Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 347 papers

Panax ginseng modulates cytokines in bone marrow toxicity and myelopoiesis: ginsenoside Rg1 partially supports myelopoiesis.

  • Hanumantha Rao Balaji Raghavendran‎ et al.
  • PloS one‎
  • 2012‎

In this study, we have demonstrated that Korean Panax ginseng (KG) significantly enhances myelopoiesis in vitro and reconstitutes bone marrow after 5-flurouracil-induced (5FU) myelosuppression in mice. KG promoted total white blood cell, lymphocyte, neutrophil and platelet counts and improved body weight, spleen weight, and thymus weight. The number of CFU-GM in bone marrow cells of mice and serum levels of IL-3 and GM-CSF were significantly improved after KG treatment. KG induced significant c-Kit, SCF and IL-1 mRNA expression in spleen. Moreover, treatment with KG led to marked improvements in 5FU-induced histopathological changes in bone marrow and spleen, and partial suppression of thymus damage. The levels of IL-3 and GM-CSF in cultured bone marrow cells after 24 h stimulation with KG were considerably increased. The mechanism underlying promotion of myelopoiesis by KG was assessed by monitoring gene expression at two time-points of 4 and 8 h. Treatment with Rg1 (0.5, 1 and 1.5 µmol) specifically enhanced c-Kit, IL-6 and TNF-α mRNA expression in cultured bone marrow cells. Our results collectively suggest that the anti-myelotoxicity activity and promotion of myelopoiesis by KG are mediated through cytokines. Moreover, the ginsenoside, Rg1, supports the role of KG in myelopoiesis to some extent.


Identifying microRNA determinants of human myelopoiesis.

  • Megha Rajasekhar‎ et al.
  • Scientific reports‎
  • 2018‎

Myelopoiesis involves differentiation of hematopoietic stem cells to cellular populations that are restricted in their self-renewal capacity, beginning with the common myeloid progenitor (CMP) and leading to mature cells including monocytes and granulocytes. This complex process is regulated by various extracellular and intracellular signals including microRNAs (miRNAs). We characterised the miRNA profile of human CD34+CD38+ myeloid progenitor cells, and mature monocytes and granulocytes isolated from cord blood using TaqMan Low Density Arrays. We identified 19 miRNAs that increased in both cell types relative to the CMP and 27 that decreased. miR-125b and miR-10a were decreased by 10-fold and 100-fold respectively in the mature cells. Using in vitro granulopoietic differentiation of human CD34+ cells we show that decreases in both miR-125b and miR-10a correlate with a loss of CD34 expression and gain of CD11b and CD15 expression. Candidate target mRNAs were identified by co-incident predictions between the miRanda algorithm and genes with increased expression during differentiation. Using luciferase assays we confirmed MCL1 and FUT4 as targets of miR-125b and the transcription factor KLF4 as a target of miR-10a. Together, our data identify miRNAs with differential expression during myeloid development and reveal some relevant miRNA-target pairs that may contribute to physiological differentiation.


Autophagy is essential for human myelopoiesis.

  • Jiaming Gu‎ et al.
  • Stem cell reports‎
  • 2024‎

Emergency myelopoiesis (EM) is essential in immune defense against pathogens for rapid replenishing of mature myeloid cells. During the EM process, a rapid cell-cycle switch from the quiescent hematopoietic stem cells (HSCs) to highly proliferative myeloid progenitors (MPs) is critical. How the rapid proliferation of MPs during EM is regulated remains poorly understood. Here, we reveal that ATG7, a critical autophagy factor, is essential for the rapid proliferation of MPs during human myelopoiesis. Peripheral blood (PB)-mobilized hematopoietic stem/progenitor cells (HSPCs) with ATG7 knockdown or HSPCs derived from ATG7-/- human embryonic stem cells (hESCs) exhibit severe defect in proliferation during fate transition from HSPCs to MPs. Mechanistically, we show that ATG7 deficiency reduces p53 localization in lysosome for a potential autophagy-mediated degradation. Together, we reveal a previously unrecognized role of autophagy to regulate p53 for a rapid proliferation of MPs in human myelopoiesis.


Maternal inflammation regulates fetal emergency myelopoiesis.

  • Amélie Collins‎ et al.
  • Cell‎
  • 2024‎

Neonates are highly susceptible to inflammation and infection. Here, we investigate how late fetal liver (FL) mouse hematopoietic stem and progenitor cells (HSPCs) respond to inflammation, testing the hypothesis that deficits in the engagement of emergency myelopoiesis (EM) pathways limit neutrophil output and contribute to perinatal neutropenia. We show that fetal HSPCs have limited production of myeloid cells at steady state and fail to activate a classical adult-like EM transcriptional program. Moreover, we find that fetal HSPCs can respond to EM-inducing inflammatory stimuli in vitro but are restricted by maternal anti-inflammatory factors, primarily interleukin-10 (IL-10), from activating EM pathways in utero. Accordingly, we demonstrate that the loss of maternal IL-10 restores EM activation in fetal HSPCs but at the cost of fetal demise. These results reveal the evolutionary trade-off inherent in maternal anti-inflammatory responses that maintain pregnancy but render the fetus unresponsive to EM activation signals and susceptible to infection.


Myelopoiesis and myeloid leukaemogenesis in the zebrafish.

  • A Michael Forrester‎ et al.
  • Advances in hematology‎
  • 2012‎

Over the past ten years, studies using the zebrafish model have contributed to our understanding of vertebrate haematopoiesis, myelopoiesis, and myeloid leukaemogenesis. Novel insights into the conservation of haematopoietic lineages and improvements in our capacity to identify, isolate, and culture such haematopoietic cells continue to enhance our ability to use this simple organism to address disease biology. Coupled with the strengths of the zebrafish embryo to dissect developmental myelopoiesis and the continually expanding repertoire of models of myeloid malignancies, this versatile organism has established its niche as a valuable tool to address key questions in the field of myelopoiesis and myeloid leukaemogenesis. In this paper, we address the recent advances and future directions in the field of myelopoiesis and leukaemogenesis using the zebrafish system.


A regulatory role for CHD2 in myelopoiesis.

  • Farzaneh Shahin Varnoosfaderani‎ et al.
  • Epigenetics‎
  • 2020‎

The transcriptional program that dictates haematopoietic cell fate and differentiation requires an epigenetic regulatory and memory function, provided by a network of epigenetic factors that regulate DNA methylation, post-translational histone modifications and chromatin structure. Disturbed epigenetic regulation causes perturbations in the blood cell differentiation program that results in various types of haematopoietic disorders. Thus, accurate epigenetic regulation is essential for functional haematopoiesis. In this study, we used a CRISPR-Cas9 screening approach to identify new epigenetic regulators in myeloid differentiation. We designed a Chromatin-UMI CRISPR guide library targeting 1092 epigenetic regulators. Phorbol 12-myristate 13-acetate (PMA) treatment of the chronic myeloid leukaemia cell line K-562 was used as a megakaryocytic myeloid differentiation model. Both previously described developmental epigenetic regulators and novel factors were identified in our screen. In this study, we validated and characterized a role for the chromatin remodeller CHD2 in myeloid proliferation and megakaryocytic differentiation.


Myelopoiesis in spleen-producing distinct dendritic-like cells.

  • Jonathan K H Tan‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2012‎

Dendritic cells (DC) represent a heterogeneous class of antigen presenting cells (APC). Previously we reported a distinct myeloid dendritic-like cell present in spleen, as an in vivo counterpart to cells produced in murine spleen long-term cultures (LTC-DC). These cells, named 'L-DC', were found to be functionally and phenotypically distinct from conventional (c)DC, plasmacytoid (p)DC and monocytes. These results suggested that spleen may represent a niche for development of L-DC from endogenous progenitors. Adult murine spleen has now been investigated for the presence of L-DC progenitors. Lineage-negative (Lin)(-) ckit(lo) and Lin(-) ckit(hi) progenitor subsets were identified as candidate populations, and tested for ability to produce L-DC; in vitro upon co-culture with the spleen stromal line STX3, and in vivo after adoptive therapy into mice. Both subsets colonized STX3 stroma in vitro for L-DC production, indicating that they contained either a common or two distinct progenitors for L-DC. However, only the Lin(-) ckit(hi) subset gave progeny cells after adoptive transfer into lethally irradiated mice. In vivo development was however multilineage and not restricted to L-DC development. Multilineage reconstitution reflects long-term reconstituting haematopoietic stem cells (LT-HSC), suggesting a close relationship between L-DC progenitors and LT-HSC. L-DC were however produced in vivo in much higher number than monocytes/macrophages and cDC, indicating the presence of a specific L-DC progenitor within the Lin(-) ckit(hi) subset. A model is advanced for development of L-DC directly from haematopoietic progenitors in spleen and dependent on the spleen microenvironment.


Interleukin-10 induces interferon-γ-dependent emergency myelopoiesis.

  • Ana Cardoso‎ et al.
  • Cell reports‎
  • 2021‎

In emergency myelopoiesis (EM), expansion of the myeloid progenitor compartment and increased myeloid cell production are observed and often mediated by the pro-inflammatory cytokine interferon gamma (IFN-γ). Interleukin-10 (IL-10) inhibits IFN-γ secretion, but paradoxically, its therapeutic administration to humans causes hematologic changes similar to those observed in EM. In this work, we use different in vivo systems, including a humanized immune system mouse model, to show that IL-10 triggers EM, with a significant expansion of the myeloid progenitor compartment and production of myeloid cells. Hematopoietic progenitors display a prominent IFN-γ transcriptional signature, and we show that IFN-γ mediates IL-10-driven EM. We also find that IL-10, unexpectedly, reprograms CD4 and CD8 T cells toward an activation state that includes IFN-γ production by these T cell subsets in vivo. Therefore, in addition to its established anti-inflammatory properties, IL-10 can induce IFN-γ production and EM, opening additional perspectives for the design of IL-10-based immunotherapies.


Loss of Mll3 Catalytic Function Promotes Aberrant Myelopoiesis.

  • Kelly M Arcipowski‎ et al.
  • PloS one‎
  • 2016‎

Two of the most common myeloid malignancies, myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), are associated with exceedingly low survival rates despite recent therapeutic advances. While their etiology is not completely understood, evidence suggests that certain chromosomal abnormalities contribute to MDS and AML progression. Among the most frequent chromosomal abnormalities in these disorders are alterations of chromosome 7: either complete loss of one copy of chromosome 7 (-7) or partial deletion of 7q (del(7q)), both of which increase the risk of progression from MDS to AML and are associated with chemoresistance. Notably, 7q36.1, a critical minimally deleted region in 7q, includes the gene encoding the histone methyltransferase mixed-lineage leukemia 3 (MLL3), which is also mutated in a small percentage of AML patients. However, the mechanisms by which MLL3 loss contributes to malignancy are unknown. Using an engineered mouse model expressing a catalytically inactive form of Mll3, we found a significant shift in hematopoiesis toward the granulocyte/macrophage lineage, correlating with myeloid infiltration and enlargement of secondary lymphoid organs. Therefore, we propose that MLL3 loss in patients may contribute to the progression of MDS and AML by promoting myelopoiesis.


Maladaptive innate immune training of myelopoiesis links inflammatory comorbidities.

  • Xiaofei Li‎ et al.
  • Cell‎
  • 2022‎

Bone marrow (BM)-mediated trained innate immunity (TII) is a state of heightened immune responsiveness of hematopoietic stem and progenitor cells (HSPC) and their myeloid progeny. We show here that maladaptive BM-mediated TII underlies inflammatory comorbidities, as exemplified by the periodontitis-arthritis axis. Experimental-periodontitis-related systemic inflammation in mice induced epigenetic rewiring of HSPC and led to sustained enhancement of production of myeloid cells with increased inflammatory preparedness. The periodontitis-induced trained phenotype was transmissible by BM transplantation to naive recipients, which exhibited increased inflammatory responsiveness and disease severity when subjected to inflammatory arthritis. IL-1 signaling in HSPC was essential for their maladaptive training by periodontitis. Therefore, maladaptive innate immune training of myelopoiesis underlies inflammatory comorbidities and may be pharmacologically targeted to treat them via a holistic approach.


Polycomb repressive complex 1.1 coordinates homeostatic and emergency myelopoiesis.

  • Yaeko Nakajima-Takagi‎ et al.
  • eLife‎
  • 2023‎

Polycomb repressive complex (PRC) 1 regulates stem cell fate by mediating mono-ubiquitination of histone H2A at lysine 119. While canonical PRC1 is critical for hematopoietic stem and progenitor cell (HSPC) maintenance, the role of non-canonical PRC1 in hematopoiesis remains elusive. PRC1.1, a non-canonical PRC1, consists of PCGF1, RING1B, KDM2B, and BCOR. We recently showed that PRC1.1 insufficiency induced by the loss of PCGF1 or BCOR causes myeloid-biased hematopoiesis and promotes transformation of hematopoietic cells in mice. Here we show that PRC1.1 serves as an epigenetic switch that coordinates homeostatic and emergency hematopoiesis. PRC1.1 maintains balanced output of steady-state hematopoiesis by restricting C/EBPα-dependent precocious myeloid differentiation of HSPCs and the HOXA9- and β-catenin-driven self-renewing network in myeloid progenitors. Upon regeneration, PRC1.1 is transiently inhibited to facilitate formation of granulocyte-macrophage progenitor (GMP) clusters, thereby promoting emergency myelopoiesis. Moreover, constitutive inactivation of PRC1.1 results in unchecked expansion of GMPs and eventual transformation. Collectively, our results define PRC1.1 as a novel critical regulator of emergency myelopoiesis, dysregulation of which leads to myeloid transformation.


Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis.

  • Aurélie Hérault‎ et al.
  • Nature‎
  • 2017‎

Although many aspects of blood production are well understood, the spatial organization of myeloid differentiation in the bone marrow remains unknown. Here we use imaging to track granulocyte/macrophage progenitor (GMP) behaviour in mice during emergency and leukaemic myelopoiesis. In the steady state, we find individual GMPs scattered throughout the bone marrow. During regeneration, we observe expanding GMP patches forming defined GMP clusters, which, in turn, locally differentiate into granulocytes. The timed release of important bone marrow niche signals (SCF, IL-1β, G-CSF, TGFβ and CXCL4) and activation of an inducible Irf8 and β-catenin progenitor self-renewal network control the transient formation of regenerating GMP clusters. In leukaemia, we show that GMP clusters are constantly produced owing to persistent activation of the self-renewal network and a lack of termination cytokines that normally restore haematopoietic stem-cell quiescence. Our results uncover a previously unrecognized dynamic behaviour of GMPs in situ, which tunes emergency myelopoiesis and is hijacked in leukaemia.


Identification of Stromal Cells in Spleen Which Support Myelopoiesis.

  • Hong Kiat Lim‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2019‎

Stromal cells in spleen organize tissue into red pulp, white pulp and marginal zone, and also interact with hematopoietic cells to regulate immune responses. This study has used phenotypic information of a previously described spleen stromal cell line called 5G3, which supports restricted hematopoiesis in vitro, to identify an equivalent stromal cell subset in vivo and to test its capacity to support hematopoiesis. Using stromal cell fractionation, phenotypic analysis, as well as cell growth and hematopoietic support assays, the Sca-1+gp38+Thy1.2+CD29+CD51+ fraction of spleen stroma has been identified as an equivalent stromal subset resembling the 5G3 cell counterpart. While heterogeneity may still exist within that subset, it has been shown to have superior hematopoietic support capacity compared with the 5G3 cell line, and all other spleen stromal cell fractions tested.


Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells.

  • Kanakadurga Singer‎ et al.
  • Molecular metabolism‎
  • 2014‎

Obesity is associated with an activated macrophage phenotype in multiple tissues that contributes to tissue inflammation and metabolic disease. To evaluate the mechanisms by which obesity potentiates myeloid activation, we evaluated the hypothesis that obesity activates myeloid cell production from bone marrow progenitors to potentiate inflammatory responses in metabolic tissues. High fat diet-induced obesity generated both quantitative increases in myeloid progenitors as well as a potentiation of inflammation in macrophages derived from these progenitors. In vivo, hematopoietic stem cells from obese mice demonstrated the sustained capacity to preferentially generate inflammatory CD11c(+) adipose tissue macrophages after serial bone marrow transplantation. We identified that hematopoietic MyD88 was important for the accumulation of CD11c(+) adipose tissue macrophage accumulation by regulating the generation of myeloid progenitors from HSCs. These findings demonstrate that obesity and metabolic signals potentiate leukocyte production and that dietary priming of hematopoietic progenitors contributes to adipose tissue inflammation.


In situ mapping identifies distinct vascular niches for myelopoiesis.

  • Jizhou Zhang‎ et al.
  • Nature‎
  • 2021‎

In contrast to nearly all other tissues, the anatomy of cell differentiation in the bone marrow remains unknown. This is owing to a lack of strategies for examining myelopoiesis-the differentiation of myeloid progenitors into a large variety of innate immune cells-in situ in the bone marrow. Such strategies are required to understand differentiation and lineage-commitment decisions, and to define how spatial organizing cues inform tissue function. Here we develop approaches for imaging myelopoiesis in mice, and generate atlases showing the differentiation of granulocytes, monocytes and dendritic cells. The generation of granulocytes and dendritic cells-monocytes localizes to different blood-vessel structures known as sinusoids, and displays lineage-specific spatial and clonal architectures. Acute systemic infection with Listeria monocytogenes induces lineage-specific progenitor clusters to undergo increased self-renewal of progenitors, but the different lineages remain spatially separated. Monocyte-dendritic cell progenitors (MDPs) map with nonclassical monocytes and conventional dendritic cells; these localize to a subset of blood vessels expressing a major regulator of myelopoiesis, colony-stimulating factor 1 (CSF1, also known as M-CSF)1. Specific deletion of Csf1 in endothelium disrupts the architecture around MDPs and their localization to sinusoids. Subsequently, there are fewer MDPs and their ability to differentiate is reduced, leading to a loss of nonclassical monocytes and dendritic cells during both homeostasis and infection. These data indicate that local cues produced by distinct blood vessels are responsible for the spatial organization of definitive blood cell differentiation.


Nfix expression critically modulates early B lymphopoiesis and myelopoiesis.

  • Caitríona O'Connor‎ et al.
  • PloS one‎
  • 2015‎

The commitment of stem and progenitor cells toward specific hematopoietic lineages is tightly controlled by a number of transcription factors that regulate differentiation programs via the expression of lineage restricting genes. Nuclear factor one (NFI) transcription factors are important in regulating hematopoiesis and here we report an important physiological role of NFIX in B- and myeloid lineage commitment and differentiation. We demonstrate that NFIX acts as a regulator of lineage specification in the haematopoietic system and the expression of Nfix was transcriptionally downregulated as B cells commit and differentiate, whilst maintained in myeloid progenitor cells. Ectopic Nfix expression in vivo blocked early B cell development stage, coincident with the stage of its downregulation. Furthermore, loss of Nfix resulted in the perturbation of myeloid and lymphoid cell differentiation, and a skewing of gene expression involved in lineage fate determination. Nfix was able to promote myeloid differentiation of total bone marrow cells under B cell specific culture conditions but not when expressed in the hematopoietic stem cell (HSPC), consistent with its role in HSPC survival. The lineage choice determined by Nfix correlated with transcriptional changes in a number of genes, such as E2A, C/EBP, and Id genes. These data highlight a novel and critical role for NFIX transcription factor in hematopoiesis and in lineage specification.


Enhanced myelopoiesis and aggravated arthritis in S100a8-deficient mice.

  • Annabelle Cesaro‎ et al.
  • PloS one‎
  • 2019‎

Expressed strongly by myeloid cells, damage-associated molecular pattern (DAMP) proteins S100A8 and S100A9 are found in the serum of patients with infectious and autoimmune diseases. Compared to S100A9, the role of S100A8 is controversial. We investigated its biological activity in collagen-induced arthritis using the first known viable and fertile S100a8-deficient (S100a8-/-) mouse. Although comparable to the wild type (WT) in terms of lymphocyte distribution in blood and in the primary and secondary lymphoid organs, S100a8-/- mice had increased numbers of neutrophils, monocytes and dendritic cells in the blood and bone marrow, and these all expressed myeloid markers such as CD11b, Ly6G and CD86 more strongly. Granulocyte-macrophage common precursors were increased in S100a8-/- bone marrow and yielded greater numbers of macrophages and dendritic cells in culture. The animals also developed more severe arthritic disease leading to aggravated osteoclast activity and bone destruction. These findings were correlated with increased inflammatory cell infiltration and cytokine secretion in the paws. This study suggests that S100A8 is an anti-inflammatory DAMP that regulates myeloid cell differentiation, thereby mitigating the development of experimental arthritis.


Clonal myelopoiesis promotes adverse outcomes in chronic kidney disease.

  • Ahmed A Z Dawoud‎ et al.
  • Leukemia‎
  • 2022‎

We sought to determine the relationship between age-related clonal hematopoiesis (CH) and chronic kidney disease (CKD). CH, defined as mosaic chromosome abnormalities (mCA) and/or driver mutations was identified in 5449 (2.9%) eligible UK Biobank participants (n = 190,487 median age = 58 years). CH was negatively associated with glomerular filtration rate estimated from cystatin-C (eGFR.cys; β = -0.75, P = 2.37 × 10-4), but not with eGFR estimated from creatinine, and was specifically associated with CKD defined by eGFR.cys < 60 (OR = 1.02, P = 8.44 × 10-8). In participants without prevalent myeloid neoplasms, eGFR.cys was associated with myeloid mCA (n = 148, β = -3.36, P = 0.01) and somatic driver mutations (n = 3241, β = -1.08, P = 6.25 × 10-5) associated with myeloid neoplasia (myeloid CH), specifically mutations in CBL, TET2, JAK2, PPM1D and GNB1 but not DNMT3A or ASXL1. In participants with no history of cardiovascular disease or myeloid neoplasms, myeloid CH increased the risk of adverse outcomes in CKD (HR = 1.6, P = 0.002) compared to those without myeloid CH. Mendelian randomisation analysis provided suggestive evidence for a causal relationship between CH and CKD (P = 0.03). We conclude that CH, and specifically myeloid CH, is associated with CKD defined by eGFR.cys. Myeloid CH promotes adverse outcomes in CKD, highlighting the importance of the interaction between intrinsic and extrinsic factors to define the health risk associated with CH.


Inhibition of JAK2 Suppresses Myelopoiesis and Atherosclerosis in Apoe-/- Mice.

  • Yang Tang‎ et al.
  • Cardiovascular drugs and therapy‎
  • 2020‎

Increased myelopoiesis has been linked to risk of atherosclerotic cardiovascular disease (ACD). Excessive myelopoiesis can be driven by dyslipidemia and cholesterol accumulation in hematopoietic stem and progenitor cells (HSPC) and may involve increased signaling via Janus kinase 2 (JAK2). Constitutively activating JAK2 mutants drive biased myelopoiesis and promote development of myeloproliferative neoplasms (MPN) or clonal hematopoiesis, conditions associated with increased risk of ACD. JAK2 inhibitors have been developed as a therapy for MPNs. The potential for JAK2 inhibitors to protect against atherosclerosis has not been tested. We therefore assessed the impact of JAK2 inhibition on atherogenesis.


Rosiglitazone Promotes Bone Marrow Adipogenesis to Impair Myelopoiesis under Stress.

  • Wenyi Lu‎ et al.
  • PloS one‎
  • 2016‎

The therapeutic use of thiazolidinediones (TZDs) causes unwanted hematological side effects, although the underlying mechanisms of these effects are poorly understood. This study tests the hypothesis that rosiglitazone impairs the maintenance and differentiation of hematopoietic stem/progenitor cells, which ultimately leads to hematological abnormalities.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: