Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,186 papers

Efficient and high yield isolation of myoblasts from skeletal muscle.

  • Aref Shahini‎ et al.
  • Stem cell research‎
  • 2018‎

Skeletal muscle (SkM) regeneration relies on the activity of myogenic progenitors that reside beneath the basal lamina of myofibers. Here, we describe a protocol for the isolation of the SkM progenitors from young and old mice by exploiting their outgrowth potential from SkM explants on matrigel coated dishes in the presence of high serum, chicken embryo extract and basic fibroblast growth factor. Compared to other protocols, this method yields a higher number of myoblasts (10-20 million) by enabling the outgrowth of these cells from tissue fragments. The majority of outgrowth cells (~90%) were positive for myogenic markers such as α7-integrin, MyoD, and Desmin. The myogenic cell population could be purified to 98% with one round of pre-plating on collagen coated dishes, where differential attachment of fibroblasts and other non-myogenic progenitors separates them from myoblasts. Moreover, the combination of high serum medium and matrigel coating provided a proliferation advantage to myogenic cells, which expanded rapidly (~24 h population doubling), while non-myogenic cells diminished over time, thereby eliminating the need for further purification steps such as FACS sorting. Finally, myogenic progenitors gave rise to multinucleated myotubes that exhibited sarcomeres and spontaneous beating in the culture dish.


Laminin-221-derived recombinant fragment facilitates isolation of cultured skeletal myoblasts.

  • Yuki Kihara‎ et al.
  • Regenerative therapy‎
  • 2022‎

Laminin is a major component of the basement membrane, containing multiple domains that bind integrin, collagen, nidogen, dystroglycan, and heparan sulfate. Laminin-221, expressed in skeletal and cardiac muscles, has strong affinity for the cell-surface receptor, integrin α7X2β1. The E8 domain of laminin-221, which is essential for cell integrin binding, is commercially available as a purified recombinant protein fragment. In this study, recombinant E8 fragment was used to purify primary rodent myoblasts. We established a facile and inexpensive method for primary myoblast culture exploiting the high affinity binding of integrin α7X2β1 to laminin-221.


Toll-like receptor ligand-dependent inflammatory responses in chick skeletal muscle myoblasts.

  • Yuma Nihashi‎ et al.
  • Developmental and comparative immunology‎
  • 2019‎

Toll-like receptors (TLRs) are a group of sensory receptors which are capable of recognizing a microbial invasion and activating innate immune system responses, including inflammatory responses, in both immune and non-immune cells. However, TLR functions in chick myoblasts, which are myogenic precursor cells contributing to skeletal muscle development and growth, have not been studied. Here, we report the expression patterns of TLR genes as well as TLR ligand-dependent transcriptions of interleukin (IL) genes in primary-cultured chick myoblasts. Almost TLR genes were expressed both in layer and broiler myoblasts but TLR1A was detected only in embryonic layer chick myoblasts. Chick TLR1/2 ligands, Pam3CSK4 and FSL-1, induced inflammatory ILs in both layer and broiler myoblasts but a TLR4 ligand, lipopolysaccharide, scarcely promoted. This is the first report on TLR ligand-dependent inflammatory responses in chick myoblasts, which may provide useful information to chicken breeding and meat production industries.


Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation.

  • Chenglin Mo‎ et al.
  • Cell cycle (Georgetown, Tex.)‎
  • 2015‎

We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts.


MyoD-positive myoblasts are present in mature fetal organs lacking skeletal muscle.

  • J Gerhart‎ et al.
  • The Journal of cell biology‎
  • 2001‎

The epiblast of the chick embryo gives rise to the ectoderm, mesoderm, and endoderm during gastrulation. Previous studies revealed that MyoD-positive cells were present throughout the epiblast, suggesting that skeletal muscle precursors would become incorporated into all three germ layers. The focus of the present study was to examine a variety of organs from the chicken fetus for the presence of myogenic cells. RT-PCR and in situ hybridizations demonstrated that MyoD-positive cells were present in the brain, lung, intestine, kidney, spleen, heart, and liver. When these organs were dissociated and placed in culture, a subpopulation of cells differentiated into skeletal muscle. The G8 antibody was used to label those cells that expressed MyoD in vivo and to follow their fate in vitro. Most, if not all, of the muscle that formed in culture arose from cells that expressed MyoD and G8 in vivo. Practically all of the G8-positive cells from the intestine differentiated after purification by FACS. This population of ectopically located cells appears to be distinct from multipotential stem cells and myofibroblasts. They closely resemble quiescent, stably programmed skeletal myoblasts with the capacity to differentiate when placed in a permissive environment.


Molecular Imaging of Human Skeletal Myoblasts (huSKM) in Mouse Post-Infarction Myocardium.

  • Katarzyna Fiedorowicz‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Current treatment protocols for myocardial infarction improve the outcome of disease to some extent but do not provide the clue for full regeneration of the heart tissues. An increasing body of evidence has shown that transplantation of cells may lead to some organ recovery. However, the optimal stem cell population has not been yet identified. We would like to propose a novel pro-regenerative treatment for post-infarction heart based on the combination of human skeletal myoblasts (huSkM) and mesenchymal stem cells (MSCs). huSkM native or overexpressing gene coding for Cx43 (huSKMCx43) alone or combined with MSCs were delivered in four cellular therapeutic variants into the healthy and post-infarction heart of mice while using molecular reporter probes. Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) performed right after cell delivery and 24 h later revealed a trend towards an increase in the isotopic uptake in the post-infarction group of animals treated by a combination of huSkMCx43 with MSC. Bioluminescent imaging (BLI) showed the highest increase in firefly luciferase (fluc) signal intensity in post-infarction heart treated with combination of huSkM and MSCs vs. huSkM alone (p < 0.0001). In healthy myocardium, however, nanoluciferase signal (nanoluc) intensity varied markedly between animals treated with stem cell populations either alone or in combinations with the tendency to be simply decreased. Therefore, our observations seem to show that MSCs supported viability, engraftment, and even proliferation of huSkM in the post-infarction heart.


Moringa isothiocyanate-1 inhibits LPS-induced inflammation in mouse myoblasts and skeletal muscle.

  • Badi Sri Sailaja‎ et al.
  • PloS one‎
  • 2022‎

This study aims to investigate the anti-inflammatory effects of moringa isothiocyanate-1 (MIC-1) extracted from seeds of Moringa oleifera Lam. in lipopolysaccharide (LPS)-induced inflammation models. MIC-1 decreased nitric oxide production and reduced the expression of pro-inflammatory markers (TNF-α, Ifn-α, IL-1β, IL-6) in C2C12 myoblasts. The daily oral treatment of MIC-1 (80 mg/kg) for three days significantly reduced the expression of pro-inflammatory markers in gastrocnemius muscle tissue of LPS-treated C57BL/6 male mice. Transcriptomic analysis provided further insights into the inhibitory effects of MIC-1 on the LPS-induced inflammation, which suggested that MIC-1 affects inflammation and immunity-related genes in myoblasts and skeletal muscle tissue. MIC-1 inhibited the nuclear accumulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the LPS-treated myoblasts. Our data support the hypothesis that the MIC-1's effects in the muscle cells are mediated through the inhibition of the NF-κB translocation in the nucleus, which, in turn, results in immunomodulating and anti-inflammatory responses at the gene expression levels.


Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle.

  • Jian Ding‎ et al.
  • PloS one‎
  • 2016‎

Global inactivation of Trbp, a regulator of miRNA pathways, resulted in developmental defects and postnatal lethality in mice. Recently, we showed that cardiac-specific deletion of Trbp caused heart failure. However, its functional role(s) in skeletal muscle has not been characterized. Using a conditional knockout model, we generated mice lacking Trbp in the skeletal muscle. Unexpectedly, skeletal muscle specific Trbp mutant mice appear to be phenotypically normal under normal physiological conditions. However, these mice exhibited impaired muscle regeneration and increased fibrosis in response to cardiotoxin-induced muscle injury, suggesting that Trbp is required for muscle repair. Using cultured myoblast cells we further showed that inhibition of Trbp repressed myoblast differentiation in vitro. The impaired myogenesis is associated with reduced expression of muscle-specific miRNAs, miR-1a and miR-133a. Together, our study demonstrated that Trbp participates in the regulation of muscle differentiation and regeneration.


Protocol for isolating mice skeletal muscle myoblasts and myotubes via differential antibody validation.

  • Dominique C Stephens‎ et al.
  • STAR protocols‎
  • 2023‎

Isolation of skeletal muscles allows for the exploration of many complex diseases. Here, we present a protocol for isolating mice skeletal muscle myoblasts and myotubes that have been differentiated through antibody validation. We describe steps for collecting and preparing murine skeletal tissue, myoblast cell maintenance, plating, and cell differentiation. We then detail procedures for cell incubation, immunostaining, slide preparation and storage, and imaging for immunofluorescence validation.


3D Co-Printing and Substrate Geometry Influence the Differentiation of C2C12 Skeletal Myoblasts.

  • Giada Loi‎ et al.
  • Gels (Basel, Switzerland)‎
  • 2023‎

Cells are influenced by several biomechanical aspects of their microenvironment, such as substrate geometry. According to the literature, substrate geometry influences the behavior of muscle cells; in particular, the curvature feature improves cell proliferation. However, the effect of substrate geometry on the myogenic differentiation process is not clear and needs to be further investigated. Here, we show that the 3D co-printing technique allows the realization of substrates. To test the influence of the co-printing technique on cellular behavior, we realized linear polycaprolactone substrates with channels in which a fibrinogen-based hydrogel loaded with C2C12 cells was deposited. Cell viability and differentiation were investigated up to 21 days in culture. The results suggest that this technology significantly improves the differentiation at 14 days. Therefore, we investigate the substrate geometry influence by comparing three different co-printed geometries-linear, circular, and hybrid structures (linear and circular features combined). Based on our results, all structures exhibit optimal cell viability (>94%), but the linear pattern allows to increase the in vitro cell differentiation, in particular after 14 days of culture. This study proposes an endorsed approach for creating artificial muscles for future skeletal muscle tissue engineering applications.


1-Deoxysphingolipids, Early Predictors of Type 2 Diabetes, Compromise the Functionality of Skeletal Myoblasts.

  • Duyen Tran‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Metabolic dysfunction, dysregulated differentiation, and atrophy of skeletal muscle occur as part of a cluster of abnormalities associated with the development of Type 2 diabetes mellitus (T2DM). Recent interest has turned to the attention of the role of 1-deoxysphingolipids (1-DSL), atypical class of sphingolipids which are found significantly elevated in patients diagnosed with T2DM but also in the asymptomatic population who later develop T2DM. In vitro studies demonstrated that 1-DSL have cytotoxic properties and compromise the secretion of insulin from pancreatic beta cells. However, the role of 1-DSL on the functionality of skeletal muscle cells in the pathophysiology of T2DM still remains unclear. This study aimed to investigate whether 1-DSL are cytotoxic and disrupt the cellular processes of skeletal muscle precursors (myoblasts) and differentiated cells (myotubes) by performing a battery of in vitro assays including cell viability adenosine triphosphate assay, migration assay, myoblast fusion assay, glucose uptake assay, and immunocytochemistry. Our results demonstrated that 1-DSL significantly reduced the viability of myoblasts in a concentration and time-dependent manner, and induced apoptosis as well as cellular necrosis. Importantly, myoblasts were more sensitive to the cytotoxic effects induced by 1-DSL rather than by saturated fatty acids, such as palmitate, which are critical mediators of skeletal muscle dysfunction in T2DM. Additionally, 1-DSL significantly reduced the migration ability of myoblasts and the differentiation process of myoblasts into myotubes. 1-DSL also triggered autophagy in myoblasts and significantly reduced insulin-stimulated glucose uptake in myotubes. These findings demonstrate that 1-DSL directly compromise the functionality of skeletal muscle cells and suggest that increased levels of 1-DSL observed during the development of T2DM are likely to contribute to the pathophysiology of muscle dysfunction detected in this disease.


Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation.

  • Pamela Senesi‎ et al.
  • Journal of translational medicine‎
  • 2013‎

Betaine (BET) is a component of many foods, including spinach and wheat. It is an essential osmolyte and a source of methyl groups. Recent studies have hypothesized that BET might play a role in athletic performance. However, BET effects on skeletal muscle differentiation and hypertrophy are still poorly understood.


Cardiac cell therapy: overexpression of connexin43 in skeletal myoblasts and prevention of ventricular arrhythmias.

  • Sarah Fernandes‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

Cell-based therapies have great potential for the treatment of cardiovascular diseases. Recently, using a transgenic mouse model Roell et al. reported that cardiac engraftment of connexin43 (Cx43)-overexpressing myoblasts in vivo prevents post-infarct arrhythmia, a common cause of death in patients following heart attack. We carried out a similar study but in a clinically relevant context via transplantation of autologous connexin43-overexpressing myoblasts in infarcted rats. Seven days after coronary ligation, rats were randomized into three groups: a control group injected with myoblasts, a null group injected with myoblasts transduced with an empty lentivirus vector (null) and a Cx43 group injected with myoblasts transduced with a lentivirus vector encoding connexin43. In contrast to Roell's report, arrhythmia occurrence was not statistically different between groups (58%, 64% and 48% for the control (n= 12), null (n= 14) and Cx43 (n= 23) groups, respectively, P= 0.92). Using ex vivo intramural monophasic action potential recordings synchronous electrical activity was observed between connexin43-overexpressing myoblasts and host cardiomyocytes, whereas such synchrony did not occur in the null-transduced group. This suggests that ex vivo connexin43 gene transfer and expression in myoblasts improved intercellular electrical coupling between myoblasts and cardiomyocytes. However, in our model such electrical coupling was not sufficient to decrease arrhythmia induction. Therefore, we would suggest a note of caution on the use of combined Cx43 gene and cell therapy to prevent post-infarct arrhythmias in heart failure patients.


Temporal differences in desmin expression between myoblasts from embryonic and adult chicken skeletal muscle.

  • Z Yablonka-Reuveni‎ et al.
  • Differentiation; research in biological diversity‎
  • 1990‎

Desmin expression by myoblasts cultured from embryonic and adult chicken breast muscle was examined employing indirect immunofluorescence. The study was performed in conjunction with [3H]thymidine autoradiography and analysis of skeletal myosin expression in order to determine whether the desmin-expressing cells were terminally differentiated. Following 2 h of labeling with [3H]thymidine, 0.55%, 2.60%, and 15.10% of the cells in mass cultures from 10-day-old embryos, 18-day-old embryos and adults, respectively, incorporated [3H]thymidine and were desmin-positive but did not express skeletal-muscle-specific myosin. Using the same approach we determined that 0.07%, 1.25%, and 7.59% of the mononucleated cells in myogenic clones from 10-day-old embryos, 18-day-old embryos and adults, respectively, were desmin-positive, myosin-negative, [3H]thymidine-positive. We suggest that these desmin-positive, myosin-negative myoblasts are proliferating cells, and we conclude that the progeny of adult myoblasts exhibit more desmin-expressing cells of this type than embryonic myoblasts do.


Myogenetic Oligodeoxynucleotide (myoDN) Recovers the Differentiation of Skeletal Muscle Myoblasts Deteriorated by Diabetes Mellitus.

  • Shunichi Nakamura‎ et al.
  • Frontiers in physiology‎
  • 2021‎

Skeletal muscle wasting in patients with diabetes mellitus (DM) is a complication of decreased muscle mass and strength, and is a serious risk factor that may result in mortality. Deteriorated differentiation of muscle precursor cells, called myoblasts, in DM patients is considered to be one of the causes of muscle wasting. We recently developed myogenetic oligodeoxynucleotides (myoDNs), which are 18-base single-strand DNAs that promote myoblast differentiation by targeting nucleolin. Herein, we report the applicability of a myoDN, iSN04, to myoblasts isolated from patients with type 1 and type 2 DM. Myogenesis of DM myoblasts was exacerbated concordantly with a delayed shift of myogenic transcription and induction of interleukins. Analogous phenotypes were reproduced in healthy myoblasts cultured with excessive glucose or palmitic acid, mimicking hyperglycemia or hyperlipidemia. iSN04 treatment recovered the deteriorated differentiation of plural DM myoblasts by downregulating myostatin and interleukin-8 (IL-8). iSN04 also ameliorated the impaired myogenic differentiation induced by glucose or palmitic acid. These results demonstrate that myoDNs can directly facilitate myoblast differentiation in DM patients, making them novel candidates for nucleic acid drugs to treat muscle wasting in patients with DM.


Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes.

  • Cajsa Davegårdh‎ et al.
  • Stem cell research & therapy‎
  • 2019‎

Sex differences are known to impact muscle phenotypes, metabolism, and disease risk. Skeletal muscle stem cells (satellite cells) are important for muscle repair and to maintain functional skeletal muscle. Here we studied, for the first time, effects of sex on DNA methylation and gene expression in primary human myoblasts (activated satellite cells) before and after differentiation into myotubes.


Harnessing Fiber Diameter-Dependent Effects of Myoblasts Toward Biomimetic Scaffold-Based Skeletal Muscle Regeneration.

  • Naagarajan Narayanan‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Regeneration of skeletal muscles is limited in cases of volumetric muscle loss and muscle degenerative diseases. Therefore, there is a critical need for developing strategies that provide cellular and structural support for skeletal muscle regeneration. In the present work, a bioengineered cell niche composed of mechanically competent aligned polyester fiber scaffolds is developed to mimic the oriented muscle fiber microenvironment by electrospinning poly(lactide-co-glycolide) (PLGA) using a custom-designed rotating collector with interspaced parallel blades. Aligned fiber scaffolds with fiber diameters ranging from 335 ± 154 nm to 3013 ± 531 nm are characterized for their bioactivities in supporting growth and differentiation of myoblasts. During in vitro culture, polymeric scaffolds with larger fiber diameter support enhanced alignment, growth, and differentiation of myoblasts associated with phosphorylation of p38 MAPK and upregulated expression of myogenin and myosin heavy chain. In vivo studies using a dystrophin-deficient mdx mouse model show that optimized fiber scaffolds seeded with primary myoblasts result in formation of dystrophin-positive myofibers network in tibialis anterior muscles. Collectively, these experiments provide critical insights on harnessing interactions between muscle cells and engineered fiber matrices to develop effective biomaterials for accelerated muscle regeneration.


Reversine ameliorates hallmarks of cellular senescence in human skeletal myoblasts via reactivation of autophagy.

  • Nika Rajabian‎ et al.
  • Aging cell‎
  • 2023‎

Cellular senescence leads to the depletion of myogenic progenitors and decreased regenerative capacity. We show that the small molecule 2,6-disubstituted purine, reversine, can improve some well-known hallmarks of cellular aging in senescent myoblast cells. Reversine reactivated autophagy and insulin signaling pathway via upregulation of Adenosine Monophosphate-activated protein kinase (AMPK) and Akt2, restoring insulin sensitivity and glucose uptake in senescent cells. Reversine also restored the loss of connectivity of glycolysis to the TCA cycle, thus restoring dysfunctional mitochondria and the impaired myogenic differentiation potential of senescent myoblasts. Altogether, our data suggest that cellular senescence can be reversed by treatment with a single small molecule without employing genetic reprogramming technologies.


Dll4 and PDGF-BB convert committed skeletal myoblasts to pericytes without erasing their myogenic memory.

  • Ornella Cappellari‎ et al.
  • Developmental cell‎
  • 2013‎

Pericytes are endothelial-associated cells that contribute to vessel wall. Here, we report that pericytes may derive from direct conversion of committed skeletal myoblasts. When exposed to Dll4 and PDGF-BB, but not Dll1, skeletal myoblasts downregulate myogenic genes, except Myf5, and upregulate pericyte markers, whereas inhibition of Notch signaling restores myogenesis. Moreover, when cocultured with endothelial cells, skeletal myoblasts, previously treated with Dll4 and PDGF-BB, adopt a perithelial position stabilizing newly formed vessel-like networks in vitro and in vivo. In a transgenic mouse model in which cells expressing MyoD activate Notch, skeletal myogenesis is abolished and pericyte genes are activated. Even if overexpressed, Myf5 does not trigger myogenesis because Notch induces Id3, partially sequestering Myf5 and inhibiting MEF2 expression. Myf5-expressing cells adopt a perithelial position, as occasionally also observed in wild-type (WT) embryos. These data indicate that endothelium, via Dll4 and PDGF-BB, induces a fate switch in adjacent skeletal myoblasts.


MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development.

  • Lei Shi‎ et al.
  • Cellular signalling‎
  • 2015‎

MicroRNAs (miRNAs or miRs) play a critical role in skeletal muscle development. In a previous study we observed that miR-128 was highly expressed in skeletal muscle. However, its function in regulating skeletal muscle development is not clear. Our hypothesis was that miR-128 is involved in the regulation of the proliferation and differentiation of skeletal myoblasts. In this study, through bioinformatics analyses, we demonstrate that miR-128 specifically targeted mRNA of myostatin (MSTN), a critical inhibitor of skeletal myogenesis, at coding domain sequence (CDS) region, resulting in down-regulating of myostatin post-transcription. Overexpression of miR-128 inhibited proliferation of mouse C2C12 myoblast cells but promoted myotube formation; whereas knockdown of miR-128 had completely opposite effects. In addition, ectopic miR-128 regulated the expression of myogenic factor 5 (Myf5), myogenin (MyoG), paired box (Pax) 3 and 7. Furthermore, an inverse relationship was found between the expression of miR-128 and MSTN protein expression in vivo and in vitro. Taken together, these results reveal that there is a novel pathway in skeletal muscle development in which miR-128 regulates myostatin at CDS region to inhibit proliferation but promote differentiation of myoblast cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: