Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 537 papers

Two myeloid differentiation factor 88 (MyD88) isoforms identified in ducks.

  • Yuqiang Cheng‎ et al.
  • Developmental and comparative immunology‎
  • 2015‎

MyD88 is an adaptor protein involved in the interleukin-1 receptor-induced and Toll-like receptor (TLR)-induced activation of nuclear factor-κB (NF-κB). In this study, we identified two isoforms of MyD88 gene, designated DuMyD88-X1 and DuMyD88-X2, from duck cells. Both variants were determined to have a death domain at the N-terminal and a Toll/IL-1R (TIR) domain at the C-terminal; however, the TIR domain of DuMyD88-X2 was incomplete and was 81 amino acids shorter than DuMyD88-X1. Quantitative real-time reverse transcription PCR revealed broad expression of both MyD88s. During Newcastle disease virus (NDV) challenge experiments, expression of the two genes increased significantly, with DuMyD88-X1 having a larger amplitude and longer duration. Overexpression of DuMyD88-X1 and DuMyD88-X2 induced the activation of NF-κB and IL-6 in vitro, suggesting that DuMyD88-X1 and DuMyD88-X2 may be important in the innate immune response. The results verify the existence of a MyD88-dependent signaling pathway in ducks and contribute to understanding the potential role of MyD88s in the innate immune response.


Identification and function of myeloid differentiation factor 88 (MyD88) in Litopenaeus vannamei.

  • Shuang Zhang‎ et al.
  • PloS one‎
  • 2012‎

Myeloid differentiation factor 88 (MyD88) is a universal and essential signaling protein in Toll-like receptor/interleukin-1 receptor-induced activation of nuclear factor-kappa B. In this study, two MyD88 protein variants (LvMyD88 and LvMyD88-1) were identified in Litopenaeus vannamei. The LvMyD88 cDNA is 1,848 bp in length and contains an open reading frame (ORF) of 1,428 bp, whereas the LvMyD88-1 cDNA is 1,719 bp in length and has an ORF of 1,299 bp. Both variants encode proteins with death and Toll/interleukin-1 receptor domains and share 91% sequence identity. In healthy L. vannamei, the LvMyD88 genes were highly expressed in hemocytes but at a low level in the hepatopancreas. The LvMyD88s expression was induced in hemocytes after challenge with lipopolysaccharide, CpG-ODN2006, Vibrio parahaemolyticus, Staphyloccocus aureus, and white spot syndrome virus, but not by poly I∶C. Overexpression of LvMyD88 and LvMyD88-1 in Drosophila Schneider 2 cells led to activation of antimicrobial peptide genes and wsv069 (ie1), wsv303, and wsv371. These results suggested that LvMyD88 may play a role in antibacterial and antiviral response in L. vannamei. To our knowledge, this is the first report on MyD88 in shrimp and a variant of MyD88 gene in invertebrates.


Myeloid differentiation factor 88 is required for resistance to Neospora caninum infection.

  • Tiago W P Mineo‎ et al.
  • Veterinary research‎
  • 2009‎

Neospora caninum is an intracellular parasite that causes major economic impact on cattle raising farms, and infects a wide range of warm-blooded hosts worldwide. Innate immune mechanisms that lead to protection against this parasite are still unknown. In order to investigate whether myeloid differentiation factor 88 (MyD88) is required for resistance against N. caninum, genetically deficient mice (MyD88(-/-)) and wild type littermates were infected with live tachyzoites and the resistance to infection was evaluated. We found that sub-lethal tachyzoite doses induced acute mortality of MyD88(-/-) mice, which succumbed to infection due to uncontrolled parasite replication. Higher parasitism in MyD88(-/-) mice was associated with the lack of IL-12 production by dendritic cells, delayed IFN-gamma responses by NKT, CD4(+) and CD8(+) T lymphocytes, and production of high levels of IL-10. MyD88(-/-) mice replenished with IL-12 and IFN-gamma abolished susceptibility as the animals survived throughout the experimental period. We conclude that protective IFN-gamma-mediated immunity to N. caninum is dependent on initial MyD88 signaling, in a mechanism triggered by production of IL-12 by dendritic cells. Further knowledge on Toll-like receptor recognition of N. caninum antigens is encouraged, since it could generate new prophylactic and therapeutic tools to control parasite burden.


Myeloid differentiation factor 88 signaling in donor T cells accelerates graft-versus-host disease.

  • Satomi Matsuoka‎ et al.
  • Haematologica‎
  • 2020‎

Myeloid differentiation factor 88 (MyD88) signaling has a crucial role in activation of both innate and adoptive immunity. MyD88 transduces signals via Toll-like receptor and interleukin-1 receptor superfamily to the NFκB pathway and inflammasome by forming a molecular complex with interleukin-1 receptor-associated kinase 4. The MyD88/interleukin-1 receptor-associated kinase 4 pathway plays an important role, not only in innate immunity, but also T-cell immunity; however, its role in donor T cells on the pathophysiology of graft-versus-host disease (GvHD) remains to be elucidated. We addressed this issue by using MyD88-deficient T cells in a mouse model of allogeneic hematopoietic stem cell transplantation (allo-SCT). While MyD88-deficient and wild-type T cells proliferated equivalently after transplantation, MyD88-deficient T cells demonstrated impaired survival and differentiation toward Th1, Tc1, and Th17, and induced less severe GvHD compared to wild-type T cells. Administration of interleukin-1 receptor-associated kinase 4 inhibitor PF-06650833 significantly ameliorated GvHD after allo-SCT. These results thus demonstrate that donor T-cell MyD88/interleukin-1 receptor-associated kinase 4 pathway is a novel therapeutic target against GvHD after allo-SCT.


An analysis of the expression and function of myeloid differentiation factor 88 in human osteosarcoma.

  • Jun Chen‎ et al.
  • Oncology letters‎
  • 2018‎

The aim of the present study was to investigate the expression and function of myeloid differentiation factor 88 (MyD88) in osteosarcoma. Immunohistochemical staining was used to detect MyD88 protein in osteosarcoma tissues and matched normal bone tissues. The association between MyD88 expression and the clinical characteristics of patients with osteosarcoma was analyzed. Furthermore, survival analysis of patients with osteosarcoma was performed to study the association between MyD88 expression and patient prognosis. Finally, the effect of the MyD88 inhibitor, ST2825, on the proliferation and apoptosis of the human osteosarcoma cell line U2OS was examined. Additionally, cell proliferation, invasion and apoptosis were examined using an MTT assay, Transwell assay and Annexin V-fluorescein isothiocyanate staining kit, respectively. The expression of proteins associated with the NF-κB signaling pathway was analyzed by western blotting. The positive expression rate of MyD88 in osteosarcoma and normal bone tissues was 71.4 and 6.1%, respectively. Statistical analysis demonstrated that MyD88 was not associated with gender, age, histological type or tumor location, but that it was associated with Enneking stage and tumor metastasis (P<0.05). According to the survival analysis, patients with osteosarcoma in the high MyD88 expression group displayed a reduced overall survival rate (P<0.05). Furthermore, inhibition of MyD88 by ST2825 in U2OS cells resulted in a marked decrease in cellular proliferation and migration, and an increase in the rate of apoptosis (P<0.05). Notably, ST2825 significantly decreased cyclin D1, matrix metallopeptidase-9 and nucleus p65 expression, but increased cleaved-caspase 3 expression in ST2825-treated U2OS cells (P<0.05). The results of the present study indicated that MyD88 expression is associated with the progression of osteosarcoma and may be a potential therapeutic target for the treatment of osteosarcoma.


Interleukin-1α Mediates Ozone-Induced Myeloid Differentiation Factor-88-Dependent Epithelial Tissue Injury and Inflammation.

  • Chloé Michaudel‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Air pollution associated with ozone exposure represents a major inducer of respiratory disease in man. In mice, a single ozone exposure causes lung injury with disruption of the respiratory barrier and inflammation. We investigated the role of interleukin-1 (IL-1)-associated cytokines upon a single ozone exposure (1 ppm for 1 h) using IL-1α-, IL-1β-, and IL-18-deficient mice or an anti-IL-1α neutralizing antibody underlying the rapid epithelial cell death. Here, we demonstrate the release of the alarmin IL-1α after ozone exposure and that the acute respiratory barrier injury and inflammation and airway hyperreactivity are IL-1α-dependent. IL-1α signaling via IL-1R1 depends on the adaptor protein myeloid differentiation factor-88 (MyD88). Importantly, epithelial cell signaling is critical, since deletion of MyD88 in lung type I alveolar epithelial cells reduced ozone-induced inflammation. In addition, intratracheal injection of recombinant rmIL-1α in MyD88acid mice led to reduction of inflammation in comparison with wild type mice treated with rmIL-1α. Therefore, a major part of inflammation is mediated by IL-1α signaling in epithelial cells. In conclusion, the alarmin IL-1α released upon ozone-induced tissue damage and inflammation is mediated by MyD88 signaling in epithelial cells. Therefore, IL-1α may represent a therapeutic target to attenuate ozone-induced lung inflammation and hyperreactivity.


Circular RNA_0001187 participates in the regulation of ulcerative colitis development via upregulating myeloid differentiation factor 88.

  • Wei Ouyang‎ et al.
  • Bioengineered‎
  • 2022‎

Circular RNA (circRNA) had been confirmed to participate in ulcerative colitis (UC) development. Circular RNA_0001187 (Circ_0001187) had been found to be overexpressed in patients with Crohn disease. Therefore, circ_0001187 might be an important circRNA regulating intestinal inflammatory diseases. However, the role and mechanism of circ_0001187 in UC progression remains unclear. The colonic mucosal tissues were obtained from 23 UC patients and 23 healthy normal controls. Tumor necrosis factor-α (TNF-α) was used to mimic UC cell model in vitro. Cell function was assessed by cell counting kit 8 assay, EdU assay, flow cytometry, ELISA assay and oxidative stress detection. RNA interaction was confirmed by dual-luciferase reporter assay and RIP assay. Serum exosomes were isolated by ultracentrifugation and identified by transmission electron microscope. Circ_0001187 was overexpressed in UC patients. Circ_0001187 knockdown enhanced the proliferation, while suppressed apoptosis, inflammation and oxidative stress of TNF-α-induced FHC cells. Circ_0001187 acted as miR-1236-3p sponge, and the effects of circ_0001187 downregulation on TNF-α-induced FHC cell injury were overturned by miR-1236-3p inhibitor. MYD88 was targeted by miR-1236-3p, and circ_0001187 sponged miR-1236-3p to regulate MYD88. MYD88 knockdown alleviated TNF-α-induced FHC cell injury, and its upregulation revoked the inhibition effect of miR-1236-3p on TNF-α-induced FHC cell injury. High expression of circ_0001187 also was observed in the serum exosomes of UC patients. Our data confirmed that circ_0001187 facilitated UC progression through miR-1236-3p/MYD88 axis, which might be a potential treatment and diagnosis biomarker for UC.


The role of myeloid differentiation factor 88 on mitochondrial dysfunction of peritoneal leukocytes during polymicrobial sepsis.

  • Yu Gong‎ et al.
  • Central-European journal of immunology‎
  • 2016‎

To investigate the role of myeloid differentiation factor 88 (MyD88) on mitochondrial dysfunction of peritoneal leukocytes during polymicrobial sepsis.


Novel myeloid differentiation factor 88, EsMyD88, exhibits EsTube-binding activity in Chinese mitten crab Eriocheir sinensis.

  • Ying Huang‎ et al.
  • Developmental and comparative immunology‎
  • 2014‎

Myeloid differentiation factor 88 (MyD88) is a universal and essential adapter protein that participates in the activation of the Toll-like receptor/interleukin-1 receptor-mediated signaling pathway. In the present study, a new MyD88 gene (named EsMyD88) was identified in the Chinese mitten crab Eriocheir sinensis. The cDNA of EsMyD88 was 2210 bp long with a 1416 bp open reading frame that encoded a protein with 472 amino acids. Predicted EsMyD88 protein had a death domain at the N-terminal and a TIR domain at the C-terminal. BLASTP and phylogenetic analysis results showed that EsMyD88 was clustered in one group together with other crustaceans MyD88 (SpMyD88, FcMyD88, LvMyD88, and LvMyD88-1). EsMyD88 was detected in all the examined tissues of healthy crabs, and was mainly expressed in the hemocytes and nerves. When normal crabs were challenged with lipopolysaccharide, peptidoglycan, Staphylococcus aureus, Vibrio parahaemolyticus, or Aeromonas hydrophila, the expression levels of EsMyD88 significantly increased either in the hepatopancreas or hemocytes. Results of the pull-down assay showed that EsMyD88 could bind to downstream cytosolic adaptor EsTube. Overexpression of EsMyD88 protein in Drosophila Schneider 2 cells led to the activation of antimicrobial peptide genes. RNA interference assay showed that EsMyD88 is involved in regulating the transcription of ALF1 and ALF2, Cru1 and Cru2, and Lys in crab challenged with V. parahaemolyticus. All the results mentioned earlier indicated that EsMyD88 gene has a key function in antibacterial innate immune defense.


Toll-like receptor 4 and myeloid differentiation factor 88 are required for gastric bypass-induced metabolic effects.

  • Marwa Abu El Haija‎ et al.
  • Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery‎
  • 2021‎

Toll-like receptor 4 (TLR4) has been suggested as one of the forefront cross-communicators between the intestinal bacteria and the host to regulate inflammatory signals and energy homeostasis. High-fat diet-induced inflammation is mediated by changes in gut microbiota and requires a functional TLR-4, the deficiency of which renders mice resistant to diet-induced obesity and its associated metabolic dysfunction. Furthermore, gut microbiota was suggested to play a key role in the beneficial effects of Roux-en-Y gastric bypass (RYGB), a commonly performed bariatric procedure.


Identification and function of two myeloid differentiation factor 88 variants in triangle-shell pearl mussel (Hyriopsis cumingii).

  • Qian Ren‎ et al.
  • Developmental and comparative immunology‎
  • 2014‎

Myeloid differentiation factor 88 (MyD88) is a universal and essential adapter protein that participates in the activation of the Toll-like receptor (TLR)/interleukin-1 receptor-mediated signaling pathway. In this study, two MyD88 genes (HcMyD88-1 and HcMyD88-2) were identified from triangle-shell pearl mussel (Hyriopsis cumingii). Both HcMyD88-1 and HcMyD88-2 proteins were determined to have a death domain at the N-terminal and a TIR domain at the C-terminal. Both HcMyD88-1 and HcMyD88-2 genes were mainly expressed in the hepatopancreas of healthy mussels. HcMyD88-1 and HcMyD88-2 slightly responded to Gram-negative bacterial challenge. Upon bacterial challenge with Gram-positive Staphyloccocus aureus, HcMyD88-1 and HcMyD88-2 transcription levels remarkably increased at 2 and 6h, respectively. Overexpression of HcMyD88-1 and HcMyD88-2 proteins in Drosophila Schneider 2 cells led to the activation of antimicrobial peptide genes. These results indicated that HcMyD88-2 had higher activity than HcMyD88-1 during the activation of attacin A, drosomycin, and metchnikowin genes, suggesting that HcMyD88 genes may play a role in antibacterial innate immune defense.


Myeloid differentiation factor 88 is up-regulated in epileptic brain and contributes to experimental seizures in rats.

  • Na Wang‎ et al.
  • Experimental neurology‎
  • 2017‎

Accumulating evidence supports that activation of inflammatory pathways is a crucial factor contributing to the pathogenesis of seizures. In particular, the activation of interleukin-1 beta (IL-1β) system exerts proconvulsant effects in a large variety of seizure models. Myeloid differentiation factor 88 (MyD88) is a critical adaptor protein in the signaling cascade elicited by IL-1β. The present study aimed to investigate the expression pattern of MyD88 in rat models of seizures and in patients with refractory temporal lobe epilepsy (TLE), and to study the role of MyD88 in epileptic seizures. Our results revealed that MyD88 was up-regulated in the hippocampus of rats in the lithium-pilocarpine model of acute seizures. Importantly, MyD88 overexpression was also significantly present in the brain from chronic epileptic rats and the temporal neocortex specimens from drug-resistant TLE patients. In the acute seizure model, both the behavioral and electrographic seizure activities were record and analyzed in rats for 90min, starting immediately after pilocarpine injection. ST2825, a synthetic MyD88 inhibitor, was administered intracerebroventricularly (2.5-5.0-10μg in 2μl) 20min before pilocarpine injection. We found that ST2825 at doses of 5μg and 10μg significantly inhibited the pilocarpine-induced behavioral and electrographic seizures. Moreover, 10μg ST2825 prevented the proconvulsant actions of IL-1β. As previous evidence suggested that IL-1β proconvulsant effects was mediated by enhancing the phosphorylation level of the NR2B subunit of N-methyl-d-aspartate (NMDA) receptor, we then probed whether this molecular was involved in the effect of the pharmacological inhibition. Our results revealed that 10μg ST2825 markedly reversed the increased Tyr1472-phosphorylation of the NR2B subunit of NMDA receptor observed in the proconvulsant conditions of IL-1β and in seizures induced by pilocarpine alone. These findings indicate that altered expression of MyD88 might contribute to the pathogenesis of seizures and targeting of this adaptor protein might represent a novel therapeutic strategy to suppress seizure activities.


Molecular cloning and expression studies of the adapter molecule myeloid differentiation factor 88 (MyD88) in turbot (Scophthalmus maximus).

  • Jing-Yun Lin‎ et al.
  • Developmental and comparative immunology‎
  • 2015‎

Myeloid differentiation factor 88 (MyD88) is an adapter protein involved in the interleukin-1 receptor (IL-1R) and Toll-like receptor (TLR)-mediated activation of nuclear factor-kappaB (NF-κB). In this study, a full length cDNA of MyD88 was cloned from turbot, Scophthalmus maximus. It is 1619 bp in length and contains an 858-bp open reading frame that encodes a peptide of 285 amino acid residues. The putative turbot (Sm)MyD88 protein possesses a N-terminal death domain and a C-terminal Toll/IL-1 receptor (TIR) domain known to be important for the functions of MyD88 in mammals. Phylogenetic analysis grouped SmMyD88 with other fish MyD88s. SmMyD88 mRNA was ubiquitously expressed in all examined tissues of healthy turbots, with higher levels observed in immune-relevant organs. To explore the role of SmMyD88, its gene expression profile in response to stimulation of lipopolysaccharide (LPS), CpG oligodeoxynucleotide (CpG-ODN) or turbot reddish body iridovirus (TRBIV) was studied in the head kidney, spleen, gills and muscle over a 7-day time course. The results showed an up-regulation of SmMyD88 transcript levels by the three immunostimulants in all four examined tissues, with the induction by CpG-ODN strongest and initiated earliest and inducibility in the muscle very weak. Additionally, TRBIV challenge resulted in a quite high level of SmMyD88 expression in the spleen, whereas the two synthetic immunostimulants induced the higher levels in the head kidney. These data provide insights into the roles of SmMyD88 in the TLR/IL-1R signaling pathway of the innate immune system in turbot.


Enhanced myeloid differentiation factor 88 promotes tumor metastasis via induction of epithelial-mesenchymal transition in human hepatocellular carcinoma.

  • R-J Jia‎ et al.
  • Cell death & disease‎
  • 2014‎

Metastasis is the leading cause of death in patients with hepatocellular carcinoma (HCC) after curative resection. Therefore, it is critical to understand the mechanisms underlying tumor metastasis in HCC. We have previously shown that elevated expression of myeloid differentiation factor 88 (MyD88) may promote tumor growth and metastasis in HCC. In this study, we reported that enhanced expression of MyD88 promoted epithelial-mesenchymal transition (EMT) properties and tumor-initiating capabilities in HCC cells. MyD88 was found to be able to interact with p85, a regulatory subunit of phosphoinositide 3-kinase (PI3-K), independent of TLR/IL-1R-mediated response and caused PI3-K/v-akt murine thymoma viral oncogene homolog (Akt) activation, which resulted in subsequent phosphorylation of glycogen synthase kinase-3β and stabilization of Snail, a critical EMT mediator. Consistently, we observed a significant correlation between MyD88 expression and p-Akt levels in a cohort of HCC patients, and found that the combination of these two parameters have better prognostic value for HCC patients. Taken together, these results suggest that elevated MyD88 may facilitate HCC metastasis by promoting EMT properties and tumor-initiating capabilities via PI3-K/Akt pathway.


Soluble amyloid triggers a myeloid differentiation factor 88 and interferon regulatory factor 7 dependent neuronal type-1 interferon response in vitro.

  • Myles Robert Minter‎ et al.
  • Journal of neuroinflammation‎
  • 2015‎

Neuro-inflammation has long been implicated as a contributor to the progression of Alzheimer's disease in both humans and animal models. Type-1 interferons (IFNs) are pleiotropic cytokines critical in mediating the innate immune pro-inflammatory response. The production of type-1 IFNs following pathogen detection is, in part, through the activation of the toll-like receptors (TLRs) and subsequent signalling through myeloid differentiation factor-88 (Myd88) and interferon regulatory factors (IRFs). We have previously identified that neuronal type-1 IFN signalling, through the type-1 interferon alpha receptor-1 (IFNAR1), is detrimental in models of AD. Using an in vitro approach, this study investigated the TLR network as a potential production pathway for neuronal type-1 IFNs in response to Aβ.


A novel myeloid differentiation factor 88 homolog, SpMyD88, exhibiting SpToll-binding activity in the mud crab Scylla paramamosain.

  • Xin-Cang Li‎ et al.
  • Developmental and comparative immunology‎
  • 2013‎

Myeloid differentiation factor 88 (MyD88) is an essential regulator in the Toll or Toll-like receptor (TLR) signaling pathway. In the current study, we characterized a novel crustacean MyD88 homolog, SpMyD88, and analyzed its binding activity with SpToll. The full-length cDNA sequence of SpMyD88 is 2933 bp, with a 1419 bp open reading frame encoding a 472-amino acid protein. No signal peptide was predicted. A death domain (residues 19-103), a Toll/interleukin-1 receptor (TIR) domain (residues 156-297), and a C-terminal extension (CTE) domain (residues 298-472) were also found. In a phylogenetic tree constructed with MyD88 homologs from both invertebrates and vertebrates, arthropod MyD88s including SpMyD88 formed a cluster containing a unique CTE domain. SpToll shared the highest identity with human TLR4. These two receptors were grouped into a cluster of a tree constructed based on the conserved TIR domains. SpToll also had a close relationship with other shrimp TLRs that possess potential antibacterial activity. SpMyD88 was highly expressed in the hemocytes, gills, hepatopancreas, and eye stalks. Upon challenge with Vibrio harveyi, both SpMyD88 and SpToll were significantly increased in the hemocytes, whereas only SpMyD88 was elevated by Staphylococcus aureus. In addition, a pull-down assay demonstrated that SpMyD88 showed a binding activity with SpToll. These results suggest that SpMyD88 and SpToll are involved in the defense system of mud crabs against Gram-negative bacteria.


Identification and characterization of a myeloid differentiation factor 88 (MyD88) cDNA and gene in Japanese flounder, Paralichthys olivaceus.

  • Tomokazu Takano‎ et al.
  • Developmental and comparative immunology‎
  • 2006‎

The interleukin-1 receptor/toll-like receptor (IL-1R/TLR) superfamily signaling involves myeloid differentiation factor 88 (MyD88) that acts as an important adapter protein. A Japanese flounder (Paralichthys olivaceus) MyD88 (jfMyD88) cDNA and gene were cloned, and found to have lengths of 1.5 and 3.01 kb, respectively. The ORF encodes 285 amino acids that contain a death domain and a Toll/IL-1 receptor domain. The gene is composed of 5 exons and 4 introns. The jfMyD88 gene is highly expressed in organs involved in immune functions, including the gills, intestines, kidney, skin and spleen. Three days after a fish was infected with Edwardsiella tarda, staining with anti-jfMyD88 polyclonal antibody revealed an increased population of MyD88-positive cells in the kidney and spleen. These results imply that MyD88 has an important role in the innate immune system in Japanese flounder.


Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6.

  • H Häcker‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

Transition of immature antigen presenting cells (APCs) to the state of professional APCs is essential for initiation of cell-mediated immune responses to pathogens. Signal transduction via molecules of the Toll-like receptor (TLR)/interleukin 1 receptor (IL-1R) pathway is critical for activation of APCs either by pathogen-derived pattern ligands like lipopolysaccharides (LPS) or by CD40 ligation through T helper cells. The capacity of bacterial DNA (CpG-DNA) to induce APCs to differentiate into professional APCs represents an interesting discovery. However, the signaling pathways involved are poorly understood. Here we show that CpG-DNA activates the TLR/IL-1R signaling pathway via the molecules myeloid differentiation marker 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6), leading to activation of kinases of the IkappaB kinase complex and the c-jun NH(2)-terminal kinases. Moreover, cells of TLR2- and TLR4-deficient mice are activated by CpG-DNA, whereas cells of MyD88-deficient mice do not respond. The data suggest that CpG-DNA initiates signaling via the TLR/IL-1R pathway in APCs in a manner similar to LPS and to T helper cell-mediated CD40 ligation. Activation of the TLR/IL-1R signaling pathway by foreign bacterial DNA may be one way to initiate innate defense mechanisms against infectious pathogens in vivo.


Extract from Mulberry (Morus australis) leaf decelerate acetaminophen induced hepatic inflammation involving downregulation of myeloid differentiation factor 88 (MyD88) signals.

  • Chi-Ting Horng‎ et al.
  • Journal of food and drug analysis‎
  • 2017‎

Acetaminophen (APAP) induced inflammation and oxidative stress can cause cell death to induce liver damage. The antioxidative and anti-inflammatory effect of Mulberry (Morus australis) leaf extract (MLE) was shown in previous studies. In this study, we investigated the modulation of MLE on APAP induced inflammation and oxidative stress in rat liver injury or liver cancer cell (HepG2). Wistar rat was fed orally with MLE (0.5% or 1.0 %) for 1 week, and then, 900 mg/kg of APAP was injected intraperitoneally (i.p.). Pretreatment of MLE decreased obvious foci of inflammatory cell infiltration in liver. It also reduced the expression of inflammatory parameters including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in liver. Treating with MLE increased the antioxidative enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase. Giving APAP to HepG2 hepatocyte was conducted to elucidate the mechanism of MLE or its functional components. The result showed that APAP upregulated hepatic protein expression of (myeloid differentiation factor 88) MyD88, nuclear factor kappa B (NF-kB), inhibitor of kappa B (IkB), c-Jun N-terminal kinases (JNK), and receptor interacting proteins (RIP1 and RIP3). Pretreatment of MLE, gallic acid (GA), gallocatechin gallate (GCG), or protocatechuic acid (PCA) suppressed the indicated protein expression. These findings confirmed that MLE has the potential to protect liver from APAP-induced inflammation, and the protecting mechanism might involve decreasing oxidative stress and regulating the innate immunity involving MyD88.


Molecular identification and functional analysis of two variants of myeloid differentiation factor 88 (MyD88) from disk abalone (Haliotis discus discus).

  • Thanthrige Thiunuwan Priyathilaka‎ et al.
  • Developmental and comparative immunology‎
  • 2018‎

Myeloid differentiation factor 88 (MyD88) is a crucial adaptor protein of the Toll-like receptor (TLR)- and interleukin 1 receptor-mediated signaling pathways and is involved in a diverse array of inflammatory responses via NF-κB activation. In the present study, two MyD88 variants were identified from disk abalone (Haliotis discus discus) and designated AbMyD88-2 and AbMyD88-X. The deduced AbMyD88-2 and AbMyD88-X comprised 433 and 354 amino acids with predicted molecular masses of 48.85 kDa and 40.17 kDa, respectively. AbMyD88-2 and AbMyD88-X possessed typical MyD88 domain structural features including an N-terminal death domain (DD) and C-terminal toll interleukin 1 receptor (TIR) domain similar to those in mammals. Expression analysis of AbMyD88-2 and AbMyD88-X mRNA at different early embryonic developmental stages of abalone by qPCR revealed that their constitutive expression at all developmental stages analyzed with the considerably higher values at the 16-cell (AbMyD88-2) and morula stages (AbMyD88-X). In unchallenged disk abalones, AbMyD88-2 was highly expressed in muscles, while AbMyD88-X mRNA was predominantly transcribed in hemocytes. Moreover, AbMyD88-2 and AbMyD88-X mRNA were differentially modulated in abalone hemocytes after a challenge with live bacteria (Vibrio parahaemolyticus, Listeria monocytogenes), virus (viral hemorrhagic septicemia virus), and pathogen-associated molecular patterns (lipopolysaccharides and Poly I:C). Overexpression of AbMyD88-2 and AbMyD88-X in HEK293T cells induced the activation of the NF-κB promoter. AbMyD88-2 and AbMyD88-X involvement in inflammatory responses was characterized by their overexpression in RAW264.7 murine macrophage cells. These results revealed comparatively higher NO (Nitric oxide) production, induction of inflammatory mediator genes (iNOS and COX2), and proinflammatory genes (IL1β, IL6 and TNFα) expression in abalone MyD88s-overexpressing cells than in mock control in the presence or absence of LPS stimulation. Altogether, these results suggest that existence of a MyD88-dependent like signaling pathway in disk abalone and that both AbMyD88-2 and AbMyD88-X might be involved in innate immune and inflammatory responses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: