Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 3,858 papers

Muscone ameliorates myocardial ischemia‒reperfusion injury by promoting myocardial glycolysis.

  • Xin Gu‎ et al.
  • Heliyon‎
  • 2023‎

The incidence of acute myocardial infarction (AMI) is increasing yearly. With the use of thrombolysis or percutaneous coronary intervention (PCI), the mortality rate of acute myocardial infarction has been significantly reduced. However, reperfusion can cause additional myocardial injury. There is still a lack of effective drugs to treat I/R injury, and it is urgent to find new therapeutic drugs.


Myocardial ischemia with penetrating thoracic trauma.

  • Andrew R Elms‎ et al.
  • The western journal of emergency medicine‎
  • 2011‎

Penetrating trauma is a rare cause of myocardial infarction. Our report describes a 47-year-old female who presented with a gunshot wound from a shotgun and had an ST-elevation myocardial infarction. The patient received emergent coronary angiography, which demonstrated no evidence of coronary atherosclerotic disease but did show occlusion of a marginal vessel secondary to a pellet. The patient was managed medically for the myocardial infarction without cardiac sequelae. Patients with penetrating trauma to the chest should be evaluated for myocardial ischemia. Electrocardiography, echocardiography and cardiac angiography play vital roles in evaluating these patients and helping to guide management.


Curcumin attenuates myocardial ischemia-reperfusion injury.

  • Kun Liu‎ et al.
  • Oncotarget‎
  • 2017‎

Cardiovascular diseases (CVDs) are at a badly high-risk of morbidity and mortality in the world.


Glycine attenuates myocardial ischemia-reperfusion injury by inhibiting myocardial apoptosis in rats.

  • Xiaozheng Zhong‎ et al.
  • Journal of biomedical research‎
  • 2012‎

Glycine is a well-documented cytoprotective agent. However, whether it has a protective effect against myocardial ischemia-reperfusion injury in vivo is still unknown. By using an open-chest anesthetized rat model, we found that glycine reduced the infarct size by 21% in ischemia-reperfusion injury rats compared with that in the vehicle-treated MI/R rats. The left ventricular ejection fraction and fractional shortening were increased by 19.11% and 30.98%, respectively, in glycine-treated rats. The plasma creatine kinase levels in ischemia-reperfusion injury rats decreased following glycine treatment. Importantly, administration of glycine significantly inhibited apoptosis in post-ischemia-reperfusion myocardium, which was accompanied by suppression of phosphorylated p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase, as well as the Fas ligand. These results suggest that glycine attenuates myocardial ischemia-reperfusion injury in vivo by inhibiting cardiomyocytes apoptosis.


Ziziphora clinopodioides Flavonoids Protect Myocardial Cell Damage from Myocardial Ischemia-Reperfusion Injury.

  • Qin Li‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

To investigate effects of Ziziphora clinopodioides Lam. flavonoids on ischemia-reperfusion injury of myocardial cells. After application of 6.25, 25, and 100 μg/mL Ziziphora clinopodioides Lam. flavonoids to H9C2 myocardial cells for 24H, they were treated for 4 hours with hydrogen peroxide to induce oxidative damage, whereas controls were cells without treatment and cells only incubated with hydrogen peroxide. Cell viability, lactate dehydrogenase release and mitochondrial membrane potential, intracellular Na+/K+-ATPase activity and ATP content, and reactive oxygen species formation were monitored. An ischemia-reperfusion injury rat model was established by left anterior descending coronary artery ligature in 48 Sprague-Dawley rats, which were divided into positive control with isosorbide mononitrate (10 mg/kg) injection (n=8), model (ischemia-reperfusion, n=8), sham-operated (n=8), and Ziziphora clinopodioides Lam. flavonoids low (75 mg/kg, n=8), medium (150 mg/kg, n=8), and high concentration (300 mg/kg, n=8) groups. Superoxide dismutase activity and malondialdehyde content in homogenized hearts were measured and ischemic and infarction areas were triphenyl tetrazolium chloride and H&E stained for pathological and morphological examinations. Ziziphora clinopodioides Lam. flavonoids preconditioning improved cell viability (P<0.01), intracellular Na/K ATPase activity (P<0.001), and intracellular ATP content (P<0.001) and maintained mitochondrial membrane potential (P<0.05) in hydrogen peroxide treated H9C2 cells as well as rescued superoxide dismutase activity (P<0.01), decreased the malondialdehyde content (P<0.001), and reduced myocardial damage in the ischemia-reperfusion rat model (P<0.001) compared to the controls. Ziziphora clinopodioides Lam. flavonoids may be an effective drug for protecting myocardial tissue from ischemia-reperfusion injury by reducing reactive oxygen species related damage.


Postconditioning with simvastatin decreases myocardial injury in rats following acute myocardial ischemia.

  • Heng-Chen Yao‎ et al.
  • Experimental and therapeutic medicine‎
  • 2015‎

The aim of the present study was to investigate whether postconditioning with simvastatin attenuated myocardial ischemia reperfusion injury by inhibiting the expression of high mobility group box 1 (HMGB1) in rat myocardium following acute myocardial ischemia. In total, 30 male Sprague-Dawley rats were divided into sham operation (sham; n=10), acute myocardial infarction (AMI; n=10) and simvastatin (sim; n=10) groups. The AMI and sim groups were subjected to ischemia for 30 min, followed by reperfusion for 180 min. The rats in the sim group were administered 20 mg/kg simvastatin intravenously 5 min prior to reperfusion. Subsequently, the infarct size, serum cardiac troponin (c-TnI), tumor necrosis factor (TNF)-α and myocardial malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. Western blot analysis was used to detect the protein expression of HMGB1. Postconditioning with simvastatin was shown to decrease the infarct size and HMGB1 expression levels in the myocardium following AMI (P<0.05). In addition, postconditioning with simvastatin not only decreased the serum levels of c-TnI and TNF-α (P<0.05), but also inhibited the increase in MDA levels and the reduction in SOD activity (P<0.05). Therefore, postconditioning with simvastatin was shown to attenuate myocardial injury. The underlying mechanism may be associated with the downregulation of HMGB1 expression in the ischemic myocardium.


Cardiomyocyte microvesicles: proinflammatory mediators after myocardial ischemia?

  • Patrick Malcolm Siegel‎ et al.
  • Journal of thrombosis and thrombolysis‎
  • 2020‎

Myocardial infarction is a frequent complication of cardiovascular disease leading to high morbidity and mortality worldwide. Elevated C-reactive protein (CRP) levels after myocardial infarction are associated with heart failure and poor prognosis. Cardiomyocyte microvesicles (CMV) are released during hypoxic conditions and can act as mediators of intercellular communication. MicroRNA (miRNA) are short non-coding RNA which can alter cellular mRNA-translation. Microvesicles (MV) have been shown to contain distinct patterns of miRNA from their parent cells which can affect protein expression in target cells. We hypothesized that miRNA containing CMV mediate hepatic CRP expression after cardiomyocyte hypoxia. H9c2-cells were cultured and murine cardiomyocytes were isolated from whole murine hearts. H9c2- and murine cardiomyocytes were exposed to hypoxic conditions using a hypoxia chamber. Microvesicles were isolated by differential centrifugation and analysed by flow cytometry. Next-generation-sequencing was performed to determine the miRNA-expression profile in H9c2 CMV compared to their parent cells. Microvesicles were incubated with a co-culture model of the liver consisting of THP-1 macrophages and HepG2 cells. IL-6 and CRP expression in the co-culture was assessed by qPCR and ELISA. CMV contain a distinct pattern of miRNA compared to their parent cells including many inflammation-related miRNA. CMV induced IL-6 expression in THP-1 macrophages alone and CRP expression in the hepatic co-culture model. MV from hypoxic cardiomyocytes can mediate CRP expression in a hepatic co-culture model. Further studies will have to show whether these effects are reproducible in-vivo.


Retracted Article: Chrysin attenuates myocardial ischemia-reperfusion injury by inhibiting myocardial inflammation.

  • Jingguo Wu‎ et al.
  • RSC advances‎
  • 2018‎

The aim of this study was to investigate the effects of chrysin (CH) on myocardial ischemia-reperfusion injury. Cytokines were reduced by CH in coronary artery occlusion-induced rats and also in H9C2 cells. The ST segment was also restored by CH. Triphenyltetrazolium chloride (TTC) staining and pathological analysis showed that CH could alleviate myocardial injury. Results in H9C2 cells showed that CH improved heart injury in hypoxia/reoxygenation (H/R) of H9C2 cells. In addition, the expressions of the HMGB1-related inflammation pathway in rats and H9C2 cells were significantly decreased by CH. The present study shows the protective effects of CH on myocardial injury via inflammation.


Endothelial β1 Integrin-Mediated Adaptation to Myocardial Ischemia.

  • Carina Henning‎ et al.
  • Thrombosis and haemostasis‎
  • 2021‎

 Short episodes of myocardial ischemia can protect from myocardial infarction. However, the role of endothelial β1 integrin in these cardioprotective ischemic events is largely unknown.


Depressive symptoms are associated with mental stress-induced myocardial ischemia after acute myocardial infarction.

  • Jingkai Wei‎ et al.
  • PloS one‎
  • 2014‎

Depression is an adverse prognostic factor after an acute myocardial infarction (MI), and an increased propensity toward emotionally-driven myocardial ischemia may play a role. We aimed to examine the association between depressive symptoms and mental stress-induced myocardial ischemia in young survivors of an MI.


Sum of effects of myocardial ischemia followed by electrically induced tachycardia on myocardial function.

  • José Luis Díez‎ et al.
  • Medical science monitor basic research‎
  • 2013‎

The alteration of contractile function after tachyarrhythmia ceases is influenced by the type of prior ischemia (acute coronary syndrome or ischemia inherent in a coronary revascularization procedure). We aimed to analyze cardiac dysfunction in an acute experimental model of supraphysiological heart rate preceded by different durations and types of ischemia.


Myocardial hypothermia increases autophagic flux, mitochondrial mass and myocardial function after ischemia-reperfusion injury.

  • Stefanie Marek-Iannucci‎ et al.
  • Scientific reports‎
  • 2019‎

Animal studies have demonstrated beneficial effects of therapeutic hypothermia on myocardial function, yet exact mechanisms remain unclear. Impaired autophagy leads to heart failure and mitophagy is important for mitigating ischemia/reperfusion injury. This study aims to investigate whether the beneficial effects of therapeutic hypothermia are due to preserved autophagy and mitophagy. Under general anesthesia, the left anterior descending coronary artery of 19 female farm pigs was occluded for 90 minutes with consecutive reperfusion. 30 minutes after reperfusion, we performed pericardial irrigation with warm or cold saline for 60 minutes. Myocardial tissue analysis was performed one and four weeks after infarction. Therapeutic hypothermia induced a significant increase in autophagic flux, mitophagy, mitochondrial mass and function in the myocardium after infarction. Cell stress, apoptosis, inflammation as well as fibrosis were reduced, with significant preservation of systolic and diastolic function four weeks post infarction. We found similar biochemical changes in human samples undergoing open chest surgery under hypothermic conditions when compared to the warm. These results suggest that autophagic flux and mitophagy are important mechanisms implicated in cardiomyocyte recovery after myocardial infarction under hypothermic conditions. New therapeutic strategies targeting these pathways directly could lead to improvements in prevention of heart failure.


CircANXA2 Promotes Myocardial Apoptosis in Myocardial Ischemia-Reperfusion Injury via Inhibiting miRNA-133 Expression.

  • Liang Zong‎ et al.
  • BioMed research international‎
  • 2020‎

This project is aimed at investigating whether CircANXA2 can promote the apoptosis of myocardial cells by inhibiting miR-133 expression and thereby participate in the development of myocardial ischemia-reperfusion injury. Materials and Method. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression level of CircANXA2 in H9c2 cells after hypoxia/reoxygenation (H/R) treatment. Evaluation of myocardial injury markers in H9c2 cells was performed using commercial kits, including lactate dehydrogenase (LDH), malonaldehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidation (GSH-PX). MTT analysis and flow cytometry were used to detect myocardial cell proliferation and apoptosis, respectively. Western blot was used to detect the protein expression of apoptosis-related genes.


Myocyte-specific overexpressing HDAC4 promotes myocardial ischemia/reperfusion injury.

  • Ling Zhang‎ et al.
  • Molecular medicine (Cambridge, Mass.)‎
  • 2018‎

Histone deacetylases (HDACs) play a critical role in modulating myocardial protection and cardiomyocyte survivals. However, Specific HDAC isoforms in mediating myocardial ischemia/reperfusion injury remain currently unknown. We used cardiomyocyte-specific overexpression of active HDAC4 to determine the functional role of activated HDAC4 in regulating myocardial ischemia and reperfusion in isovolumetric perfused hearts.


Protective effects of GV1001 on myocardial ischemia‑reperfusion injury.

  • Ji-Eun Chang‎ et al.
  • Molecular medicine reports‎
  • 2017‎

The potential cardioprotective effects of the novel vaccine peptide GV1001 were evaluated in myocardial ischemia‑reperfusion injury induced rat models. GV1001 is a human telomerase reverse transcriptase derived peptide, which has been reported to possess both anti‑tumor and anti‑inflammatory effects. The normal saline (control group) and various concentrations (0.001‑10 mg/kg) of GV1001 were administered directly to the right ventricle anterior wall before induction of ischemia. The was induced by Tightening the snare around the left anterior descending coronary artery for 40 min, before releasing the snare for 10 min induced the myocardial ischemia‑reperfusion injury and was conducted in Sprague‑Dawley rats. The area at risk, histology, apoptotic cells, neutrophils and inflammatory cytokines were analyzed from the excised heart tissue following myocardial ischemia‑reperfusion injury. The area at risk was protected by concentrations of GV1001 equal to or higher than 0.01 mg/kg. At 0.1 mg/kg and higher concentrations of GV1001, the hemorrhage in the heart was attenuated, while severe congestion was reported in the control group. Apoptotic cells, myeloperoxidase activity and inflammatory cytokines [tumor necrosis factor (TNF)‑α and interleukin (IL)‑6] revealed decreased levels in a dose‑dependent manner with respect to GV1001 concentration. The group treated with 10 mg/kg GV1001 demonstrated 59.73% apoptotic cells (P<0.001), 48.14% neutrophil contents (P<0.001), 55.63% TNF‑α (P<0.01) and 42.35% IL‑6 (P<0.01) levels, compared with the control group. The novel vaccine peptide GV1001 provided protective effects on myocardial ischemia‑reperfusion injury and, therefore, it should be considered as an alternative potential anti‑inflammatory agent for myocardial ischemia‑reperfusion injury.


Lidocaine Enhances Contractile Function of Ischemic Myocardial Regions in Mouse Model of Sustained Myocardial Ischemia.

  • Björn Müller-Edenborn‎ et al.
  • PloS one‎
  • 2016‎

Perioperative myocardial ischemia is common in high-risk patients. The use of interventional revascularisation or even thrombolysis is limited in this patient subset due to exceedingly high bleeding risks. Blockade of voltage-gated sodium channels (VGSC) with lidocaine had been suggested to reduce infarct size and cardiomyocyte cell death in ischemia/reperfusion models. However, the impact of lidocaine on cardiac function during sustained ischemia still remains unclear.


Characterization of early myocardial inflammation in ischemia-reperfusion injury.

  • Qihong Wu‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Myocardial injury may be caused by myocardial ischemia-reperfusion (IR), and salvaging such an injury is still a great challenge in clinical practice. This study comprehensively characterized the physiopathologic changes of myocardial injury after IR to explore the underlying mechanism in the early reperfusion phase with particular emphasis on early myocardial inflammation.


Canagliflozin Improves Myocardial Perfusion, Fibrosis, and Function in a Swine Model of Chronic Myocardial Ischemia.

  • Sharif A Sabe‎ et al.
  • Journal of the American Heart Association‎
  • 2023‎

Background Sodium-glucose cotransporter-2 inhibitors are cardioprotective independent of glucose control, as demonstrated in animal models of acute myocardial ischemia and clinical trials. The functional and molecular mechanisms of these benefits in the setting of chronic myocardial ischemia are poorly defined. The purpose of this study is to determine the effects of canagliflozin therapy on myocardial perfusion, fibrosis, and function in a large animal model of chronic myocardial ischemia. Methods and Results Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic myocardial ischemia. Two weeks later, pigs received either no drug (n=8) or 300 mg sodium-glucose cotransporter-2 inhibitor canagliflozin orally, daily (n=8). Treatment continued for 5 weeks, followed by hemodynamic measurements, harvest, and tissue analysis. Canagliflozin therapy was associated with increased stroke volume and stroke work and decreased left ventricular stiffness compared with controls. The canagliflozin group had improved perfusion to ischemic myocardium compared with controls, without differences in arteriolar or capillary density. Canagliflozin was associated with decreased interstitial and perivascular fibrosis in chronically ischemic tissue, with reduced Jak/STAT (Janus kinase/signal transducer and activator of transcription) signaling compared with controls. In ischemic myocardium of the canagliflozin group, there was increased expression and activation of adenosine monophosphate-activated protein kinase, decreased activation of endothelial nitric oxide synthase, and unchanged total endothelial nitric oxide synthase. Canagliflozin therapy reduced total protein oxidation and increased expression of mitochondrial antioxidant superoxide dismutase 2 compared with controls. Conclusions In the setting of chronic myocardial ischemia, canagliflozin therapy improves myocardial function and perfusion to ischemic territory, without changes in collateralization. Attenuation of fibrosis via reduced Jak/STAT signaling, activation of adenosine monophosphate-activated protein kinase, and antioxidant signaling may contribute to these effects.


Trehalose preconditioning for transient global myocardial ischemia in rats.

  • Norihiro Ando‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Autophagy is an intracellular pathway that degrades unnecessary proteins and organelles and provides energy substrates during cellular ischemic conditions. Although pharmacological myocardial preconditioning with an autophagy inducer has been reported to protect cells against ischemic reperfusion (I/R), the effects of preconditioning using naturally occurring substances are still unknown. We aimed to examine whether autophagic preconditioning with trehalose improves cardiac function after myocardial stunning by global ischemia in rats. Rat hearts were perfused by oxygenized Krebs Henseleit (KH) solution in Langendorff system. Ten rats were randomized into the following two groups according to the perfusates during the preconditioning: control (KH solution only, n = 5) and trehalose (KH + 2% trehalose, n = 5). After the 35-min preconditioning period and subsequent 20 min of global ischemia, the hearts were reperfused for 60 min. Cardiac function was assessed during the reperfusion. To evaluate autophagy, myocardial protein expression of microtubule-associated protein light chain 3 (LC3) II was evaluated by western blotting. During I/R, a systolic functional parameter, maximum dP/dt was significantly higher; meanwhile, coronary flow tended to be higher in the trehalose group than in the control group. Myocardial LC3-II expression after preconditioning was higher in the trehalose group than in the control group and decreased to the control level after I/R. In conclusion, in a rat model of global myocardial ischemia, trehalose preconditioning improved cardiac function during I/R. Further studies would be needed to identify the mechanism and effects of trehalose preconditioning.


Protective effects of fisetin against myocardial ischemia/reperfusion injury.

  • Lihui Long‎ et al.
  • Experimental and therapeutic medicine‎
  • 2020‎

The underlying mechanism of the myocardial protective effect of fisetin was studied in a rat ischemia/reperfusion injury model. Sprague-Dawley rats were randomly assigned to seven groups and pretreated with different solutions by gavage administration. A rat model of cardiac ischemia/reperfusion injury was established. Plasma levels of Von Willebrand factor (vWF) were determined by ELISA, flow cytometry was used to determine the level of cardiomyocyte apoptosis and 2,3,5-triphenyltetrazolium staining was used to determine the size of myocardial infarcts. Hematoxylin and eosin-stained sections of myocardial tissues were examined for pathological changes. Expressions of nuclear factor (NF)-κB and matrix metallopeptidase 9 (MMP-9) were measured by immunohistochemistry. Compared with the model group, rats pretreated with fisetin, quercetin and aspirin showed significant prolongation of clotting time, prothrombin time, thrombin time and activated partial thromboplastin time. Fisetin treatment better maintained the integrity of myocardial fibers and nuclear integrity, reduced the percentage of apoptotic myocardial cells, inhibited expression of NF-κB, decreased the loss of MMP-9 and reduced nuclear translocation of NF-kB. Rats pretreated with fisetin also demonstrated a significant decrease in plasma levels of vWF. In addition, the protective effect of fisetin on myocardial cells was found to be dose dependent.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: