherited neuropathic pain conditions have been linked to mutations in the Nav subtypes Nav1.7, Nav1.8, and Nav1.9. Here, we examined the effect of deltamethrin on the human isoforms Nav1.7, Nav1.8, and Nav1.9_C4 (chimera containing the C-terminus of rat Nav1.4) heterologously expressed in HEK293T and ND7/23 cells using whole-cell patch-clamp electrophysiology. For all three Nav subtypes, we observed increased persistent and tail currents that are typical for Nav channels modified by deltamethrin. The most surprising finding was an enhanced slow inactivation induced by deltamethrin in all three Nav subtypes. An enhanced slow inactivation is contrary to the prolonged opening caused by pyrethroids and has not been described for deltamethrin or any other pyrethroid before. Furthermore, we found that the fraction of deltamethrin-modified channels increased use-dependently. However, for Nav1.8, the use-dependent potentiation occurred only when the holding potential was increased to -90 mV, a potential at which the tail currents decay more slowly. This indicates that use-dependent modification is due to an accumulation of tail currents. In summary, our findings support a novel mechanism whereby deltamethrin enhances slow inactivation of voltage-gated sodium channels, which may, depending on the cellular resting membrane potential, reduce neuronal excitability and counteract the well-described pyrethroid effects of prolonging channel opening.


A-type FHFs mediate resurgent currents through TTX-resistant voltage-gated sodium channels.

  • Yucheng Xiao‎ et al.
  • eLife‎
  • 2022‎

Resurgent currents (INaR) produced by voltage-gated sodium channels are required for many neurons to maintain high-frequency firing and contribute to neuronal hyperexcitability and disease pathophysiology. Here, we show, for the first time, that INaR can be reconstituted in a heterologous system by coexpression of sodium channel α-subunits and A-type fibroblast growth factor homologous factors (FHFs). Specifically, A-type FHFs induces INaR from Nav1.8, Nav1.9 tetrodotoxin (TTX)-resistant neuronal channels, and, to a lesser extent, neuronal Nav1.7 and cardiac Nav1.5 channels. Moreover, we identified the N-terminus of FHF as the critical molecule responsible for A-type FHFs-mediated INaR. Among the FHFs, FHF4A is the most important isoform for mediating Nav1.8 and Nav1.9 INaR. In nociceptive sensory neurons, FHF4A knockdown significantly reduces INaR amplitude and the percentage of neurons that generate INaR, substantially suppressing excitability. Thus, our work reveals a novel molecular mechanism underlying TTX-resistant INaR generation and provides important potential targets for pain treatment.


Expression and Physiology of Voltage-Gated Sodium Channels in Developing Human Inner Ear.

  • Rikki K Quinn‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Sodium channel expression in inner ear afferents is essential for the transmission of vestibular and auditory information to the central nervous system. During development, however, there is also a transient expression of Na+ channels in vestibular and auditory hair cells. Using qPCR analysis, we describe the expression of four Na+ channel genes, SCN5A (Nav1.5), SCN8A (Nav1.6), SCN9A (Nav1.7), and SCN10A (Nav1.8) in the human fetal cristae ampullares, utricle, and base, middle, and apex of the cochlea. Our data show distinct patterns of Na+ channel gene expression with age and between these inner ear organs. In the utricle, there was a general trend toward fold-change increases in expression of SCN8A, SCN9A, and SCN10A with age, while the crista exhibited fold-change increases in SCN5A and SCN8A and fold-change decreases in SCN9A and SCN10A. Fold-change differences of each gene in the cochlea were more complex and likely related to distinct patterns of expression based on tonotopy. Generally, the relative expression of SCN genes in the cochlea was greater than that in utricle and cristae ampullares. We also recorded Na+ currents from developing human vestibular hair cells aged 10-11 weeks gestation (WG), 12-13 WG, and 14+ WG and found there is a decrease in the number of vestibular hair cells that exhibit Na+ currents with increasing gestational age. Na+ current properties and responses to the application of tetrodotoxin (TTX; 1 μM) in human fetal vestibular hair cells are consistent with those recorded in other species during embryonic and postnatal development. Both TTX-sensitive and TTX-resistant currents are present in human fetal vestibular hair cells. These results provide a timeline of sodium channel gene expression in inner ear neuroepithelium and the physiological characterization of Na+ currents in human fetal vestibular neuroepithelium. Understanding the normal developmental timeline of ion channel gene expression and when cells express functional ion channels is essential information for regenerative technologies.


Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation.

  • Mounir Belkouch‎ et al.
  • Journal of neuroinflammation‎
  • 2014‎

Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Na(v)1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Na(v)1.8 in controlling Aβ-fiber excitability following persistent inflammation.


Dexmedetomidine Inhibits Voltage-Gated Sodium Channels via α2-Adrenoceptors in Trigeminal Ganglion Neurons.

  • Sang-Taek Im‎ et al.
  • Mediators of inflammation‎
  • 2018‎

Dexmedetomidine, an α2-adrenoceptor agonist, is widely used as a sedative and analgesic agent in a number of clinical applications. However, little is known about the mechanism by which it exerts its analgesic effects on the trigeminal system. Two types of voltage-gated sodium channels, Nav1.7 and Nav1.8, as well as α2-adrenoceptors are expressed in primary sensory neurons of the trigeminal ganglion (TG). Using whole-cell patch-clamp recordings, we investigated the effects of dexmedetomidine on voltage-gated sodium channel currents (INa) via α2-adrenoceptors in dissociated, small-sized TG neurons. Dexmedetomidine caused a concentration-dependent inhibition of INa in small-sized TG neurons. INa inhibition by dexmedetomidine was blocked by yohimbine, a competitive α2-adrenoceptor antagonist. Dexmedetomidine-induced inhibition of INa was mediated by G protein-coupled receptors (GPCRs) as this effect was blocked by intracellular perfusion with the G protein inhibitor GDPβ-S. Our results suggest that the INa inhibition in small-sized TG neurons, mediated by the activation of Gi/o protein-coupled α2-adrenoceptors, might contribute to the analgesic effects of dexmedetomidine in the trigeminal system. Therefore, these new findings highlight a potential novel target for analgesic drugs in the orofacial region.


NaV1.6 and NaV1.7 channels are major endogenous voltage-gated sodium channels in ND7/23 cells.

  • Jisoo Lee‎ et al.
  • PloS one‎
  • 2019‎

ND7/23 cells are gaining traction as a host model to express peripheral sodium channels such as NaV1.8 and NaV1.9 that have been difficult to express in widely utilized heterologous cells, like CHO and HEK293. Use of ND7/23 as a model cell to characterize the properties of sodium channels requires clear understanding of the endogenous ion channels. To define the nature of the background sodium currents in ND7/23 cells, we aimed to comprehensively profile the voltage-gated sodium channel subunits by endpoint and quantitative reverse transcription-PCR and by whole-cell patch clamp electrophysiology. We found that untransfected ND7/23 cells express endogenous peak sodium currents that average -2.12nA (n = 15) and with kinetics typical of fast sodium currents having activation and inactivation completed within few milliseconds. Furthermore, sodium currents were reduced to virtually nil upon exposure to 100nM tetrodotoxin, indicating that ND7/23 cells have essentially null background for tetrodotoxin-resistant (TTX-R) currents. qRT-PCR profiling indicated a major expression of TTX-sensitive (TTX-S) NaV1.6 and NaV1.7 at similar levels and very low expression of TTX-R NaV1.9 transcripts. There was no expression of TTX-R NaV1.8 in ND7/23 cells. There was low expression of NaV1.1, NaV1.2, NaV1.3 and no expression of cardiac or skeletal muscle sodium channels. As for the sodium channel auxiliary subunits, β1 and β3 subunits were expressed, but not the β2 and β4 subunits that covalently associate with the α-subunits. In addition, our results also showed that only the mouse forms of NaV1.6, NaV1.7 and NaV1.9 sodium channels were expressed in ND7/23 cells that was originally generated as a hybridoma of rat embryonic DRG and mouse neuroblastoma cell-line. By molecular profiling of auxiliary β- and principal α-subunits of the voltage gated sodium channel complex, our results define the background sodium channels expressed in ND7/23 cells, and confirm their utility for detailed functional studies of emerging pain channelopathies ascribed to mutations of the TTX-R sodium channels of sensory neurons.


Correlation of Nav1.8 and Nav1.9 sodium channel expression with neuropathic pain in human subjects with lingual nerve neuromas.

  • Emma V Bird‎ et al.
  • Molecular pain‎
  • 2013‎

Voltage-gated sodium channels Nav1.8 and Nav1.9 are expressed preferentially in small diameter sensory neurons, and are thought to play a role in the generation of ectopic activity in neuronal cell bodies and/or their axons following peripheral nerve injury. The expression of Nav1.8 and Nav1.9 has been quantified in human lingual nerves that have been previously injured inadvertently during lower third molar removal, and any correlation between the expression of these ion channels and the presence or absence of dysaesthesia investigated.


The Role of Voltage-Gated Sodium Channel 1.8 in the Effect of Atropine on Heart Rate: Evidence From a Retrospective Clinical Study and Mouse Model.

  • Baowen Liu‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Atropine is commonly used to counter the effects of the parasympathetic neurotransmitter acetylcholine on heart rate in clinical practice, such as in the perioperative period; however, individual differences in the response to atropine are huge. The association between SCN10A/voltage-gated sodium channel 1.8 (NaV1.8) and cardiac conduction has been demonstrated; however, the exact role of SCN10A/NaV1.8 in the heart rate response to atropine remains unclear. To identify the role of SCN10A variants that influence the heart rate responses to atropine, we carried out a retrospective study in 1,005 Han Chinese subjects. Our results showed that rs6795970 was associated with the heart rate response to atropine. The heart rate responses to atropine and methoctramine in NaV1.8 knockout mice were lower, whereas the heart rate response to isoproterenol was like those in wild type mice. Furthermore, we observed that the NaV1.8 blocker A-803467 alleviated the heart rate response to atropine in wild type mice. The retrospective study revealed a previously unknown role of NaV1.8 in controlling the heart rate response to atropine, as shown by the animal study, a speculative mechanism that may involve the cardiac muscarinic acetylcholine receptor M2.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: