Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 166 papers

Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis.

  • Andrea Valencia-Expósito‎ et al.
  • Nature communications‎
  • 2016‎

Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies.


The MYPT2-regulated striated muscle-specific myosin light chain phosphatase limits cardiac myosin phosphorylation in vivo.

  • Eunyoung Lee‎ et al.
  • The Journal of biological chemistry‎
  • 2024‎

The physiological importance of cardiac myosin regulatory light chain (RLC) phosphorylation by its dedicated cardiac myosin light chain kinase has been established in both humans and mice. Constitutive RLC-phosphorylation, regulated by the balanced activities of cardiac myosin light chain kinase and myosin light chain phosphatase (MLCP), is fundamental to the biochemical and physiological properties of myofilaments. However, limited information is available on cardiac MLCP. In this study, we hypothesized that the striated muscle-specific MLCP regulatory subunit, MYPT2, targets the phosphatase catalytic subunit to cardiac myosin, contributing to the maintenance of cardiac function in vivo through the regulation of RLC-phosphorylation. To test this hypothesis, we generated a floxed-PPP1R12B mouse model crossed with a cardiac-specific Mer-Cre-Mer to conditionally ablate MYPT2 in adult cardiomyocytes. Immunofluorescence microscopy using the gene-ablated tissue as a control confirmed the localization of MYPT2 to regions where it overlaps with a subset of RLC. Biochemical analysis revealed an increase in RLC-phosphorylation in vivo. The loss of MYPT2 demonstrated significant protection against pressure overload-induced hypertrophy, as evidenced by heart weight, qPCR of hypertrophy-associated genes, measurements of myocyte diameters, and expression of β-MHC protein. Furthermore, mantATP chase assays revealed an increased ratio of myosin heads distributed to the interfilament space in MYPT2-ablated heart muscle fibers, confirming that RLC-phosphorylation regulated by MLCP, enhances cardiac performance in vivo. Our findings establish MYPT2 as the regulatory subunit of cardiac MLCP, distinct from the ubiquitously expressed canonical smooth muscle MLCP. Targeting MYPT2 to increase cardiac RLC-phosphorylation in vivo may improve baseline cardiac performance, thereby attenuating pathological hypertrophy.


Effects of a fluorescent Myosin light chain phosphatase inhibitor on prostate cancer cells.

  • Scott Grindrod‎ et al.
  • Frontiers in oncology‎
  • 2011‎

Myosin light chain phosphatase (MLCP) is an enzyme important to regulation of cell cycle and motility that is shown to be upregulated in aggressive prostate cancer cells and tissue. We developed a fluorescent small molecule inhibitor of MLCP using structure based design in recombinant protein phosphatase 1C. Several best fit compounds were synthesized and evaluated by their inhibition of MLCP/(32)P-MLC dephosphorylation, which resulted in the identification of novel MLCP inhibitors. Androgen dependent (AD) and castration resistant prostate cancer cell (CRPC) lines were treated with the lead inhibitor resulting in decreased growth rate, reduced DNA synthesis, and G2/M cell cycle arrest. Moreover, CRPC cell lines showed an increased sensitivity to drug treatment having GI(50) values four times lower than the AD prostate cancer cell line. This was reinforced by reduced BrdU DNA incorporation into CRPC cells compared to AD cells. β-actin disruption was also seen at much lower drug concentrations in CR cells which caused a dose dependent reduction in cellular chemotaxis of PC-3 cells. Since there are currently few clinical therapeutics targeting CR prostate cancer, MLCP represents a new target for preclinical and clinical development of new potential therapeutics which inhibit this disease phenotype.


Myosin light chain phosphatase catalytic subunit dephosphorylates cardiac myosin via mechanisms dependent and independent of the MYPT regulatory subunits.

  • Eunyoung Lee‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Cardiac muscle myosin regulatory light chain (RLC) is constitutively phosphorylated at ∼0.4 mol phosphate/mol RLC in normal hearts, and phosphorylation is maintained by balanced activities of dedicated cardiac muscle-specific myosin light chain kinase and myosin light chain phosphatase (MLCP). Previously, the identity of the cardiac-MLCP was biochemically shown to be similar to the smooth muscle MLCP, which is a well-characterized trimeric protein comprising the regulatory subunit (MYPT1), catalytic subunit PP1cβ, and accessory subunit M20. In smooth muscles in vivo, MYPT1 and PP1cβ co-stabilize each other and are both necessary for normal smooth muscle contractions. In the cardiac muscle, MYPT1 and MYPT2 are both expressed, but contributions to physiological regulation of cardiac myosin dephosphorylation are unclear. We hypothesized that the main catalytic subunit for cardiac-MLCP is PP1cβ, and maintenance of RLC phosphorylation in vivo is dependent on regulation by striated muscle-specific MYPT2. Here, we used PP1cβ conditional knockout mice to biochemically define cardiac-MLCP proteins and developed a cardiac myofibrillar phosphatase assay to measure the direct contribution of MYPT-regulated and MYPT-independent phosphatase activities toward phosphorylated cardiac myosin. We report that (1) PP1cβ is the main isoform expressed in the cardiac myocyte, (2) cardiac muscle pathogenesis in PP1cβ knockout animals involve upregulation of total PP1cα in myocytes and non-muscle cells, (3) the stability of cardiac MYPT1 and MYPT2 proteins in vivo is not dependent on the PP1cβ expression, and (4) phosphorylated myofibrillar cardiac myosin is dephosphorylated by both myosin-targeted and soluble MYPT-independent PP1cβ activities. These results contribute to our understanding of the cardiac-MLCP in vivo.


TIMAP inhibits endothelial myosin light chain phosphatase by competing with MYPT1 for the catalytic protein phosphatase 1 subunit PP1cβ.

  • Xin Wang‎ et al.
  • The Journal of biological chemistry‎
  • 2019‎

Transforming growth factor-β membrane associated protein (TIMAP) is an endothelial cell (EC)-predominant PP1 regulatory subunit and a member of the myosin phosphatase target (MYPT) protein family. The MYPTs preferentially bind the catalytic protein phosphatase 1 subunit PP1cβ, forming myosin phosphatase holoenzymes. We investigated whether TIMAP/PP1cβ could also function as a myosin phosphatase. Endogenous PP1cβ, myosin light chain 2 (MLC2), and myosin IIA heavy chain coimmunoprecipitated from EC lysates with endogenous TIMAP, and endogenous MLC2 colocalized with TIMAP in EC projections. Purified recombinant GST-TIMAP interacted directly with purified recombinant His-MLC2. However, TIMAP overexpression in EC enhanced MLC2 phosphorylation, an effect not observed with a TIMAP mutant that does not bind PP1cβ. Conversely, MLC2 phosphorylation was reduced in lung lysates from TIMAP-deficient mice and upon silencing of endogenous TIMAP expression in ECs. Ectopically expressed TIMAP slowed the rate of MLC2 dephosphorylation, an effect requiring TIMAP-PP1cβ interaction. The association of MYPT1 with PP1cβ was profoundly reduced in the presence of excess TIMAP, leading to proteasomal MYPT1 degradation. In the absence of TIMAP, MYPT1-associated PP1cβ readily bound immobilized microcystin-LR, an active-site inhibitor of PP1c. By contrast, TIMAP-associated PP1cβ did not interact with microcystin-LR, indicating that the active site of PP1cβ is blocked when it is bound to TIMAP. Thus, TIMAP inhibits myosin phosphatase activity in ECs by competing with MYPT1 for PP1cβ and blocking the PP1cβ active site.


Reconstituted human myosin light chain phosphatase reveals distinct roles of two inhibitory phosphorylation sites of the regulatory subunit, MYPT1.

  • Mukta Khasnis‎ et al.
  • Biochemistry‎
  • 2014‎

The myosin light chain phosphatase (MLCP) is a cytoskeleton-associated protein phosphatase-1 (PP1) holoenzyme and a RhoA/ROCK effector, regulating cytoskeletal reorganization. ROCK-induced phosphorylation of the MLCP regulatory subunit (MYPT1) at two sites, Thr696 and Thr853, suppresses the activity, although little is known about the difference in the role. Here, we developed a new method for the preparation of the recombinant human MLCP complex and determined the molecular and cellular basis of inhibitory phosphorylation. The recombinant MLCP partially purified from mammalian cell lysates retained characteristics of the native enzyme, such that it was fully active without Mn(2+) and sensitive to PP1 inhibitor compounds. Selective thio-phosphorylation of MYPT1 at Thr696 with ROCK inhibited the MLCP activity 30%, whereas the Thr853 thio-phosphorylation did not alter the phosphatase activity. Interference with the docking of phospho-Thr696 at the active site weakened the inhibition, suggesting selective autoinhibition induced by phospho-Thr696. Both Thr696 and Thr853 sites underwent autodephosphorylation. Compared with that of Thr853, phosphorylation of Thr696 was more stable, and it facilitated Thr853 phosphorylation. Endogenous MYPT1 at Thr696 was spontaneously phosphorylated in quiescent human leiomyosarcoma cells. Serum stimulation of the cells resulted in dissociation of MYPT1 from myosin and PP1C in parallel with an increase in the level of Thr853 phosphorylation. The C-terminal domain of human MYPT1(495-1030) was responsible for the binding to the N-terminal portion of myosin light meromyosin. The spontaneous phosphorylation at Thr696 may adjust the basal activity of cellular MLCP and affect the temporal phosphorylation at Thr853 that is synchronized with myosin targeting.


Dynamic regulation of myosin light chain phosphorylation by Rho-kinase.

  • Takako Kaneko-Kawano‎ et al.
  • PloS one‎
  • 2012‎

Myosin light chain (MLC) phosphorylation plays important roles in various cellular functions such as cellular morphogenesis, motility, and smooth muscle contraction. MLC phosphorylation is determined by the balance between activities of Rho-associated kinase (Rho-kinase) and myosin phosphatase. An impaired balance between Rho-kinase and myosin phosphatase activities induces the abnormal sustained phosphorylation of MLC, which contributes to the pathogenesis of certain vascular diseases, such as vasospasm and hypertension. However, the dynamic principle of the system underlying the regulation of MLC phosphorylation remains to be clarified. Here, to elucidate this dynamic principle whereby Rho-kinase regulates MLC phosphorylation, we developed a mathematical model based on the behavior of thrombin-dependent MLC phosphorylation, which is regulated by the Rho-kinase signaling network. Through analyzing our mathematical model, we predict that MLC phosphorylation and myosin phosphatase activity exhibit bistability, and that a novel signaling pathway leading to the auto-activation of myosin phosphatase is required for the regulatory system of MLC phosphorylation. In addition, on the basis of experimental data, we propose that the auto-activation pathway of myosin phosphatase occurs in vivo. These results indicate that bistability of myosin phosphatase activity is responsible for the bistability of MLC phosphorylation, and the sustained phosphorylation of MLC is attributed to this feature of bistability.


Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries.

  • Alejandro Moreno-Domínguez‎ et al.
  • The Journal of physiology‎
  • 2013‎

Abstract  The myogenic response of resistance arteries to intravascular pressure elevation is a fundamental physiological mechanism of crucial importance for blood pressure regulation and organ-specific control of blood flow. The importance of Ca(2+) entry via voltage-gated Ca(2+) channels leading to phosphorylation of the 20 kDa myosin regulatory light chains (LC20) in the myogenic response is well established. Recent studies, however, have suggested a role for Ca(2+) sensitization via activation of the RhoA/Rho-associated kinase (ROK) pathway in the myogenic response. The possibility that enhanced actin polymerization is also involved in myogenic vasoconstriction has been suggested. Here, we have used pressurized resistance arteries from rat gracilis and cremaster skeletal muscles to assess the contribution to myogenic constriction of Ca(2+) sensitization due to: (1) phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) by ROK; (2) phosphorylation of the 17 kDa protein kinase C (PKC)-potentiated protein phosphatase 1 inhibitor protein (CPI-17) by PKC; and (3) dynamic reorganization of the actin cytoskeleton evoked by ROK and PKC. Arterial diameter, MYPT1, CPI-17 and LC20 phosphorylation, and G-actin content were determined at varied intraluminal pressures ± H1152, GF109203X or latrunculin B to suppress ROK, PKC and actin polymerization, respectively. The myogenic response was associated with an increase in MYPT1 and LC20 phosphorylation that was blocked by H1152. No change in phospho-CPI-17 content was detected although the PKC inhibitor, GF109203X, suppressed myogenic constriction. Basal LC20 phosphorylation at 10 mmHg was high at ∼40%, increased to a maximal level of ∼55% at 80 mmHg, and exhibited no additional change on further pressurization to 120 and 140 mmHg. Myogenic constriction at 80 mmHg was associated with a decline in G-actin content by ∼65% that was blocked by inhibition of ROK or PKC. Taken together, our findings indicate that two mechanisms of Ca(2+) sensitization (ROK-mediated phosphorylation of MYPT1-T855 with augmentation of LC20 phosphorylation, and a ROK- and PKC-evoked increase in actin polymerization) contribute to force generation in the myogenic response of skeletal muscle arterioles.


Vascular smooth muscle cell glycocalyx mediates shear stress-induced contractile responses via a Rho kinase (ROCK)-myosin light chain phosphatase (MLCP) pathway.

  • Hongyan Kang‎ et al.
  • Scientific reports‎
  • 2017‎

The vascular smooth muscle cells (VSMCs) are exposed to interstitial flow induced shear stress that may be sensed by the surface glycocalyx, a surface layer composed primarily of proteoglycans and glycoproteins, to mediate cell contraction during the myogenic response. We, therefore, attempted to elucidate the signal pathway of the glycocalyx mechanotransduction in shear stress regulated SMC contraction. Human umbilical vein SMCs (HUVSMCs) deprived of serum for 3-4 days were exposed to a step increase (0 to 20 dyn/cm2) in shear stress in a parallel plate flow chamber, and reduction in the cell area was quantified as contraction. The expressions of Rho kinase (ROCK) and its downstream signal molecules, the myosin-binding subunit of myosin phosphatase (MYPT) and the myosin light chain 2 (MLC2), were evaluated. Results showed that the exposure of HUVSMCs to shear stress for 30 min induced cell contraction significantly, which was accompanied by ROCK1 up-regulation, re-distribution, as well as MYPT1 and MLC activation. However, these shear induced phenomenon could be completely abolished by heparinase III or Y-27632 pre-treatment. These results indicate shear stress induced VSMC contraction was mediated by cell surface glycocalyx via a ROCK-MLC phosphatase (MLCP) pathway, providing evidence of the glycocalyx mechanotransduction in myogenic response.


Phosphatase regulatory subunit MYPT2 knockout partially compensates for the cardiac dysfunction in mice caused by lack of myosin light chain kinase 3.

  • Tingfei Hu‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Cardiac contraction is modulated by the phosphorylation state of myosin regulatory light chain 2 (MLC-2v). The level of MLC-2v phosphorylation is dependent on the opposing activities of MLC kinases and phosphatases. The predominant MLC phosphatase found in cardiac myocytes contains Myosin Phosphatase Targeting Subunit 2 (MYPT2). Overexpression of MYPT2 in cardiac myocytes results in a decreased level of MLC phosphorylation, reduced left ventricular contraction, and induction of hypertrophy; however, the effect of knocking out MYPT2 on cardiac function is unknown. We obtained heterozygous mice containing a MYPT2 null allele from the Mutant Mouse Resource Center. These mice were produced in a C57BL/6N background which lack MLCK3, the main regulatory light chain kinase in cardiac myocytes. We found that mice null for MYPT2 were viable and had no obvious phenotypic abnormality when compared to WT mice. Additionally, we determined that WT C57BL/6N mice had a low basal level of MLC-2v phosphorylation, which was significantly increased when MYPT2 was absent. At 12-weeks, MYPT2 KO mice had smaller hearts and showed downregulation of genes involved in cardiac remodeling. Using cardiac echo, we found that 24-week-old male MYPT2 KO mice had decreased heart size with increased fractional shortening compared to their MYPT2 WT littermates. Collectively, these studies highlight the important role that MYPT2 plays in cardiac function in vivo and demonstrate that its deletion can partially compensate for the lack of MLCK3.


Cadmium-induced hypertension is associated with renal myosin light chain phosphatase inhibition via increased T697 phosphorylation and p44 mitogen-activated protein kinase levels.

  • Garsha McCalla‎ et al.
  • Hypertension research : official journal of the Japanese Society of Hypertension‎
  • 2021‎

Dietary intake of the heavy metal cadmium (Cd2+) is implicated in hypertension, but potassium supplementation reportedly mitigates hypertension. This study aims to elucidate the hypertensive mechanism of Cd2+. Vascular reactivity and protein expression were assessed in Cd2+-exposed rats for 8 weeks to determine the calcium-handling effect of Cd2+ and the possible signaling pathways and mechanisms involved. Cd2+ induced hypertension in vivo by significantly (p < 0.001) elevating systolic blood pressure (160 ± 2 and 155 ± 1 vs 120 ± 1 mm Hg), diastolic blood pressure (119 ± 2 and 110 ± 1 vs 81 ± 1 mm Hg), and mean arterial pressure (133 ± 2 and 125 ± 1 vs 94 ± 1 mm Hg) (SBP, DBP, and MAP, respectively), while potassium supplementation protected against elevation of these parameters. The mechanism involved augmentation of the phosphorylation of renal myosin light chain phosphatase targeting subunit 1 (MYPT1) at threonine 697 (T697) (2.58 ± 0.36 vs 1 ± 0) and the expression of p44 mitogen-activated protein kinase (MAPK) (1.78 ± 0.20 vs 1 ± 0). While acetylcholine (ACh)-induced relaxation was unaffected, 5 mg/kg b.w. Cd2+ significantly (p < 0.001) attenuated phenylephrine (Phe)-induced contraction of the aorta, and 2.5 mg/kg b.w. Cd2+ significantly (p < 0.05) augmented sodium nitroprusside (SNP)-induced relaxation of the aorta. These results support the vital role of the kidney in regulating blood pressure changes after Cd2+ exposure, which may be a key drug target for hypertension management. Given the differential response to Cd2+, it is apparent that its hypertensive effects could be mediated by myosin light chain phosphatase (MLCP) inhibition via phosphorylation of renal MYPT1-T697 and p44 MAPK. Further investigation of small arteries and the Rho-kinase/MYPT1 interaction is recommended.


Drosophila PATJ supports adherens junction stability by modulating Myosin light chain activity.

  • Arnab Sen‎ et al.
  • The Journal of cell biology‎
  • 2012‎

The assembly and consolidation of the adherens junctions (AJs) are key events in the establishment of an intact epithelium. However, AJs are further modified to obtain flexibility for cell migration and morphogenetic movements. Intact AJs in turn are a prerequisite for the establishment and maintenance of apical-basal polarity in epithelial cells. In this study, we report that the conserved PDZ (PSD95, Discs large, ZO-1) domain-containing protein PATJ (Pals1-associated tight junction protein) was not per se crucial for the maintenance of apical-basal polarity in Drosophila melanogaster epithelial cells but rather regulated Myosin localization and phosphorylation. PATJ directly bound to the Myosin-binding subunit of Myosin phosphatase and decreased Myosin dephosphorylation, resulting in activated Myosin. Thereby, PATJ supports the stability of the Zonula Adherens. Notably, weakening of AJ in a PATJ mutant epithelium led first to a loss of Myosin from the AJ, subsequently to a disassembly of the AJ, and finally, to a loss of apical-basal polarity and disruption of the tissue.


Microelectromechanical System Measurement of Platelet Contraction: Direct Interrogation of Myosin Light Chain Phosphorylation.

  • Mitchell J George‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Myosin Light Chain (MLC) regulates platelet contraction through its phosphorylation by Myosin Light Chain Kinase (MLCK) or dephosphorylation by Myosin Light Chain Phosphatase (MLCP). The correlation between platelet contraction force and levels of MLC phosphorylation is unknown. We investigate the relationship between platelet contraction force and MLC phosphorylation using a novel microelectromechanical (MEMS) based clot contraction sensor (CCS). The MLCK and MLCP pair were interrogated by inhibitors and activators of platelet function. The CCS was fabricated from silicon using photolithography techniques and force was validated over a range of deflection for different chip spring constants. The force of platelet contraction measured by the clot contraction sensor (CCS) was compared to the degree of MLC phosphorylation by Western Blotting (WB) and ELISA. Stimulators of MLC phosphorylation produced higher contraction force, higher phosphorylated MLC signal in ELISA and higher intensity bands in WB. Inhibitors of MLC phosphorylation produced the opposite. Contraction force is linearly related to levels of phosphorylated MLC. Direct measurements of clot contractile force are possible using a MEMS sensor platform and correlate linearly with the degree of MLC phosphorylation during coagulation. Measured force represents the mechanical output of the actin/myosin motor in platelets regulated by myosin light chain phosphorylation.


Localization and activity of myosin light chain kinase isoforms during the cell cycle.

  • A Poperechnaya‎ et al.
  • The Journal of cell biology‎
  • 2000‎

Phosphorylation on Ser 19 of the myosin II regulatory light chain by myosin light chain kinase (MLCK) regulates actomyosin contractility in smooth muscle and vertebrate nonmuscle cells. The smooth/nonmuscle MLCK gene locus produces two kinases, a high molecular weight isoform (long MLCK) and a low molecular weight isoform (short MLCK), that are differentially expressed in smooth and nonmuscle tissues. To study the relative localization of the MLCK isoforms in cultured nonmuscle cells and to determine the spatial and temporal dynamics of MLCK localization during mitosis, we constructed green fluorescent protein fusions of the long and short MLCKs. In interphase cells, localization of the long MLCK to stress fibers is mediated by five DXRXXL motifs, which span the junction of the NH(2)-terminal extension and the short MLCK. In contrast, localization of the long MLCK to the cleavage furrow in dividing cells requires the five DXRXXL motifs as well as additional amino acid sequences present in the NH(2)-terminal extension. Thus, it appears that nonmuscle cells utilize different mechanisms for targeting the long MLCK to actomyosin structures during interphase and mitosis. Further studies have shown that the long MLCK has twofold lower kinase activity in early mitosis than in interphase or in the early stages of postmitotic spreading. These findings suggest a model in which MLCK and the myosin II phosphatase (Totsukawa, G., Y. Yamakita, S. Yamashiro, H. Hosoya, D.J. Hartshorne, and F. Matsumura. 1999. J. Cell Biol. 144:735-744) act cooperatively to regulate the level of Ser 19-phosphorylated myosin II during mitosis and initiate cytokinesis through the activation of myosin II motor activity.


Stretch-induced triphosphorylation of myosin light chain and myogenic tone in canine basilar artery.

  • Kazuo Obara‎ et al.
  • European journal of pharmacology‎
  • 2006‎

The relationship between phosphorylation of 20,000 Da myosin light chain (MLC20) and contraction in response to mechanical stretch was investigated in the canine basilar artery. A slow stretch (at a rate of 1 mm/s and a stimulus period for 15 min) increased triphosphorylated MLC20 despite lowered intracellular calcium concentration and mechanical activities, such as myogenic tone, shortening velocity and stiffness of the artery. Nicardipine, a Ca2+ channel blocker, and ML-9, a myosin light chain kinase (MLCK) inhibitor, partially inhibited the stretch-induced MLC20 phosphorylation. The remained phosphorylation was further reduced by calphostin C, a protein kinase C (PKC) inhibitor. Y-27632, a Rho-kinase inhibitor, inhibited phosphorylation of myosin light chain phosphatase and attenuated MLC20 phosphorylation. These results suggest that slow stretch induces triphosphorylation of MLC20, which is mediated by MLCK, PKC, and Rho-kinase, and that the triphosphorylation of MLC20 does not result in myogenic contraction, rather seems to counteract it.


Deficiency in myosin light-chain phosphorylation causes cytokinesis failure and multipolarity in cancer cells.

  • Q Wu‎ et al.
  • Oncogene‎
  • 2010‎

Cancer cells often have unstable genomes and increased centrosome and chromosome numbers, which are an important part of malignant transformation in the most recent model of tumorigenesis. However, very little is known about divisional failures in cancer cells that may lead to chromosomal and centrosomal amplifications. In this study, we show that cancer cells often failed at cytokinesis because of decreased phosphorylation of the myosin regulatory light chain (MLC), a key regulatory component of cortical contraction during division. Reduced MLC phosphorylation was associated with high expression of myosin phosphatase and/or reduced myosin light-chain kinase levels. Furthermore, expression of phosphomimetic MLC largely prevented cytokinesis failure in the tested cancer cells. When myosin light-chain phosphorylation was restored to normal levels by phosphatase knockdown, multinucleation and multipolar mitosis were markedly reduced, resulting in enhanced genome stabilization. Furthermore, both overexpression of myosin phosphatase or inhibition of the myosin light-chain kinase in nonmalignant cells could recapitulate some of the mitotic defects of cancer cells, including multinucleation and multipolar spindles, indicating that these changes are sufficient to reproduce the cytokinesis failures we see in cancer cells. These results for the first time define the molecular defects leading to divisional failure in cancer cells.


Potentiation in mouse lumbrical muscle without myosin light chain phosphorylation: is resting calcium responsible?

  • Ian C Smith‎ et al.
  • The Journal of general physiology‎
  • 2013‎

The increase in isometric twitch force observed in fast-twitch rodent muscles during or after activity, known universally as potentiation, is normally associated with myosin regulatory light chain (RLC) phosphorylation. Interestingly, fast muscles from mice devoid of detectable skeletal myosin light chain kinase (skMLCK) retain a reduced ability to potentiate twitch force, indicating the presence of a secondary origin for this characteristic feature of the fast muscle phenotype. The purpose of this study was to assess changes in intracellular cytosolic free Ca(2+) concentration ([Ca(2+)](i)) after a potentiating stimulus in mouse lumbrical muscle (37°C). Lumbricals were loaded with the Ca(2+)-sensitive fluorescent indicators fura-2 or furaptra to detect changes in resting and peak, respectively, intracellular Ca(2+) levels caused by 2.5 s of 20-Hz stimulation. Although this protocol produced an immediate increase in twitch force of 17 ± 3% (all data are n = 10) (P < 0.01), this potentiation dissipated quickly and was absent 30 s afterward. Fura-2 fluorescence signals at rest were increased by 11.1 ± 1.3% (P < 0.01) during potentiation, indicating a significant increase in resting [Ca(2+)](i). Interestingly, furaptra signals showed no change to either the amplitude or the duration of the intracellular Ca(2+) transients (ICTs) that triggered potentiated twitches during this time (P < 0.50). Immunofluorescence work showed that 77% of lumbrical fibers expressed myosin heavy chain isoform IIx and/or IIb, but with low expression of skMLCK and high expression of myosin phosphatase targeting subunit 2. As a result, lumbrical muscles displayed no detectable RLC phosphorylation either at rest or after stimulation. We conclude that stimulation-induced elevations in resting [Ca(2+)](i), in the absence of change in the ICT, are responsible for a small-magnitude, short-lived potentiation of isometric twitch force. If operative in other fast-twitch muscles, this mechanism may complement the potentiating influence of myosin RLC phosphorylation.


β-Arrestin regulation of myosin light chain phosphorylation promotes AT1aR-mediated cell contraction and migration.

  • Elie Simard‎ et al.
  • PloS one‎
  • 2013‎

Over the last decade, it has been established that G-protein-coupled receptors (GPCRs) signal not only through canonical G-protein-mediated mechanisms, but also through the ubiquitous cellular scaffolds β-arrestin-1 and β-arrestin-2. Previous studies have implicated β-arrestins as regulators of actin reorganization in response to GPCR stimulation while also being required for membrane protrusion events that accompany cellular motility. One of the most critical events in the active movement of cells is the cyclic phosphorylation and activation of myosin light chain (MLC), which is required for cellular contraction and movement. We have identified the myosin light chain phosphatase Targeting Subunit (MYPT-1) as a binding partner of the β-arrestins and found that β-arrestins play a role in regulating the turnover of phosphorylated myosin light chain. In response to stimulation of the angiotensin Type 1a Receptor (AT1aR), MLC phosphorylation is induced quickly and potently. We have found that β-arrestin-2 facilitates dephosphorylation of MLC, while, in a reciprocal fashion, β-arrestin 1 limits dephosphorylation of MLC. Intriguingly, loss of either β-arrestin-1 or 2 blocks phospho-MLC turnover and causes a decrease in the contraction of cells as monitored by atomic force microscopy (AFM). Furthermore, by employing the β-arrestin biased ligand [Sar(1),Ile(4),Ile(8)]-Ang, we demonstrate that AT1aR-mediated cellular motility involves a β-arrestin dependent component. This suggests that the reciprocal regulation of MLC phosphorylation status by β-arrestins-1 and 2 causes turnover in the phosphorylation status of MLC that is required for cell contractility and subsequent chemotaxic motility.


Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation.

  • Alistair Taverner‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2015‎

The intestinal epithelium functions to effectively restrict the causal uptake of luminal contents but has been demonstrated to transiently increase paracellular permeability properties to provide an additional entry route for dietary macromolecules. We have examined a method to emulate this endogenous mechanism as a means of enhancing the oral uptake of insulin. Two sets of stable Permeant Inhibitor of Phosphatase (PIP) peptides were rationally designed to stimulate phosphorylation of intracellular epithelial myosin light chain (MLC) and screened using Caco-2 monolayers in vitro. Apical application of PIP peptide 640, designed to disrupt protein-protein interactions between protein phosphatase 1 (PP1) and its regulator CPI-17, resulted in a reversible and non-toxic transient reduction in Caco-2 monolayer trans-epithelial electric resistance (TEER) and opening of the paracellular route to 4kDa fluorescent dextran but not 70kDa dextran in vitro. Apical application of PIP peptide 250, designed to impede MYPT1-mediated regulation of PP1, also decreased TEER in a reversible and non-toxic manner but transiently opened the paracellular route to both 4 and 70kDa fluorescent dextrans. Direct injection of PIP peptides 640 or 250 with human insulin into the lumen of rat jejunum caused a decrease in blood glucose levels that was PIP peptide and insulin dose-dependent and correlated with increased pMLC levels. Systemic levels of insulin suggested approximately 3-4% of the dose injected into the intestinal lumen was absorbed, relative to a subcutaneous injection. Measurement of insulin levels in the portal vein showed a time window of absorption that was consistent with systemic concentration-time profiles and approximately 50% first-pass clearance by the liver. Monitoring the uptake of a fluorescent form of insulin suggested its uptake occurred via the paracellular route. Together, these studies add validation to the presence of an endogenous mechanism used by the intestinal epithelium to dynamically regulate its paracellular permeability properties and better define the potential to enhance the oral delivery of biopharmaceuticals via a transient regulation of an endogenous mechanism controlling the intestinal paracellular barrier.


A signal transduction pathway model prototype II: Application to Ca2+-calmodulin signaling and myosin light chain phosphorylation.

  • Thomas J Lukas‎
  • Biophysical journal‎
  • 2004‎

An agonist-initiated Ca(2+) signaling model for calmodulin (CaM) coupled to the phosphorylation of myosin light chains was created using a computer-assisted simulation environment. Calmodulin buffering was introduced as a module for directing sequestered CaM to myosin light chain kinase (MLCK) through Ca(2+)-dependent release from a buffering protein. Using differing simulation conditions, it was discovered that CaM buffering allowed transient production of more Ca(2+)-CaM-MLCK complex, resulting in elevated myosin light chain phosphorylation compared to nonbuffered control. Second messenger signaling also impacts myosin light chain phosphorylation through the regulation of myosin light chain phosphatase (MLCP). A model for MLCP regulation via its regulatory MYPT1 subunit and interaction of the CPI-17 inhibitor protein was assembled that incorporated several protein kinase subsystems including Rho-kinase, protein kinase C (PKC), and constitutive MYPT1 phosphorylation activities. The effects of the different routes of MLCP regulation depend upon the relative concentrations of MLCP compared to CPI-17, and the specific activities of protein kinases such as Rho and PKC. Phosphorylated CPI-17 (CPI-17P) was found to dynamically control activity during agonist stimulation, with the assumption that inhibition by CPI-17P (resulting from PKC activation) is faster than agonist-induced phosphorylation of MYPT1. Simulation results are in accord with literature measurements of MLCP and CPI-17 phosphorylation states during agonist stimulation, validating the predictive capabilities of the system.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: