Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Two N-acetylglucosaminyltransferases catalyze the biosynthesis of heparan sulfate.

  • T A Fritz‎ et al.
  • The Journal of biological chemistry‎
  • 1994‎

We report that two N-acetylglucosaminyltransferases catalyze the biosynthesis of heparan sulfate in Chinese hamster ovary cells. The first enzyme initiates heparan sulfate biosynthesis and can be measured by the transfer of GlcNAc from UDP-GlcNAc to GlcUA beta 1-3Gal beta 1-O-naphthalenemethanol. The second enzyme catalyzes the polymerization of heparan sulfate and can be measured by the transfer of GlcNAc from UDP-GlcNAc to the nonreducing terminal GlcUA present in oligosaccharide fragments prepared from the Escherichia coli K5 capsular polysaccharide, N-acetylheparosan. Kinetic characterization of the initiating GlcNAc-transferase (alpha-GlcNAc-TI) indicates an apparent Km for UDP-GlcNAc of 36 +/- 4 microM. The apparent Km for UDP-GlcNAc of the polymerizing GlcNAc-transferase (alpha-GlcNAc-TII) is 230 +/- 30 microM. Both enzymes have broad pH optima and require a divalent cation for activity. alpha-GlcNAc-TI can use both Mn2+ and Ca2+, while alpha-GlcNAc-TII will use only Mn2+. Chinese hamster ovary cells deficient in the synthesis of heparan sulfate and lacking alpha-GlcNAc-TII activity and S49 Thy 1-a lymphoma cells deficient in alpha GlcNAc addition to phosphatidylinositol have wild-type alpha-GlcNAc-TI activity. Thus, distinct alpha-GlcNAc-transferases catalyze the initiation and polymerization of heparan sulfate.


Ablation of N-acetylglucosaminyltransferases in Caenorhabditis induces expression of unusual intersected and bisected N-glycans.

  • Shi Yan‎ et al.
  • Biochimica et biophysica acta. General subjects‎
  • 2018‎

The modification in the Golgi of N-glycans by N-acetylglucosaminyltransferase I (GlcNAc-TI, MGAT1) can be considered to be a hallmark of multicellular eukaryotes as it is found in all metazoans and plants, but rarely in unicellular organisms. The enzyme is key for the normal processing of N-glycans to either complex or paucimannosidic forms, both of which are found in the model nematode Caenorhabditis elegans. Unusually, this organism has three different GlcNAc-TI genes (gly-12, gly-13 and gly-14); therefore, a complete abolition of GlcNAc-TI activity required the generation of a triple knock-out strain. Previously, the compositions of N-glycans from this mutant were described, but no detailed structures. Using an off-line HPLC-MALDI-TOF-MS approach combined with exoglycosidase digestions and MS/MS, we reveal that the multiple hexose residues of the N-glycans of the gly-12;gly-13;gly-14 triple mutant are not just mannose, but include galactoses in three different positions (β-intersecting, β-bisecting and α-terminal) on isomeric forms of Hex4-8HexNAc2 structures; some of these structures are fucosylated and/or methylated. Thus, the N-glycomic repertoire of Caenorhabditis is even wider than expected and exhibits a large degree of plasticity even in the absence of key glycan processing enzymes from the Golgi apparatus.


Core 2 β1,6-N-acetylglucosaminyltransferases accelerate the escape of choriocarcinoma from natural killer cell immunity.

  • Kenichi Nakamura‎ et al.
  • Biochemistry and biophysics reports‎
  • 2021‎

Hyperglycosylated human chorionic gonadotropin (H-hCG) is secreted from choriocarcinoma and contains a core2 O-glycan formed by core2 β1,6-N-acetylglucosaminyl transferase (C2GnT). Choriocarcinoma is considered immunogenic as it is gestational and contains paternal chromosomal components. Here we examined the function of C2GnT in the evasion of choriocarcinoma cells from natural killer (NK) cell-mediating killing. We determined that C2GnT is highly expressed in malignant gestational trophoblastic neoplasms. C2GnT KO downregulates core2 O-glycan expression in choriocarcinoma cells, which are more efficiently killed by NK cells than control cells. C2GnT KO cell containing tumor necrosis factor-related apoptosis inducing ligand have lower viability than control cells. Additionally, poly-N-acetyllactosamine in core2 branched oligosaccharides on MHC class I-related chain A (MICA) and mucin1 (MUC1) is significantly reduced in C2GnT KO cells. Meanwhile, the cumulative survival rate of nude mice inoculated with C2GnT KO tumors was higher than that of the control group. These findings suggest that choriocarcinoma cells may escape NK cell-mediated killing via glycosylation of MICA and MUC1.


N-acetylglucosaminyltransferases and nucleotide sugar transporters form multi-enzyme-multi-transporter assemblies in golgi membranes in vivo.

  • Fawzi Khoder-Agha‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2019‎

Branching and processing of N-glycans in the medial-Golgi rely both on the transport of the donor UDP-N-acetylglucosamine (UDP-GlcNAc) to the Golgi lumen by the SLC35A3 nucleotide sugar transporter (NST) as well as on the addition of the GlcNAc residue to terminal mannoses in nascent N-glycans by several linkage-specific N-acetyl-glucosaminyltransferases (MGAT1-MGAT5). Previous data indicate that the MGATs and NSTs both form higher order assemblies in the Golgi membranes. Here, we investigate their specific and mutual interactions using high-throughput FRET- and BiFC-based interaction screens. We show that MGAT1, MGAT2, MGAT3, MGAT4B (but not MGAT5) and Golgi alpha-mannosidase IIX (MAN2A2) form several distinct molecular assemblies with each other and that the MAN2A2 acts as a central hub for the interactions. Similar assemblies were also detected between the NSTs SLC35A2, SLC35A3, and SLC35A4. Using in vivo BiFC-based FRET interaction screens, we also identified novel ternary complexes between the MGATs themselves or between the MGATs and the NSTs. These findings suggest that the MGATs and the NSTs self-assemble into multi-enzyme/multi-transporter complexes in the Golgi membranes in vivo to facilitate efficient synthesis of complex N-glycans.


Specific N-glycans of Hepatocellular Carcinoma Cell Surface and the Abnormal Increase of Core-α-1, 6-fucosylated Triantennary Glycan via N-acetylglucosaminyltransferases-IVa Regulation.

  • Huan Nie‎ et al.
  • Scientific reports‎
  • 2015‎

Glycosylation alterations of cell surface proteins are often observed during the progression of malignancies. The specific cell surface N-glycans were profiled in hepatocellular carcinoma (HCC) with clinical tissues (88 tumor and adjacent normal tissues) and the corresponding serum samples of HCC patients. The level of core-α-1,6-fucosylated triantennary glycan (NA3Fb) increased both on the cell surface and in the serum samples of HCC patients (p < 0.01). Additionally, the change of NA3Fb was not influenced by Hepatitis B virus (HBV)and cirrhosis. Furthermore, the mRNA and protein expression of N-acetylglucosaminyltransferase IVa (GnT-IVa), which was related to the synthesis of the NA3Fb, was substantially increased in HCC tissues. Knockdown of GnT-IVa leads to a decreased level of NA3Fb and decreased ability of invasion and migration in HCC cells. NA3Fb can be regarded as a specific cell surface N-glycan of HCC. The high expression of GnT-IVa is the cause of the abnormal increase of NA3Fb on the HCC cell surface, which regulates cell migration. This study demonstrated the specific N-glycans of the cell surface and the mechanisms of altered glycoform related with HCC. These findings lead to better understanding of the function of glycan and glycosyltransferase in the tumorigenesis, progression and metastasis of HCC.


Inflammatory Stress Causes N-Glycan Processing Deficiency in Ocular Autoimmune Disease.

  • Ashley M Woodward‎ et al.
  • The American journal of pathology‎
  • 2019‎

High levels of proinflammatory cytokines have been associated with a loss of tissue function in ocular autoimmune diseases, but the basis for this relationship remains poorly understood. Here we investigate a new role for tumor necrosis factor α in promoting N-glycan-processing deficiency at the surface of the eye through inhibition of N-acetylglucosaminyltransferase expression in the Golgi. Using mass spectrometry, complex-type biantennary oligosaccharides were identified as major N-glycan structures in differentiated human corneal epithelial cells. Remarkably, significant differences were detected between the efficacies of cytokines in regulating the expression of glycogenes involved in the biosynthesis of N-glycans. Tumor necrosis factor α but not IL-1β had a profound effect in suppressing the expression of enzymes involved in the Golgi branching pathway, including N-acetylglucosaminyltransferases 1 and 2, which are required for the formation of biantennary structures. This decrease in gene expression was correlated with a reduction in enzymatic activity and impaired N-glycan branching. Moreover, patients with ocular mucous membrane pemphigoid were characterized by marginal N-acetylglucosaminyltransferase expression and decreased N-glycan branching in the conjunctiva. Together, these data indicate that proinflammatory cytokines differentially influence the expression of N-glycan-processing enzymes in the Golgi and set the stage for future studies to explore the pathophysiology of ocular autoimmune diseases.


A library of chemically defined human N-glycans synthesized from microbial oligosaccharide precursors.

  • Brian S Hamilton‎ et al.
  • Scientific reports‎
  • 2017‎

Synthesis of homogenous glycans in quantitative yields represents a major bottleneck to the production of molecular tools for glycoscience, such as glycan microarrays, affinity resins, and reference standards. Here, we describe a combined biological/enzymatic synthesis that is capable of efficiently converting microbially-derived precursor oligosaccharides into structurally uniform human-type N-glycans. Unlike starting material obtained by chemical synthesis or direct isolation from natural sources, which can be time consuming and costly to generate, our approach involves precursors derived from renewable sources including wild-type Saccharomyces cerevisiae glycoproteins and lipid-linked oligosaccharides from glycoengineered Escherichia coli. Following deglycosylation of these biosynthetic precursors, the resulting microbial oligosaccharides are subjected to a greatly simplified purification scheme followed by structural remodeling using commercially available and recombinantly produced glycosyltransferases including key N-acetylglucosaminyltransferases (e.g., GnTI, GnTII, and GnTIV) involved in early remodeling of glycans in the mammalian glycosylation pathway. Using this approach, preparative quantities of hybrid and complex-type N-glycans including asymmetric multi-antennary structures were generated and subsequently used to develop a glycan microarray for high-throughput, fluorescence-based screening of glycan-binding proteins. Taken together, these results confirm our combined synthesis strategy as a new, user-friendly route for supplying chemically defined human glycans simply by combining biosynthetically-derived precursors with enzymatic remodeling.


Structures and mechanism of human glycosyltransferase β1,3-N-acetylglucosaminyltransferase 2 (B3GNT2), an important player in immune homeostasis.

  • Yue Hao‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

β1,3-N-acetylglucosaminyltransferases (B3GNTs) are Golgi-resident glycosyltransferases involved in the biosynthesis of poly-N-acetyl-lactosamine chains. They catalyze the addition of the N-acetylglucosamine to the N-acetyl-lactosamine repeat as a key step of the chain elongation process. Poly-N-acetyl-lactosamine is involved in the immune system in many ways. Particularly, its long chain has been demonstrated to suppress excessive immune responses. Among the characterized B3GNTs, B3GNT2 is the major poly-N-acetyl-lactosamine synthase, and deletion of its coding gene dramatically reduced the cell surface poly-N-acetyl-lactosamine and led to hypersensitive and hyperresponsive immunocytes. Despite the extensive functional studies, no structural information is available to understand the molecular mechanism of B3GNT2, as well as other B3GNTs. Here we present the structural and kinetic studies of the human B3GNT2. Five crystal structures of B3GNT2 have been determined in the unliganded, donor substrate-bound, acceptor substrate-bound, and product(s)-bound states at resolutions ranging from 1.85 to 2.35 Å. Kinetic study shows that the transglycosylation reaction follows a sequential mechanism. Critical residues involved in recognition of both donor and acceptor substrates as well as catalysis are identified. Mutations of these invariant residues impair B3GNT2 activity in cell assays. Structural comparison with other glycosyltransferases such as mouse Fringe reveals a novel N-terminal helical domain of B3GNTs that may stabilize the catalytic domain and distinguish among different acceptor substrates.


All-trans-retinoic acid modulates ICAM-1 N-glycan composition by influencing GnT-III levels and inhibits cell adhesion and trans-endothelial migration.

  • Changguo Chen‎ et al.
  • PloS one‎
  • 2012‎

Changes in the expression of glycosyltransferases directly influence the oligosaccharide structures and conformations of cell surface glycoproteins and consequently cellular phenotype transitions and biological behaviors. In the present study, we show that all-trans-retinoic acid (ATRA) modulates the N-glycan composition of intercellular adhesion molecule-1 (ICAM-1) by manipulating the expression of two N-acetylglucosaminyltransferases, GnT-III and GnT-V, via the ERK signaling pathway. Exposure of various cells to ATRA caused a remarkable gel mobility down-shift of ICAM-1. Treatment with PNGase F confirmed that the reduction of the ICAM-1 molecular mass is attributed to the decreased complexity of N-glycans. We noticed that the expression of the mRNA encoding GnT-III, which stops branching, was significantly enhanced following ATRA exposure. In contrast, the level of the mRNA encoding GnT-V, which promotes branching, was reduced following ATRA exposure. Silencing of GnT-III prevented the molecular mass shift of ICAM-1. Moreover, ATRA induction greatly inhibited the adhesion of SW480 and U937 cells to the HUVEC monolayer, whereas knock-down of GnT-III expression effectively restored cell adhesion function. Treatment with ATRA also dramatically reduced the trans-endothelial migration of U937 cells. These data indicate that the alteration of ICAM-1 N-glycan composition by ATRA-induced GnT-III activities hindered cell adhesion and cell migration functions simultaneously, pinpointing a unique regulatory role of specific glycosyltransferases in the biological behaviors of tumor cells and a novel function of ATRA in the modulation of ICAM-1 N-glycan composition.


A phylogenetic view and functional annotation of the animal β1,3-glycosyltransferases of the GT31 CAZy family.

  • Daniel Petit‎ et al.
  • Glycobiology‎
  • 2021‎

The formation of β1,3-linkages on animal glycoconjugates is catalyzed by a subset of β1,3-glycosyltransferases grouped in the Carbohydrate-Active enZYmes family glycosyltransferase-31 (GT31). This family represents an extremely diverse set of β1,3-N-acetylglucosaminyltransferases [B3GNTs and Fringe β1,3-N-acetylglucosaminyltransferases], β1,3-N-acetylgalactosaminyltransferases (B3GALNTs), β1,3-galactosyltransferases [B3GALTs and core 1 β1,3-galactosyltransferases (C1GALTs)], β1,3-glucosyltransferase (B3GLCT) and β1,3-glucuronyl acid transferases (B3GLCATs or CHs). The mammalian enzymes were particularly well studied and shown to use a large variety of sugar donors and acceptor substrates leading to the formation of β1,3-linkages in various glycosylation pathways. In contrast, there are only a few studies related to other metazoan and lower vertebrates GT31 enzymes and the evolutionary relationships of these divergent sequences remain obscure. In this study, we used bioinformatics approaches to identify more than 920 of putative GT31 sequences in Metazoa, Fungi and Choanoflagellata revealing their deep ancestry. Sequence-based analysis shed light on conserved motifs and structural features that are signatures of all the GT31. We leverage pieces of evidence from gene structure, phylogenetic and sequence-based analyses to identify two major subgroups of GT31 named Fringe-related and B3GALT-related and demonstrate the existence of 10 orthologue groups in the Urmetazoa, the hypothetical last common ancestor of all animals. Finally, synteny and paralogy analysis unveiled the existence of 30 subfamilies in vertebrates, among which 5 are new and were named C1GALT2, C1GALT3, B3GALT8, B3GNT10 and B3GNT11. Altogether, these various approaches enabled us to propose the first comprehensive analysis of the metazoan GT31 disentangling their evolutionary relationships.


GnT1IP-L specifically inhibits MGAT1 in the Golgi via its luminal domain.

  • Hung-Hsiang Huang‎ et al.
  • eLife‎
  • 2015‎

Mouse GnT1IP-L, and membrane-bound GnT1IP-S (MGAT4D) expressed in cultured cells inhibit MGAT1, the N-acetylglucosaminyltransferase that initiates the synthesis of hybrid and complex N-glycans. However, it is not known where in the secretory pathway GnT1IP-L inhibits MGAT1, nor whether GnT1IP-L inhibits other N-glycan branching N-acetylglucosaminyltransferases of the medial Golgi. We show here that the luminal domain of GnT1IP-L contains its inhibitory activity. Retention of GnT1IP-L in the endoplasmic reticulum (ER) via the N-terminal region of human invariant chain p33, with or without C-terminal KDEL, markedly reduced inhibitory activity. Dynamic fluorescent resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) assays revealed homomeric interactions for GnT1IP-L in the ER, and heteromeric interactions with MGAT1 in the Golgi. GnT1IP-L did not generate a FRET signal with MGAT2, MGAT3, MGAT4B or MGAT5 medial Golgi GlcNAc-tranferases. GnT1IP/Mgat4d transcripts are expressed predominantly in spermatocytes and spermatids in mouse, and are reduced in men with impaired spermatogenesis.


A Fringe-modified Notch signal affects specification of mesoderm and endoderm in the sea urchin embryo.

  • Robert E Peterson‎ et al.
  • Developmental biology‎
  • 2005‎

Fringe proteins are O-fucose-specific beta-1,3 N-acetylglucosaminyltransferases that glycosylate the extracellular EGF repeats of Notch and enable Notch to be activated by the ligand Delta. In the sea urchin, signaling between Delta and Notch is known to be necessary for specification of secondary mesenchyme cells (SMCs). The Lytechinus variegatus Fringe homologue is expressed in both the signaling and receiving cells during this first Delta-Notch signal. Perturbation of Fringe expression through morpholino antisense oligonucleotide (MO) injection results in fewer SMCs but also causes decreased and delayed archenteron invagination. Partial endoderm specification occurs but expression of some endoderm genes is compromised. The data are consistent with a Fringe-requiring Notch signal as one upstream component of archenteron morphogenesis. Finally, Fringe perturbations result in more severe phenotypes than those previously reported for Notch dominant-negative (LvN(neg)) injections or reported here for Notch MO (NMO) injections. Injecting a combination of LvN(neg) and NMO results in a more severe phenotype than either treatment alone, and this combination phenocopies the fringe MO embryos. Taken together, the results show that Fringe is necessary both for maternal and zygotic Notch signals, and these Notch signals affect specification of mesoderm and endoderm.


A Knowledge-Based System for Display and Prediction of O-Glycosylation Network Behaviour in Response to Enzyme Knockouts.

  • Andrew G McDonald‎ et al.
  • PLoS computational biology‎
  • 2016‎

O-linked glycosylation is an important post-translational modification of mucin-type protein, changes to which are important biomarkers of cancer. For this study of the enzymes of O-glycosylation, we developed a shorthand notation for representing GalNAc-linked oligosaccharides, a method for their graphical interpretation, and a pattern-matching algorithm that generates networks of enzyme-catalysed reactions. Software for generating glycans from the enzyme activities is presented, and is also available online. The degree distributions of the resulting enzyme-reaction networks were found to be Poisson in nature. Simple graph-theoretic measures were used to characterise the resulting reaction networks. From a study of in-silico single-enzyme knockouts of each of 25 enzymes known to be involved in mucin O-glycan biosynthesis, six of them, β-1,4-galactosyltransferase (β4Gal-T4), four glycosyltransferases and one sulfotransferase, play the dominant role in determining O-glycan heterogeneity. In the absence of β4Gal-T4, all Lewis X, sialyl-Lewis X, Lewis Y and Sda/Cad glycoforms were eliminated, in contrast to knockouts of the N-acetylglucosaminyltransferases, which did not affect the relative abundances of O-glycans expressing these epitopes. A set of 244 experimentally determined mucin-type O-glycans obtained from the literature was used to validate the method, which was able to predict up to 98% of the most common structures obtained from human and engineered CHO cell glycoforms.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: